1
|
Fan X, Harding PA, DiLeo MV. Controlled Release of Molecules to Enhance Cell Survival and Regeneration. Methods Mol Biol 2025; 2848:259-267. [PMID: 39240528 DOI: 10.1007/978-1-0716-4087-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea. Additional notes are included to demonstrate the wide-ranging capabilities of such methods for other materials, therapeutic agents, and sites of action within the eye.
Collapse
Affiliation(s)
- Xin Fan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Phillip A Harding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V DiLeo
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Zarouchlioti C, Efthymiou S, Facchini S, Dominik N, Bhattacharyya N, Liu S, Costa MA, Szabo A, Sadan AN, Jun AS, Bugiardini E, Houlden H, Cortese A, Skalicka P, Dudakova L, Muthusamy K, Cheetham ME, Hardcastle AJ, Liskova P, Tuft SJ, Davidson AE. Tissue-specific TCF4 triplet repeat instability revealed by optical genome mapping. EBioMedicine 2024; 108:105328. [PMID: 39278108 PMCID: PMC11419830 DOI: 10.1016/j.ebiom.2024.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Fuchs endothelial corneal dystrophy (FECD) is the most common repeat-mediated disease in humans. It exclusively affects corneal endothelial cells (CECs), with ≤81% of cases associated with an intronic TCF4 triplet repeat (CTG18.1). Here, we utilise optical genome mapping (OGM) to investigate CTG18.1 tissue-specific instability to gain mechanistic insights. METHODS We applied OGM to a diverse range of genomic DNAs (gDNAs) from patients with FECD and controls (n = 43); CECs, leukocytes and fibroblasts. A bioinformatics pipeline was developed to robustly interrogate CTG18.1-spanning DNA molecules. All results were compared with conventional polymerase chain reaction-based fragment analysis. FINDINGS Analysis of bio-samples revealed that expanded CTG18.1 alleles behave dynamically, regardless of cell-type origin. However, clusters of CTG18.1 molecules, encompassing ∼1800-11,900 repeats, were exclusively detected in diseased CECs from expansion-positive cases. Additionally, both progenitor allele size and age were found to influence the level of leukocyte-specific CTG18.1 instability. INTERPRETATION OGM is a powerful tool for analysing somatic instability of repeat loci and reveals here the extreme levels of CTG18.1 instability occurring within diseased CECs underpinning FECD pathophysiology, opening up new therapeutic avenues for FECD. Furthermore, these findings highlight the broader translational utility of FECD as a model for developing therapeutic strategies for rarer diseases similarly attributed to somatically unstable repeats. FUNDING UK Research and Innovation, Moorfields Eye Charity, Fight for Sight, Medical Research Council, NIHR BRC at Moorfields Eye Hospital and UCL Institute of Ophthalmology, Grantová Agentura České Republiky, Univerzita Karlova v Praze, the National Brain Appeal's Innovation Fund and Rosetrees Trust.
Collapse
Affiliation(s)
| | - Stephanie Efthymiou
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | - Stefano Facchini
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | - Natalia Dominik
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | | | - Siyin Liu
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | | | | | | | - Albert S Jun
- Cornea, Cataract, and External Disease Division, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, USA
| | - Enrico Bugiardini
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | - Andrea Cortese
- UCL Queen Square Institute of Neurology, Department of Neuromuscular Diseases, London, UK
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | | | | | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J Tuft
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | - Alice E Davidson
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK.
| |
Collapse
|
3
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Koo EH. Current state of endothelial cell therapy. Curr Opin Ophthalmol 2024; 35:304-308. [PMID: 38602486 DOI: 10.1097/icu.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Currently, there is heightened interest surrounding endothelial cell therapy for the treatment of corneal edema. The purpose of this review article is to describe and summarize the background information as well as the research surrounding the emerging treatment modalities for endothelial cell therapy. RECENT FINDINGS Marked advancements have been made in the translational research in this area, and increasing refinements have been demonstrated in the treatment protocols for cell therapy. Human clinical trials in this field are ongoing, specifically, in the area of injected human corneal endothelial cells (HCECs), with early results showing favorable safety and efficacy profiles. SUMMARY Efficient and effective delivery of HCECs to patients with corneal edema and dysfunction now appears feasible, and the results from ongoing human clinical trials are much anticipated. Adjunct therapeutics-in the form of pharmacological agents and/or surgical techniques, such as descemetorhexis-will likely continue to play an important role in defining the future of endothelial cell therapy.
Collapse
Affiliation(s)
- Ellen H Koo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Bhattacharyya N, Chai N, Hafford-Tear NJ, Sadan AN, Szabo A, Zarouchlioti C, Jedlickova J, Leung SK, Liao T, Dudakova L, Skalicka P, Parekh M, Moghul I, Jeffries AR, Cheetham ME, Muthusamy K, Hardcastle AJ, Pontikos N, Liskova P, Tuft SJ, Davidson AE. Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease. PLoS Genet 2024; 20:e1011230. [PMID: 38713708 PMCID: PMC11101122 DOI: 10.1371/journal.pgen.1011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 03/19/2024] [Indexed: 05/09/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Amanda N. Sadan
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Anita Szabo
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Szi Kay Leung
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Tianyi Liao
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Mohit Parekh
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Ismail Moghul
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Aaron R. Jeffries
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael E. Cheetham
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Alison J. Hardcastle
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Nikolas Pontikos
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J. Tuft
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Alice E. Davidson
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
7
|
Merra A, Maurizi E, Pellegrini G. Impact of culture media on primary human corneal endothelial cells derived from old donors. Exp Eye Res 2024; 240:109815. [PMID: 38316204 DOI: 10.1016/j.exer.2024.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs). Although HCEnCs established from young donors are generally more proliferative and maintain a better phenotype, corneas from old donors are more frequently accessible from eye banks due to a lower corneal endothelial cell count than the necessary threshold required for transplantation. In this study, we investigated various culture media to evaluate which one is the most appropriate for stimulating the proliferation while maintaining cell morphology and function of HCEnCs derived from old donors (age >65 years). All experiments were performed on paired research-grade donor corneas, divided for the conditions under investigation in order to minimize the inter-donor variability. Cell morphology as well as expression of specific markers were assessed at both mRNA (CD166, SLC4A11, ATP1A1, COL8A1, α-SMA, CD44, COL1A1, CDKN2A, LAP2A and LAP2B) and protein (ZO-1, α-SMA, Ki67 and LAP2) levels. Results obtained showed how the Dual Media formulation maintained the hexagonal phenotype more efficiently than Single Medium, but cell size gradually increased with passages. In contrast, the Single Medium provided a higher proliferation rate and a prolonged in vitro expansion but acquired an elongated morphology. To summarize, Single medium and Dual media preserve morphology and functional phenotype of HCEnCs from old donor corneas at low passages while maintenance of the same cell features at high passages remains an active area of research. The new insights revealed within this work become particularly relevant considering that the elderly population a) is the main target of corneal endothelial therapy, b) represents the majority of corneal donors. Therefore, the proper expansion of HCEnCs from old donors is essential to develop novel personalised therapeutic strategies and reduce requirement of human corneal tissues globally.
Collapse
Affiliation(s)
- Alessia Merra
- Holostem Terapie Avanzate S.r.l., Modena, Italy; Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy; Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Cheong N, Chui SW, Poon SHL, Wong HL, Shih KC, Chan YK. Emerging treatments for corneal endothelium decompensation - a systematic review. Graefes Arch Clin Exp Ophthalmol 2024; 262:381-393. [PMID: 37306732 DOI: 10.1007/s00417-023-06129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
PURPOSE Endothelial keratoplasty (EK) is the conventional treatment to improve visual acuity of corneal endothelium decompensation (CED) patients, with other therapies mainly for symptomatic relief. However, the shortage of corneal grafts and other limitations to EK urge the development of novel alternative treatments. In the last decade, novel options have been proposed, yet only a limited number of reviews have systematically reported on outcomes. Therefore, this systematic review evaluates the existing clinical evidence of novel surgical approaches for CED. METHOD We identified 24 studies that illustrated the clinical observations of the surgical approaches in interest. We included Descemet stripping only (DSO), Descemet membrane transplantation (DMT) where Descement membrane alone instead of corneal endothelium with cells is transplanted, and cell-based therapy. RESULTS In general, these therapies may provide visual outcomes comparable with EK under specific conditions. DSO and DMT target CED with relatively healthy peripheral corneal endothelium like Fuchs' corneal endothelial dystrophy, while cell-based therapy offers more versatile applications. Side effects of DSO would decrease with modifications to surgical techniques. Moreover, Rho-associated protein kinase inhibitor adjuvant therapy could enhance clinical results in DSO and cell-based therapy. CONCLUSION Long-term controlled clinical trials with larger sample size on the therapies are needed. The simplicity of DSO and the high translational potential of cell-based therapy to treat CED of most etiologies made these two treatment strategies promising.
Collapse
Affiliation(s)
- Noel Cheong
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siu Wa Chui
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Stephanie Hiu Ling Poon
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Lam Wong
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kendrick Co Shih
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yau Kei Chan
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
9
|
Wu YF, Chang NW, Chu LA, Liu HY, Zhou YX, Pai YL, Yu YS, Kuan CH, Wu YC, Lin SJ, Tan HY. Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Complex Cell-Cell Communication Networks in the Mouse Cornea. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 37792336 PMCID: PMC10565710 DOI: 10.1167/iovs.64.13.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose To generate a single-cell RNA-sequencing (scRNA-seq) map and construct cell-cell communication networks of mouse corneas. Methods C57BL/6 mouse corneas were dissociated to single cells and subjected to scRNA-seq. Cell populations were clustered and annotated for bioinformatic analysis using the R package "Seurat." Differential expression patterns were validated and spatially mapped with whole-mount immunofluorescence staining. Global intercellular signaling networks were constructed using CellChat. Results Unbiased clustering of scRNA-seq transcriptomes of 14,732 cells from 40 corneas revealed 17 cell clusters of six major cell types: nine epithelial cell, three keratocyte, two corneal endothelial cell, and one each of immune cell, vascular endothelial cell, and fibroblast clusters. The nine epithelial cell subtypes included quiescent limbal stem cells, transit-amplifying cells, and differentiated cells from corneas and two minor conjunctival epithelial clusters. CellChat analysis provided an atlas of the complex intercellular signaling communications among all cell types. Conclusions We constructed a complete single-cell transcriptomic map and the complex signaling cross-talk among all cell types of the cornea, which can be used as a foundation atlas for further research on the cornea. This study also deepens the understanding of the cellular heterogeneity and heterotypic cell-cell interaction within corneas.
Collapse
Affiliation(s)
- Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Nai-Wen Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yu Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Xian Zhou
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yun-Lin Pai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Sheng Yu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ching Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsin-Yuan Tan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Aloy-Reverté C, Bandeira F, Otero N, Rebollo-Morell A, Nieto-Nicolau N, Álvaro P. Gomes J, Güell JL, Casaroli-Marano RP. Corneal Endothelial Cell Cultures from Organotypic Preservation of Older Donor Corneas Are Suitable for Advanced Cell Therapy. Ophthalmic Res 2023; 66:1254-1265. [PMID: 37722372 PMCID: PMC10614447 DOI: 10.1159/000533701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION The purpose of this work was to evaluate the in vitro growth capacity and functionality of human corneal endothelial cells (hCEC) expanded from corneas of elderly (>60 years) donors that were preserved using an organotypic culture method (>15 days, 31°C) and did not meet the clinical criteria for keratoplasty. METHODS Cell cultures were obtained from prior descemetorhexis (≥10 mm) and a controlled incubation with collagenase type I followed by recombinant trypsin. Cells were seeded on coated plates (fibronectin-albumin-collagen I) and cultures were expanded using the dual supplemented medium approach (maintenance medium and growth medium), in the presence of a 10 μm Rho-associated protein kinase inhibitor (Y-27632). Cell passages were obtained at culture confluency (∼2 weeks). A quantitative colorimetric WST-1 cell growth assay was performed at different time points of the culture. Morphometric analysis (area assessment and circularity), immunocytochemistry (ZO-1, Na+/K+-ATPase α, Ki67), and transendothelial electrical resistance (TEER) were performed on confluent monolayers. RESULTS There was no difference between the cell growth profiles of hCEC cultures obtained from corneas older than 60 years, whether preserved cold or cultivated organotypic corneas. Primary cultures were able to maintain a certain cell circularity index (around 0.8) and morphology (hexagonal) similar to corneal endothelial mosaic. The ZO-1 and Na+/K+-ATPase pump markers were highly positive in confluent cell monolayers at 21 days after isolation (passage 0; P0), but significantly decreased in confluent monolayers after the first passage (P1). A weak expression of Ki67 was observed in both P0 and P1 monolayers. The P0 monolayers showed a progressive increase in TEER values between days 6 and 11 and remained stable until day 18 of culture, indicating a state of controlled permeability in monolayers. The P1 monolayers also showed some functional ability but with decreased TEER values compared to monolayers at P0. CONCLUSIONS Our results indicate that it is possible to obtain functional hCEC cultures in eye banks, using simplified and standardized protocols, from older donor corneas (>60 years of age), previously preserved under organotypic culture conditions. This tissue is more readily available in our setting, due to the profile of the donor population or due to the low endothelial count (<2,000 cells/mm2) of the donated cornea.
Collapse
Affiliation(s)
| | - Francisco Bandeira
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Nausica Otero
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | | | - José Álvaro P. Gomes
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - José L. Güell
- Instituto de Microcirugía Ocular (IMO), IMO Foundation, Barcelona, Spain
| | - Ricardo P. Casaroli-Marano
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
- Department of Surgery, School of Medicine and Health Sciences and Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Ng XY, Peh GSL, Yam GHF, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci 2023; 24:12433. [PMID: 37569804 PMCID: PMC10418878 DOI: 10.3390/ijms241512433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal blindness, and the current conventional treatment option is corneal transplantation using a cadaveric donor cornea. However, there is a global shortage of suitable donor graft material, necessitating the exploration of novel therapeutic approaches. A stem cell-based regenerative medicine approach using induced pluripotent stem cells (iPSCs) offers a promising solution, as they possess self-renewal capabilities, can be derived from adult somatic cells, and can be differentiated into all cell types including corneal endothelial cells (CECs). This review discusses the progress and challenges in developing protocols to induce iPSCs into CECs, focusing on the different media formulations used to differentiate iPSCs to neural crest cells (NCCs) and subsequently to CECs, as well as the characterization methods and markers that define iPSC-derived CECs. The hurdles and solutions for the clinical application of iPSC-derived cell therapy are also addressed, including the establishment of protocols that adhere to good manufacturing practice (GMP) guidelines. The potential risks of genetic mutations in iPSC-derived CECs associated with long-term in vitro culture and the danger of potential tumorigenicity following transplantation are evaluated. In all, this review provides insights into the advancement and obstacles of using iPSC in the treatment of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, 6614, Pittsburgh, PA 15260, USA
| | - Hwee Goon Tay
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
12
|
Parekh M, Ramos T, Ferrari S, Ahmad S. Inhibiting miR-195-5p Induces Proliferation of Human Corneal Endothelial Cells. Int J Mol Sci 2023; 24:11490. [PMID: 37511249 PMCID: PMC10380751 DOI: 10.3390/ijms241411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Transparency of the human cornea is responsible for clear vision, which is maintained by a monolayer of non-proliferative human corneal endothelial cells (HCEnCs). Dysfunction of these cells can result in irreversible corneal blindness. It is important to identify key factors that limit the proliferation of HCEnCs and thus attempt to reverse them. Extracellular vesicles contain cargo which includes microRNAs (miRNAs) that can modulate a cellular function. In non small cell lung cancer, expression of miR-195-5p has been shown to inhibit proliferation; therefore, we aimed to investigate the inhibitory effect of miR-195-5p in inducing the proliferation of HCEnCs. Human corneal endothelial cell line (HCEC-12) and primary HCEnCs were cultured with miR-195-5p scramble, mimic or inhibitor. Corneal tissues from human cadaveric and FECD donors, and from pigs, mice and rabbits, were used for RT-PCR. miR-195-5p showed an abundance value of 11,363.31 a.u. When normalized against HCEnCs from cadaveric donors, FECD tissues showed a significant upregulation of miR-195-5p (p < 0.05) but was significantly downregulated in pig (p < 0.001), mouse (p < 0.01) and rabbit (p < 0.001) CEnCs, which have known proliferative capacity. Proliferation, cell doubling, and wound healing rates were significantly higher when miR-195-5p was inhibited. Inhibiting miR-195-5p showed a significant improvement in viability (HEC staining), decreased cell apoptosis (TdT-dNTP staining) and expression of ZO-1, NA+/K+-ATPase and Ki-67 markers. Expression of miR-195-5p is found in HCEnCs and FECD cells, which restricts the proliferation of these cells. However, inhibiting miR-195-5p can induce the proliferation of HCEnCs, which opens exciting directions for future research in prolonging FECD pathogenesis by increasing the proliferative capacity of HCEnCs using anti-miR therapy in vivo.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Fondazione Banca degli Occhi del Veneto Onlus, Via Paccagnella, 11, 30174 Venice, Italy
| | - Tiago Ramos
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto Onlus, Via Paccagnella, 11, 30174 Venice, Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Rd, London EC1V 2PD, UK
- National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 162 City Rd, London EC1V 2PD, UK
| |
Collapse
|
13
|
Zhu YT, Tighe S, Chen SL, Zhang Y, Chen SY, Kao WWY, Tseng SCG. Manufacturing of human corneal endothelial grafts. Ocul Surf 2023; 29:301-310. [PMID: 37268293 PMCID: PMC10529356 DOI: 10.1016/j.jtos.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors. METHODS HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, β-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux. RESULTS One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm2, >8 mm diameter), phenotype, and pump function. CONCLUSIONS This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.
Collapse
Affiliation(s)
| | - Sean Tighe
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | | | - Yuan Zhang
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Szu-Yu Chen
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | | |
Collapse
|
14
|
Aouimeur I, Sagnial T, Coulomb L, Maurin C, Thomas J, Forestier P, Ninotta S, Perrache C, Forest F, Gain P, Thuret G, He Z. Investigating the Role of TGF-β Signaling Pathways in Human Corneal Endothelial Cell Primary Culture. Cells 2023; 12:1624. [PMID: 37371094 PMCID: PMC10297110 DOI: 10.3390/cells12121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Corneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial-mesenchymal transition (EndMT). Fetal bovine serum (FBS) is necessary for hCEC expansion but contains TGF-βs, which have been shown to be detrimental to hCECs. Therefore, we investigated various TGF-β signaling pathways using inhibitors to improve hCEC culture. Initially, we confirmed that TGF-β1, 2, and 3 induced EndMT on confluent hCECs without FBS. Using this TGF-β-induced EndMT model, we validated NCAM as a reliable biomarker to assess EndMT. We then demonstrated that, in a culture medium containing 8% FBS for hCEC expansion, TGF-β1 and 3, but not 2, significantly reduced the ECD and caused EndMT. TGF-β receptor inhibition had an anti-EndMT effect. Inhibition of the ROCK pathway, notably that of the P38 MAPK pathway, increased the ECD, while inhibition of the ERK pathway decreased the ECD. In conclusion, the presence of TGF-β1 and 3 in 8% FBS leads to a reduction in ECD and induces EndMT. The use of SB431542 or LY2109761 may prevent EndMT, while Y27632 or Ripasudil, and SB203580 or SB202190, can increase the ECD.
Collapse
Affiliation(s)
- Inès Aouimeur
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Tomy Sagnial
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Louise Coulomb
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Corantin Maurin
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Justin Thomas
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Pierre Forestier
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Sandrine Ninotta
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Eye Bank, Etablissement Français du Sang (EFS) Auvergne-Rhône-Alpes, 42023 Saint-Etienne, France
| | - Chantal Perrache
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Fabien Forest
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| | - Philippe Gain
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Ophthalmology Department, University Hospital Center, 42055 Saint-Etienne, France
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
- Ophthalmology Department, University Hospital Center, 42055 Saint-Etienne, France
| | - Zhiguo He
- Laboratory of Biology, Engineering and Imaging for Ophthalmology (BiiO), EA2521, Faculty of Medicine, Jean Monnet University, 42270 Saint-Etienne, France
| |
Collapse
|
15
|
De Hoon I, Boukherroub R, De Smedt SC, Szunerits S, Sauvage F. In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea. Mol Pharm 2023. [PMID: 37314950 DOI: 10.1021/acs.molpharmaceut.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Català P, Groen N, LaPointe VLS, Dickman MM. A single-cell RNA-seq analysis unravels the heterogeneity of primary cultured human corneal endothelial cells. Sci Rep 2023; 13:9361. [PMID: 37291161 PMCID: PMC10249941 DOI: 10.1038/s41598-023-36567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Abstract
The cornea is a transparent and avascular tissue located in front of the eye. Its inner surface is lined by a monolayer of corneal endothelial cells (CECs), which maintain the cornea transparency. CECs remain arrested in a non-proliferative state and damage to these cells can compromise their function leading to corneal opacity. The primary culture of donor-derived CECs is a promising cell therapy. It confers the potential to treat multiple patients from a single donor, alleviating the global donor shortage. Nevertheless, this approach has limitations preventing its adoption, particularly culture protocols allow limited expansion of CECs and there is a lack of clear parameters to identify therapy-grade CECs. To address this limitation, a better understanding of the molecular changes arising from the primary culture of CECs is required. Using single-cell RNA sequencing on primary cultured CECs, we identify their variable transcriptomic fingerprint at the single cell level, provide a pseudo-temporal reconstruction of the changes arising from primary culture, and suggest markers to assess the quality of primary CEC cultures. This research depicts a deep transcriptomic understanding of the cellular heterogeneity arising from the primary expansion of CECs and sets the basis for further improvement of culture protocols and therapies.
Collapse
Affiliation(s)
- Pere Català
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Mor M Dickman
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Peh GSL, Bandeira F, Neo D, Adnan K, Hartono Y, Ong HS, Naso S, Venkatraman A, Gomes JAP, Kocaba V, Mehta JS. Effects of Rho-Associated Kinase (Rock) Inhibitors (Alternative to Y-27632) on Primary Human Corneal Endothelial Cells. Cells 2023; 12:cells12091307. [PMID: 37174707 PMCID: PMC10177577 DOI: 10.3390/cells12091307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Rho-associated coiled-coil protein kinase (ROCK) signaling cascade impacts a wide array of cellular events. For cellular therapeutics, scalable expansion of primary human corneal endothelial cells (CECs) is crucial, and the inhibition of ROCK signaling using a well characterized ROCK inhibitor (ROCKi) Y-27632 had been shown to enhance overall endothelial cell yield. (2) In this study, we compared several classes of ROCK inhibitors to both ROCK-I and ROCK-II, using in silico binding simulation. We then evaluated nine ROCK inhibitors for their effects on primary CECs, before narrowing it down to the two most efficacious compounds-AR-13324 (Netarsudil) and its active metabolite, AR-13503-and assessed their impact on cellular proliferation in vitro. Finally, we evaluated the use of AR-13324 on the regenerative capacity of donor cornea with an ex vivo corneal wound closure model. Donor-matched control groups supplemented with Y-27632 were used for comparative analyses. (3) Our in silico simulation revealed that most of the compounds had stronger binding strength than Y-27632. Most of the nine ROCK inhibitors assessed worked within the concentrations of between 100 nM to 30 µM, with comparable adherence to that of Y-27632. Of note, both AR-13324 and AR-13503 showed better cellular adherence when compared to Y-27632. Similarly, the proliferation rates of CECs exposed to AR-13324 were comparable to those of Y-27632. Interestingly, CECs expanded in a medium supplemented with AR-13503 were significantly more proliferative in (i) untreated vs. AR-13503 (1 μM; * p < 0.05); (ii) untreated vs. AR-13503 (10 μM; *** p < 0.001); (iii) Y-27632 vs. AR-13503 (10 μM; ** p < 0.005); (iv) AR-13324 (1 μM) vs. AR-13503 (10 μM; ** p < 0.005); and (v) AR-13324 (0.1 μM) vs. AR-13503 (10 μM; * p < 0.05). Lastly, an ex vivo corneal wound healing study showed a comparable wound healing rate for the final healed area in corneas exposed to Y-27632 or AR-13324. (4) In conclusion, we were able to demonstrate that various classes of ROCKi compounds other than Y-27632 were able to exert positive effects on primary CECs, and systematic donor-match controlled comparisons revealed that the FDA-approved ROCK inhibitor, AR-13324, is a potential candidate for cellular therapeutics or as an adjunct drug in regenerative treatment for corneal endothelial diseases in humans.
Collapse
Affiliation(s)
- Gary S L Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Francisco Bandeira
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Corneal and External Diseases Department, São Gonçalo Eye Hospital, Rio de Janeiro 24421-005, Brazil
| | - Dawn Neo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Khadijah Adnan
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yossa Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Sacha Naso
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Anandalakshmi Venkatraman
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - José A P Gomes
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Netherlands Institute for Innovative Ocular Surgery, 3071AA Rotterdam, The Netherlands
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
18
|
Wong EN, Foo VHX, Peh GSL, Htoon HM, Ang HP, Tan BYL, Ong HS, Mehta JS. Early Visibility of Cellular Aggregates and Changes in Central Corneal Thickness as Predictors of Successful Corneal Endothelial Cell Injection Therapy. Cells 2023; 12:cells12081167. [PMID: 37190076 DOI: 10.3390/cells12081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Cell injection therapy is an emerging treatment for bullous keratopathy (BK). Anterior segment optical coherence tomography (AS-OCT) imaging allows the high-resolution assessment of the anterior chamber. Our study aimed to investigate the predictive value of the visibility of cellular aggregates for corneal deturgescence in an animal model of bullous keratopathy. (2) Methods: Cell injections of corneal endothelial cells were performed in 45 eyes in a rabbit model of BK. AS-OCT imaging and central corneal thickness (CCT) measurement were performed at baseline and on day 1, day 4, day 7 and day 14 following cell injection. A logistic regression was modelled to predict successful corneal deturgescence and its failure with cell aggregate visibility and CCT. Receiver-operating characteristic (ROC) curves were plotted, and areas under the curve (AUC) calculated for each time point in these models. (3) Results: Cellular aggregates were identified on days 1, 4, 7 and 14 in 86.7%, 39.5%, 20.0% and 4.4% of eyes, respectively. The positive predictive value of cellular aggregate visibility for successful corneal deturgescence was 71.8%, 64.7%, 66.7% and 100.0% at each time point, respectively. Using logistic regression modelling, the visibility of cellular aggregates on day 1 appeared to increase the likelihood of successful corneal deturgescence, but this did not reach statistical significance. An increase in pachymetry, however, resulted in a small but statistically significant decreased likelihood of success, with an odds ratio of 0.996 for days 1 (95% CI 0.993-1.000), 2 (95% CI 0.993-0.999) and 14 (95% CI 0.994-0.998) and an odds ratio of 0.994 (95% CI 0.991-0.998) for day 7. The ROC curves were plotted, and the AUC values were 0.72 (95% CI 0.55-0.89), 0.80 (95% CI 0. 62-0.98), 0.86 (95% CI 0.71-1.00) and 0.90 (95% CI 0.80-0.99) for days 1, 4, 7 and 14, respectively. (4) Conclusions: Logistic regression modelling of cell aggregate visibility and CCT was predictive of successful corneal endothelial cell injection therapy.
Collapse
Affiliation(s)
- Evan N Wong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6009, Australia
| | - Valencia H X Foo
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Gary S L Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
| | - Hla M Htoon
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
| | - Heng-Pei Ang
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Belinda Y L Tan
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
| | - Hon-Shing Ong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 169856, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
- School of Material Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
GSK-3 inhibition reverts mesenchymal transition in primary human corneal endothelial cells. Eur J Cell Biol 2023; 102:151302. [PMID: 36905755 DOI: 10.1016/j.ejcb.2023.151302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Human corneal endothelial cells are organized in a tight mosaic of hexagonal cells and serve a critical function in maintaining corneal hydration and clear vision. Regeneration of the corneal endothelial tissue is hampered by its poor proliferative capacity, which is partially retrieved in vitro, albeit only for a limited number of passages before the cells undergo mesenchymal transition (EnMT). Although different culture conditions have been proposed in order to delay this process and prolong the number of cell passages, EnMT has still not been fully understood and successfully counteracted. In this perspective, we identified herein a single GSK-3 inhibitor, CHIR99021, able to revert and avoid EnMT in primary human corneal endothelial cells (HCEnCs) from old donors until late passages in vitro (P8), as shown from cell morphology analysis (circularity). In accordance, CHIR99021 reduced expression of α-SMA, an EnMT marker, while restored endothelial markers such as ZO-1, Na+/K+ ATPase and N-cadherin, without increasing cell proliferation. A further analysis on RNA expression confirmed that CHIR99021 induced downregulation of EnMT markers (α-SMA and CD44), upregulation of the proliferation repressor p21 and revealed novel insights into the β-catenin and TGFβ pathways intersections in HCEnCs. The use of CHIR99021 sheds light on the mechanisms involved in EnMT, providing a substantial advantage in maintaining primary HCEnCs in culture until late passages, while preserving the correct morphology and phenotype. Altogether, these results bring crucial advancements towards the improvement of the corneal endothelial cells based therapy.
Collapse
|
20
|
Talpan D, Salla S, Meusel L, Walter P, Kuo CC, Franzen J, Fuest M. Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. Int J Mol Sci 2023; 24:ijms24032882. [PMID: 36769200 PMCID: PMC9917909 DOI: 10.3390/ijms24032882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Linus Meusel
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
21
|
Singh S, Chaurasia S. Recent and Evolving Therapies in the Management of Endothelial Diseases. Semin Ophthalmol 2023; 38:207-215. [PMID: 36582139 DOI: 10.1080/08820538.2022.2152717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corneal endothelium is the innermost layer of the cornea which has both barrier and pump function and very important to maintain cornea clarity. Unlike epithelium, endothelium does not have regenerative potential; hence, endothelial damage or dysfunction could lead to corneal edema and visual impairment. Advanced corneal transplantation which involves selective replacement of dysfunctional endothelium has led to improved and faster visual rehabilitation. But in recent times, alternative therapies in the management of corneal edema and endothelial diseases have been reported. In this review, we aim to give a comprehensive review of various strategies for the management of corneal endothelial dysfunction in order to give treatment which is precisely tailored for each individual patient. A review of all peer-reviewed publications on novel strategies for the management of endothelial dysfunction was performed. The various approaches to the management of endothelial dysfunction are compared and discussed. Shortage of human donor corneas globally is fuelling the search for keratoplasty alternatives. Corneal endothelial dysfunction can be caused following surgery, laser or corneal endothelial dystrophies which could be amenable to treatment with pharmacological, biological intervention and reverse the endothelial dysfunction in the early stages of endothelial failure. Pharmacological and surgical intervention are helpful in cases of good peripheral endothelial cell reserve, and advanced cases of endothelial cell dysfunction can be targeted with cell culture therapies, gene therapy and artificial implant. Treatment strategies which target endothelial dysfunction, especially FECD in its early stages, and gene therapy are rapidly evolving. Therapies which delay endothelial keratoplasty also are evolving like DSO and need more studies of long-term follow-up and patient selection criteria.
Collapse
Affiliation(s)
- Shalini Singh
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sunita Chaurasia
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
22
|
Maurizi E, Martella DA, Schiroli D, Merra A, Mustfa SA, Pellegrini G, Macaluso C, Chiappini C. Nanoneedles Induce Targeted siRNA Silencing of p16 in the Human Corneal Endothelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203257. [PMID: 36253148 PMCID: PMC9685449 DOI: 10.1002/advs.202203257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium. Nanoneedles can deliver p16-targeting siRNA to primary human corneal endothelial cells in vitro without toxicity. The nanoinjection of siRNA induces p16 silencing and increases cell proliferation, as monitored by ki67 expression. Furthermore, siRNA nanoinjection targeting the human corneal endothelium is nontoxic ex vivo, and silences p16 in transfected cells. These data indicate that nanoinjection can support targeted RNA interference therapy for the treatment of endothelial corneal dysfunction.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
| | | | - Davide Schiroli
- Transfusion Medicine UnitAzienda USL‐IRCCSReggio Emilia42122Italy
| | | | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- AstraZenecaGranta Park, Great AbingtonCambridgeCB21 6GHUnited Kingdom
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
- Holostem Terapie Avanzate S.r.l.Modena41125Italy
| | - Claudio Macaluso
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
23
|
Desjardins P, Berthiaume R, Couture C, Le-Bel G, Roy V, Gros-Louis F, Moulin VJ, Proulx S, Chemtob S, Germain L, Guérin SL. Impact of Exosomes Released by Different Corneal Cell Types on the Wound Healing Properties of Human Corneal Epithelial Cells. Int J Mol Sci 2022; 23:12201. [PMID: 36293057 PMCID: PMC9602716 DOI: 10.3390/ijms232012201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023] Open
Abstract
Corneal wound healing involves communication between the different cell types that constitute the three cellular layers of the cornea (epithelium, stroma and endothelium), a process ensured in part by a category of extracellular vesicles called exosomes. In the present study, we isolated exosomes released by primary cultured human corneal epithelial cells (hCECs), corneal fibroblasts (hCFs) and corneal endothelial cells (hCEnCs) and determined whether they have wound healing characteristics of their own and to which point they modify the genetic and proteomic pattern of these cell types. Exosomes released by all three cell types significantly accelerated wound closure of scratch-wounded hCECs in vitro compared to controls (without exosomes). Profiling of activated kinases revealed that exosomes from human corneal cells caused the activation of signal transduction mediators that belong to the HSP27, STAT, β-catenin, GSK-3β and p38 pathways. Most of all, data from gene profiling analyses indicated that exosomes, irrespective of their cellular origin, alter a restricted subset of genes that are completely different between each targeted cell type (hCECs, hCFS, hCEnCs). Analysis of the genes specifically differentially regulated for a given cell-type in the microarray data using the Ingenuity Pathway Analysis (IPA) software revealed that the mean gene expression profile of hCECs cultured in the presence of exosomes would likely promote cell proliferation and migration whereas it would reduce differentiation when compared to control cells. Collectively, our findings represent a conceptual advance in understanding the mechanisms of corneal wound repair that may ultimately open new avenues for the development of novel therapeutic approaches to improve closure of corneal wounds.
Collapse
Affiliation(s)
- Pascale Desjardins
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rébecca Berthiaume
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Roy
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - François Gros-Louis
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Véronique J. Moulin
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Proulx
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain Chemtob
- Département d’Ophtalmologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Lucie Germain
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Regenerative Medicine Division of the Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec, QC G1J 1Z4, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Hôpital Enfant-Jésus, 1401 18e Rue, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Santerre K, Cortez Ghio S, Proulx S. TGF-β-Mediated Modulation of Cell-Cell Interactions in Postconfluent Maturing Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 36194422 PMCID: PMC9547359 DOI: 10.1167/iovs.63.11.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Transforming growth factor-beta (TGF-β) is known to influence many cell functions. In the corneal endothelium, TGF-β1 exerts contextual effects, promoting endothelial–mesenchymal transition in proliferating cells and enhancing barrier integrity in early confluent maturing cells. Herein, we studied how TGF-β isoforms participate in the formation of corneal endothelial intercellular junctions. Methods Corneal endothelial cells (CECs) were cultured using a two-phase media approach. When CECs reached confluence, the proliferation medium was replaced with maturation medium, which was supplemented or not with TGF-β isoforms. The cell morphology (circularity index), intercellular junction protein expression, trans-endothelial electrical resistance (TEER), and permeability of 7-day postconfluent CECs were assessed. Gene transcription and signaling pathways that were activated following maturation in the presence of TGF-β2 were also studied. The beneficial effect of TGF-β2 on CEC maturation was evaluated using ex vivo corneas mounted on a corneal bioreactor. Results The results showed increases in circularity index, membrane localization of junction-related proteins, and TEER when TGF-β isoforms were individually added during the maturation phase, and TGF-β2 was the most effective isoform. Gene profiling revealed an increase in extracellular matrix-related gene expression. In ex vivo cell adhesion experiments, CECs that were matured in the presence of TGF-β2 had a higher circularity index and cell density and exhibited cell membrane-localized junction-related protein expression at earlier time points. Conclusions These results suggest that TGF-β2 can strengthen cell–cell and cell–substrate adhesion, which accelerates barrier integrity establishment and thus enhances CEC functionality.
Collapse
Affiliation(s)
- Kim Santerre
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada.,Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sergio Cortez Ghio
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada
| | - Stéphanie Proulx
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada.,Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
25
|
Hazra S, Sneha IV, Chaurasia S, Ramachandran C. In Vitro Expansion of Corneal Endothelial Cells for Clinical Application: Current Update. Cornea 2022; 41:1313-1324. [PMID: 36107851 DOI: 10.1097/ico.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Endothelial dysfunction is one of the leading causes of corneal blindness and one of the common indications for keratoplasty. At present, the standard of treatment involves the replacement of the dysfunctional endothelium with healthy tissue taken from a donor. Because there is a paucity of healthy donor tissues, research on the corneal endothelium has focused primarily on expanding these cells in the laboratory for transplantation in an attempt to reduce the gap between the demand and supply of donor tissues for transplantation. To expand these cells, which are nonmitotic in vivo, various mitogens, substrates, culture systems, and alternate strategies have been tested with varying success. The biggest challenge has been the limited proliferative capacity of these cells compounded with endothelial to mesenchymal transition that alters the functioning of these cells and renders them unsuitable for human transplantation. This review aims to give a comprehensive overview of the most common and successful techniques used in the culture of the cells, the current available evidence in support of epithelial to mesenchymal transition (EMT), alternate sources for deriving the corneal endothelial cells, and advances made in transplantation of these cells.
Collapse
Affiliation(s)
- Swatilekha Hazra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Manipal University, Manipal, Karnataka, India ; and
| | - Iskala V Sneha
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Endothelial keratoplasty is the current gold standard for treating corneal endothelial diseases, achieving excellent visual outcomes and rapid rehabilitation. There are, however, severe limitations to donor tissue supply and uneven access to surgical teams and facilities across the globe. Cell therapy is an exciting approach that has shown promising early results. Herein, we review the latest developments in cell therapy for corneal endothelial disease. RECENT FINDINGS We highlight the work of several groups that have reported successful functional outcomes of cell therapy in animal models, with the utilization of human embryonic stem cells, human-induced pluripotent stem cells and cadaveric human corneal endothelial cells (CECs) to generate populations of CECs for intracameral injection. The use of corneal endothelial progenitors, viability of cryopreserved cells and efficacy of simple noncultured cells, in treating corneal decompensation is of particular interest. Further additions to the collective understanding of CEC physiology, and the process of cultivating and administering effective cell therapy are reviewed as well. SUMMARY The latest developments in cell therapy for corneal endothelial disease are presented. The continuous growth in this field gives rise to the hope that a viable solution to the large numbers of corneal blind around the world will one day be reality.
Collapse
Affiliation(s)
- Evan N Wong
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Maurizi E, Merra A, Schiroli D, Ghezzi B, Macaluso C, Pellegrini G. Fluctuations in Corneal Endothelial LAP2 Expression Levels Correlate with Passage Dependent Declines in Their Cell Proliferative Activity. Int J Mol Sci 2022; 23:ijms23105859. [PMID: 35628669 PMCID: PMC9146651 DOI: 10.3390/ijms23105859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro. This study aims to analyze CEnCs behavior and expression in vitro, either in sub-confluent growing (S) or confluent (C) CEnCs cultures. Primary rabbit and human CEnCs were cultured and used for RT-PCR, immunofluorescence or western blot analysis. These methods allowed identifying a novel molecular marker, LAP2, that is upregulated in S while downregulated in C human or rabbit CEnCs. Those results were observed for several subsequent passages in culture and this, together with the correlation between ki67 and LAP2 expression, suggested LAP2 as a novel possible indicator for culture ageing. Finally, treatment with FGF and TGFβ in rCEnCs highlighted how LAP2 can vary as the cells regulate their proliferative state. In conclusion, we have identified a novel marker for CEnCs, LAP2, that regulates its expression depending on the cells sub/confluent state and that correlates with CEnCs proliferation.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Correspondence:
| | - Alessia Merra
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy;
| | - Benedetta Ghezzi
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Claudio Macaluso
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| |
Collapse
|
28
|
Parekh M, Wongvisavavit R, Cubero Cortes ZM, Wojcik G, Romano V, Tabernero SS, Ferrari S, Ahmad S. Alternatives to endokeratoplasty: an attempt towards reducing global demand of human donor corneas. Regen Med 2022; 17:461-475. [PMID: 35481361 DOI: 10.2217/rme-2021-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cornea is an anterior transparent tissue of the eye that enables the transmission of surrounding light to the back of the eye, which is essential for maintaining clear vision. Corneal endothelial diseases can lead to partial or total blindness; hence, surgical replacement of the diseased corneal tissue with a healthy cadaveric donor graft becomes necessary when the endothelium is damaged. Keratoplasties face a huge challenge due to a worldwide shortage in the supply of human donor corneas. Hence, alternative solutions such as cell or tissue engineering-based therapies have been investigated for reducing the global demand of donor corneas. This review aims at highlighting studies that have been successful at replacing partial or total endothelial keratoplasty.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK
| | - Rintra Wongvisavavit
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK.,Faculty of Medicine & Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Gabriela Wojcik
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, 30174, Italy
| | - Vito Romano
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.,Department of Ageing & Chronic Diseases, University of Liverpool, Liverpool, L7 8XL, UK
| | - Sara Sanchez Tabernero
- Cornea & external eye disease, Moorfields Eye Hospital NHS Trust Foundation, London, EC1V 2PD, UK
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, 30174, Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK.,Cornea & external eye disease, Moorfields Eye Hospital NHS Trust Foundation, London, EC1V 2PD, UK
| |
Collapse
|
29
|
Near infra-red labelling and tracking of corneal endothelial cells in-vivo. Sci Rep 2022; 12:6338. [PMID: 35428788 PMCID: PMC9012756 DOI: 10.1038/s41598-022-09677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Following corneal transplantation, there is an initial, rapid decline in corneal endothelial cells (CECs) following surgery. Direct imaging of post-transplantation endothelial cells is only possible weeks after surgery and with a limited field of view. We have developed a labelling approach using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DIR) dye solution, that enables tracking of labelled CECs in vivo for at least 1 month. Initial in vitro optimization, with assessments of dye concentration on fluorescence, cellular toxicity and cell migration, performed in propagated primary CECs. Subsequently, in vivo evaluation of cellular labelling was assessed within a rabbit wound healing model. Finally, real-time visualization of human cadaver donor tissue incubated in DIR transplanted into rabbits was achieved using a clinical confocal microscope. Results revealed detectable fluorescence increased with concentration to a plateau of 100 µg/ml, with no toxicity of CECs at any concentration evaluated. DIR-labelled CECs were detectable in vivo up to 1 month, and transplanted labelled donor graft could be visualized and were trackable in vivo. Acute endothelial rejection in 1 rabbit was evidenced by detectable DIR positive cells within the anterior chamber. DIR imaging allowed for detailed imaging of the transplanted human corneal endothelium, and enabled non-invasive observation of the corneal endothelial morphology following transplantation.
Collapse
|
30
|
Parekh M, Rhys H, Ramos T, Ferrari S, Ahmad S. Extracellular Vesicles Derived From Human Corneal Endothelial Cells Inhibit Proliferation of Human Corneal Endothelial Cells. Front Med (Lausanne) 2022; 8:753555. [PMID: 35186961 PMCID: PMC8854366 DOI: 10.3389/fmed.2021.753555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Corneal endothelial cells (CEnCs) are a monolayer of hexagonal cells that are responsible for maintaining the function and transparency of the cornea. Damage or dysfunction of CEnCs could lead to blindness. Human CEnCs (HCEnCs) have shown limited proliferative capacity in vivo hence, their maintenance is crucial. Extracellular vesicles (EVs) are responsible for inter- and intra-cellular communication, proliferation, cell-differentiation, migration, and many other complex biological processes. Therefore, we investigated the effect of EVs (derived from human corneal endothelial cell line–HCEC-12) on corneal endothelial cells. HCEC-12 cells were starved with serum-depleted media for 72 h. The media was ultracentrifuged at 100,000xg to isolate the EVs. EV counting, characterization, internalization and localization were performed using NanoSight, flow cytometry, Dil labeling and confocal microscopy respectively. HCEC-12 and HCEnCs were cultured with media supplemented with EVs. Extracted EVs showed a homogeneous mixture of exosomes and microvesicles. Cells with EVs decreased the proliferation rate; increased apoptosis and cell size; showed poor wound healing response in vitro and on ex vivo human, porcine, and rabbit CECs. Thirteen miRNAs were found in the EV sample using next generation sequencing. We observed that increased cellular uptake of EVs by CECs limit the proliferative capacity of HCEnCs. These preliminary data may help in understanding the pathology of corneal endothelial dysfunction and provide further insights in the development of future therapeutic treatment options.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Tiago Ramos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto, Venice, Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Cornea and External Eye Disease, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Sajjad Ahmad
| |
Collapse
|
31
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
32
|
Improvement of an Effective Protocol for Directed Differentiation of Human Adipose Tissue-Derived Adult Mesenchymal Stem Cells to Corneal Endothelial Cells. Int J Mol Sci 2021; 22:ijms222111982. [PMID: 34769411 PMCID: PMC8585097 DOI: 10.3390/ijms222111982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal disease affects 12.5 million individuals worldwide, with 2 million new cases each year. The standard treatment consists of a corneal transplantation from a human donor; however, the worldwide demand significantly exceeds the available supply. Lamellar endothelial keratoplasty, the replacement of only the endothelial layer of the cornea, can partially solve the problem. Progressive efforts have succeeded in expanding hCECs; however, the ability to expand hCECs is still limited, and new sources of CECs are being sought. Crucial advances have been achieved by the directed differentiation of embryonic or induced pluripotent stem cells, but these cells have disadvantages, such as the use of oncogenes, and are still difficult to establish. We aimed to transfer such knowledge to obtain hCECs from adipose tissue-derived adult mesenchymal stem cells (ADSC) by modifying four previously published procedures. We present several protocols capable of the directed differentiation of human ADSCs to hCECs. In our hands, the protocol by Ali et al. was the best adapted to such differentiation in terms of efficiency, time, and financial cost; however, the protocol by Wagoner et al. was the best for CEC marker expression. Our results broaden the type of cells of autologous extraocular origin that could be employed in the clinical setting for corneal endothelial deficiency.
Collapse
|
33
|
Spinozzi D, Miron A, Bruinsma M, Dapena I, Kocaba V, Jager MJ, Melles GRJ, Ni Dhubhghaill S, Oellerich S. New developments in corneal endothelial cell replacement. Acta Ophthalmol 2021; 99:712-729. [PMID: 33369235 DOI: 10.1111/aos.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is currently the most effective treatment to restore corneal clarity in patients with endothelial disorders. Endothelial transplantation, either by Descemet membrane endothelial keratoplasty (DMEK) or by Descemet stripping (automated) endothelial keratoplasty (DS(A)EK), is a surgical approach that replaces diseased Descemet membrane and endothelium with tissue from a healthy donor eye. Its application, however, is limited by the availability of healthy donor tissue. To increase the pool of endothelial grafts, research has focused on developing new treatment options as alternatives to conventional corneal transplantation. These treatment options can be considered as either 'surgery-based', that is tissue-efficient modifications of the current techniques (e.g. Descemet stripping only (DSO)/Descemetorhexis without endothelial keratoplasty (DWEK) and Quarter-DMEK), or 'cell-based' approaches, which rely on in vitro expansion of human corneal endothelial cells (hCEC) (i.e. cultured corneal endothelial cell sheet transplantation and cell injection). In this review, we will focus on the most recent developments in the field of the 'cell-based' approaches. Starting with the description of aspects involved in the isolation of hCEC from donor tissue, we then describe the different natural and bioengineered carriers currently used in endothelial cell sheet transplantation, and finally, we discuss the current 'state of the art' in novel therapeutic approaches such as endothelial cell injection.
Collapse
Affiliation(s)
- Daniele Spinozzi
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Marieke Bruinsma
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
| | - Viridiana Kocaba
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Tissue Engineering and Stem Cell Group Singapore Eye Research Institute Singapore Singapore
| | - Martine J. Jager
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Gerrit R. J. Melles
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Amnitrans EyeBank Rotterdam The Netherlands
| | - Sorcha Ni Dhubhghaill
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Antwerp University Hospital (UZA) Edegem Belgium
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| |
Collapse
|
34
|
New Therapies for Corneal Endothelial Diseases: 2020 and Beyond. Cornea 2021; 40:1365-1373. [PMID: 34633355 DOI: 10.1097/ico.0000000000002687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/01/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Penetrating keratoplasty used to be the only surgical technique for the treatment of end-stage corneal endothelial diseases. Improvements in surgical techniques over the past decade have now firmly established endothelial keratoplasty as a safe and effective modality for the treatment of corneal endothelial diseases. However, there is a worldwide shortage of corneal tissue, with more than 50% of the world having no access to cadaveric tissue. Cell injection therapy and tissue-engineered endothelial keratoplasty may potentially offer comparable results as endothelial keratoplasty while maximizing the use of cadaveric donor corneal tissue. Descemet stripping only, Descemet membrane transplantation, and selective endothelial removal are novel therapeutic modalities that take this a step further by relying on endogenous corneal endothelial cell regeneration, instead of allogenic corneal endothelial cell transfer. Gene therapy modalities, including antisense oligonucleotides and clustered regularly interspaced short palindromic repeats-based gene editing, offer the holy grail of potentially suppressing the phenotypic expression of genetically determined corneal endothelial diseases at the asymptomatic stage. We now stand at the crossroads of exciting developments in medical technologies that will likely revolutionize the way we treat corneal endothelial diseases over the next 2 decades.
Collapse
|
35
|
Smeringaiova I, Paaske Utheim T, Jirsova K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review. Stem Cell Res Ther 2021; 12:554. [PMID: 34717745 PMCID: PMC8556978 DOI: 10.1186/s13287-021-02611-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays a key role in maintaining corneal transparency. Its dysfunction is currently treated with penetrating or lamellar keratoplasty. Advanced cell therapy methods seek to address the persistent global deficiency of donor corneas by enabling the renewal of the endothelial monolayer with tissue-engineered grafts. This review provides an overview of recently published literature on the preparation of endothelial grafts for transplantation derived from cadaveric corneas that have developed over the last decade (2010–2021). Factors such as the most suitable donor parameters, culture substrates and media, endothelial graft storage conditions, and transplantation methods are discussed. Despite efforts to utilize alternative cellular sources, such as induced pluripotent cells, cadaveric corneas appear to be the best source of cells for graft preparation to date. However, native endothelial cells have a limited natural proliferative capacity, and they often undergo rapid phenotype changes in ex vivo culture. This is the main reason why no culture protocol for a clinical-grade endothelial graft prepared from cadaveric corneas has been standardized so far. Currently, the most established ex vivo culture protocol involves the peel-and-digest method of cell isolation and cell culture by the dual media method, including the repeated alternation of high and low mitogenic conditions. Culture media are enriched by additional substances, such as signaling pathway (Rho-associated protein kinase, TGF-β, etc.) inhibitors, to stimulate proliferation and inhibit unwanted morphological changes, particularly the endothelial-to-mesenchymal transition. To date, this promising approach has led to the development of endothelial grafts for the first in-human clinical trial in Japan. In addition to the lack of a standard culture protocol, endothelial-specific markers are still missing to confirm the endothelial phenotype in a graft ready for clinical use. Because the corneal endothelium appears to comprise phenotypically heterogeneous populations of cells, the genomic and proteomic expression of recently proposed endothelial-specific markers, such as Cadherin-2, CD166, or SLC4A11, must be confirmed by additional studies. The preparation of endothelial grafts is still challenging today, but advances in tissue engineering and surgery over the past decade hold promise for the successful treatment of endothelial dysfunctions in more patients worldwide.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
36
|
Rinkoski TA, Bahler CK, Pacheco JM, Khanna ML, Holmes DM, Roy Chowdhury U, Baratz KH, Patel SV, Maguire LJ, Wieben ED, Fautsch MP. Characterization of a dual media system for culturing primary normal and Fuchs endothelial corneal dystrophy (FECD) endothelial cells. PLoS One 2021; 16:e0258006. [PMID: 34587219 PMCID: PMC8480743 DOI: 10.1371/journal.pone.0258006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cultures of human corneal endothelial cells (HCECs) are an important model system for studying the pathophysiology of corneal endothelium. The purpose of this study was to identify and validate an optimal primary culture model of normal and Fuchs endothelial corneal dystrophy (FECD) endothelial cells by comparing cell morphology and marker expression under different media conditions to in vivo donor tissues. Primary and immortalized HCECs, isolated from normal and FECD donors, were cultured in proliferation media (Joyce, M4, Bartakova) alone or sequentially with maturation media (F99, Stabilization 1, M5). CD56, CD73 and CD166 expressions were quantified in confluent and matured cell lines by flow cytometry. HCECs that were allowed to proliferate in Joyce's medium followed by maturation in low-mitogen containing media yielded cells with similar morphology to corneal endothelial tissues. Elevated expression of CD56 and CD166 and low expression of CD73 correlated with regular, hexagonal-like HCEC morphology. CD56:CD73 > 2.5 was most consistent with normal HCEC morphology and mimicked corneal endothelial tissue. Immortalization of normal HCECs by hTERT transduction showed morphology and CD56:CD73 ratios similar to parental cell lines. HCECs established from FECD donors showed reduced CD56:CD73 ratios compared to normal HCECs which coincided with reduced uniformity and regularity of cell monolayers. Overall, a dual media system with Joyce's medium for proliferation and a low-mitogen media for maturation, provided normal cultures with regular, hexagonal-like cell morphologies consistent with corneal endothelial cells in vivo. CD56:CD73 expression ratio >2.5 was predictive of in vivo-like cellular morphology.
Collapse
Affiliation(s)
- Tommy A. Rinkoski
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Cindy K. Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Johann M. Pacheco
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Maya L. Khanna
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - David M. Holmes
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Keith H. Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Sanjay V. Patel
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Leo J. Maguire
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Eric D. Wieben
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
37
|
Optimization of polycaprolactone - based nanofiber matrices for the cultivation of corneal endothelial cells. Sci Rep 2021; 11:18858. [PMID: 34552187 PMCID: PMC8458296 DOI: 10.1038/s41598-021-98426-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2021] [Indexed: 01/24/2023] Open
Abstract
Posterior lamellar transplantation of the eye’ s cornea (DSAEK, DMEK) currently is the gold standard for treating patients with corneal endothelial cell and back surface pathologies resulting in functional impairment. An artificial biomimetic graft carrying human corneal endothelium could minimize the dependency on human donor corneas giving access to this vision-restoring surgery to large numbers of patients, thus reducing current long waiting lists. In this study, four groups of electrospun nanofibrous scaffolds were compared: polycaprolactone (PCL), PCL/collagen, PCL/gelatin and PCL/chitosan. Each of the scaffolds were tissue-engineered with human corneal endothelial cells (HCEC-B4G12) and analyzed with regard to their potential application as artificial posterior lamellar grafts. Staining with ZO-1 and Na+/K+-ATPase antibodies revealed intact cell functionalities. It could be shown, that blending leads to decreasing contact angle, whereby a heterogeneous blend morphology could be revealed. Scaffold cytocompatibility could be confirmed for all groups via live/dead staining, whereby a significant higher cell viability could be observed for the collagen and gelatine blended matrices with 97 ± 3% and 98 ± 2% living cells respectively. TEM images show the superficial anchoring of the HCECs onto the scaffolds. This work emphasizes the benefit of blended PCL nanofibrous scaffolds for corneal endothelial keratoplasty.
Collapse
|
38
|
Abstract
Corneal endothelial cells (CECs) facilitate the function of maintaining the transparency of the cornea. Damage or dysfunction of CECs can lead to blindness, and the primary treatment is corneal transplantation. However, the shortage of cornea donors is a significant problem worldwide. Thus, cultured CEC therapy has been proposed and found to be a promising approach to overcome the lack of tissue supply. Unfortunately, CECs in humans rarely proliferate in vivo and, therefore, can be extremely challenging to culture in vitro. Several promising cell isolation and culture techniques have been proposed. Multiple factors affecting the success of cell expansion including donor characteristics, preservation and isolation methods, plating density, media preparation, transdifferentiation and biomarkers have been evaluated. However, there is no consensus on standard technique for CEC culture. This review aimed to determine the challenges and investigate potential options that would facilitate the standardization of CEC culture for research and therapeutic application.
Collapse
Affiliation(s)
- Rintra Wongvisavavit
- Institute of Ophthalmology, University College London, London, UK.,Faculty of Medicine & Public Health, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK
| | - Sajjad Ahmad
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Julie T Daniels
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
39
|
Yang Z, Yang J, Liu D, Yu W. Mendelian randomization analysis identified genes pleiotropically associated with central corneal thickness. BMC Genomics 2021; 22:517. [PMID: 34233613 PMCID: PMC8263012 DOI: 10.1186/s12864-021-07860-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To prioritize genes that were pleiotropically or potentially causally associated with central corneal thickness (CCT). METHODS We applied the summary data-based Mendelian randomization (SMR) method integrating summarized data of genome-wide association study (GWAS) on CCT and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with CCT. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analyses were done for participants of European and East Asian ancestries, separately. RESULTS We identified multiple genes showing pleiotropic association with CCT in the participants of European ancestry. CLIC3 (ILMN_1796423; PSMR = 4.15 × 10- 12), PTGDS (ILMN_1664464; PSMR = 6.88 × 10- 9) and C9orf142 (ILMN_1761138; PSMR = 8.09 × 10- 9) were the top three genes using the CAGE eQTL data, and RP11-458F8.4 (ENSG00000273142.1; PSMR = 5.89 × 10- 9), LCNL1 (ENSG00000214402.6; PSMR = 5.67 × 10- 8), and PTGDS (ENSG00000107317.7; PSMR = 1.92 × 10- 7) were the top three genes using the GTEx eQTL data. No genes showed significantly pleiotropic association with CCT in the participants of East Asian ancestry after correction for multiple testing. CONCLUSION We identified several genes pleiotropically associated with CCT, some of which represented novel genes influencing CCT. Our findings provided important leads to a better understanding of the genetic factors influencing CCT, and revealed potential therapeutic targets for the treatment of primary open-angle glaucoma and keratoconus.
Collapse
Affiliation(s)
- Zhikun Yang
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Spinozzi D, Miron A, Lie JT, Rafat M, Lagali N, Melles GRJ, Dhubhghaill SN, Dapena I, Oellerich S. In Vitro Evaluation and Transplantation of Human Corneal Endothelial Cells Cultured on Biocompatible Carriers. Cell Transplant 2021; 29:963689720923577. [PMID: 32363924 PMCID: PMC7586272 DOI: 10.1177/0963689720923577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal transplantation is currently the only effective treatment option for dysfunctional corneal endothelial cells (CEC). In this study, we test in vitro the surgical potential of cultivated human corneal endothelial cells (hCEC) on human anterior lens capsule (HALC), LinkCell™ bioengineered collagen sheets of 20-µm thickness (LK20), and denuded Descemet membrane (dDM) as tissue-engineered grafts for Descemet membrane (DM) endothelial keratoplasty (DMEK) to bypass the problem of donor tissue availability. Primary hCEC cultured on all carriers formed a monolayer of tightly packed cells with a high cell viability rate (96% ± 4%). hCEC on HALC and LK20 showed unremarkable expression of zonula occludens-1 (ZO-1) and Na+/K+-adenosine triphosphatase (ATPase), while Na+/K+-ATPase expression of cells seeded on dDM was mainly cytoplasmic. All hCEC-carrier constructs were evaluated by simulating DMEK surgery in vitro using a human donor cornea without DM mounted on an artificial anterior chamber (AC) and a regular DMEK-graft used as a surgical reference model. During in vitro surgery, hCEC-HALC constructs behaved most similarly to a DMEK-graft during implantation and unfolding, showing good adhesion to the bare stroma. On the other hand, hCEC-LK20 and hCEC-dDM constructs required some additional handling because of challenges related to the surgical procedure, although they were both successfully unfolded and implanted in the artificial AC. The hCEC-dDM constructs showed similar graft adherence as hCEC-HALC constructs, while adherence of hCEC-LK20 constructs was less effective. After the in vitro surgery, the estimated area populated by viable cells on the hCEC-HALC and hCEC-LK20 constructs was ∼83% and ∼67%, respectively. Overall, hCEC-HALC constructs behaved most similarly to a DMEK-graft during in vitro DMEK surgery, while graft adhesion and surgical handling, respectively, are parameters still requiring optimization for hCEC-LK20 and hCEC-dDM constructs.
Collapse
Affiliation(s)
- Daniele Spinozzi
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands.,Amnitrans EyeBank Rotterdam, the Netherlands
| | - Jessica T Lie
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands.,Amnitrans EyeBank Rotterdam, the Netherlands
| | - Mehrdad Rafat
- Department of Biomedical Engineering, Linköping University, Sweden.,LinkoCare Life Science AB, Linköping, Sweden
| | - Neil Lagali
- Division of Ophthalmology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Gerrit R J Melles
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands.,Amnitrans EyeBank Rotterdam, the Netherlands.,Melles Cornea Clinic Rotterdam, the Netherlands
| | - Sorcha Ni Dhubhghaill
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands.,Melles Cornea Clinic Rotterdam, the Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands.,Melles Cornea Clinic Rotterdam, the Netherlands
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Parekh M, Ramos T, O’Sullivan F, Meleady P, Ferrari S, Ponzin D, Ahmad S. Human corneal endothelial cells from older donors can be cultured and passaged on cell-derived extracellular matrix. Acta Ophthalmol 2021; 99:e512-e522. [PMID: 32914525 DOI: 10.1111/aos.14614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the effect of culturing human corneal endothelial cells (HCEnCs) from older donors on extracellular matrix (ECM) derived from human corneal endothelial cell line (HCEC-12). METHODS HCEC-12 cells were cultured on lab-tek chamber slides for 9 days. Upon confluence, the cells were ruptured using ammonium hydroxide leaving the released ECM on the slide surface which was visualized using scanning electron microscope (SEM). HCEnCs from old aged donor tissues (n = 40) were isolated and cultured on either fibronectin-collagen (FNC) or HCEC-12 ECM at passage (P) 0. At subsequent passages (P1 and P2), cells were sub-cultured on FNC and ECM separately. Live/dead analysis and tight junction using ZO-1 staining were used to record percentage viability and morphological changes. The protein composition of HCEC-12 ECM was then analysed using liquid chromatography-mass spectrometry. RESULTS SEM images showed long fibrillar-like structures and a fully laid ECM upon confluence. HCEnCs cultured from older donor tissues on this ECM showed significantly better proliferation and morphometric characteristics at subsequent passages. Out of 1307 proteins found from the HCEC-12 derived ECM, 93 proteins were evaluated to be matrix oriented out of which 20 proteins were exclusively found to be corneal endothelial specific. CONCLUSIONS ECM derived from HCEC-12 retains protein and growth factors that stimulate the growth of HCEnCs. As the current clinical trials are from younger donors that are not available routinely for cell culture, HCEnCs from older donors can be cultured on whole ECM and passaged successfully.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology University College London London UK
| | - Tiago Ramos
- Institute of Ophthalmology University College London London UK
| | | | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology University College London London UK
- Moorfields Eye Hospital NHS Foundation Trust London UK
| |
Collapse
|
43
|
Petsoglou C, Wen L, Hoque M, Zhu M, Valtink M, Sutton G, You J. Effects of human platelet lysate on the growth of cultured human corneal endothelial cells. Exp Eye Res 2021; 208:108613. [PMID: 33984343 DOI: 10.1016/j.exer.2021.108613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023]
Abstract
Human platelet lysate (hPL) as a replacement for foetal bovine serum (FBS) in culturing human corneal endothelium is an emerging area of interest, although there are limited studies evaluating the quality of the hPL being used. Our study aimed to evaluate variations between sources of hPL and to explore the efficacy of hPL (with and without heparin) as a replacement for FBS in culturing human corneal endothelial cells in vitro. Immortalized human corneal endothelial cells (B4G12) and primary human corneal endothelial cells (PHCEnCs, n = 11 donors, age from 36 to 85 years old) were cultured with 5% hPL or FBS. A full characterisation of the effects of hPL and FBS on cell growth was conducted using IncuCyte Zoom (percentage cell confluence and population doubling time, PDT) to analyse cell proliferation. AlamarBlue assays were used to measure cell viability. The concentration of fibrinogen, PDGF, hEGF, VEGF and bFGF in two sources of hPL were analyzed by Enzyme-linked immunosorbent assay. Expression and localization of Na+/K+-ATPase, ZO-1 and CD166 on PHCEnCs and B4G12 cells were assessed with immunofluorescence and immunoblotting. Our results showed that a significant difference in fibrinogen, hEGF and VEGF concentrations was found between two sources of hPL. Heparin impaired the positive effect of hPL on cell growth. PDT and alamarBlue showed that hPL significantly increased proliferation and viability of PHCEnCs in two of three donors, and immunostaining indicated that hPL increased ZO-1 and CD166 expression but not Na+/K+-ATPase on PHCEnCs. In addition, heterogeneities on immunopositivity of Na+/K+-ATPase and ZO-1 and morphology were found on PHCEnCs derived from an individual donor cultured with hPL medium. In conclusion, hPL showed positive effect on primary corneal endothelial cell growth, and maintenance of their cellular characteristics compared to FBS. hPL can be considered as a supplement to replace FBS in PHCEnC culture. However, the variation observed between different hPL sources suggests that a standard quality control monitoring system such as storage time and a minimal concentration of growth factors may need to be established.
Collapse
Affiliation(s)
- Constantinos Petsoglou
- Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia; New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, 2000, Australia; Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia; Corneal Unit, Sydney Eye Hospital, Sydney, NSW, 2000, Australia
| | - Li Wen
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, 2000, Australia
| | - Monira Hoque
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, 2000, Australia
| | - Meidong Zhu
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, 2000, Australia; Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gerard Sutton
- Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia; New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, 2000, Australia; Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia; Corneal Unit, Sydney Eye Hospital, Sydney, NSW, 2000, Australia
| | - Jingjing You
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
44
|
Parekh M, Ruzza A, Gallon P, Ponzin D, Ahmad S, Ferrari S. Synthetic media for preservation of corneal tissues deemed for endothelial keratoplasty and endothelial cell culture. Acta Ophthalmol 2021; 99:314-325. [PMID: 32914554 DOI: 10.1111/aos.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To compare the difference between various endothelial graft preparation methods and endothelial cell culture from tissues that are preserved in serum-based and synthetic medium. METHODS In a randomized masked study, the tissues (n = 64) were preserved in Cornea Max (serum-based) and Cornea Syn (synthetic) series for 36 days at their respective preservation conditions. Following organ culture, corneal tissues (n = 48) were used to prepareDescemet stripping automated endothelial keratoplasty (DSAEK), preloaded ultra-thin (UT) -DSAEK, prestripped Descemet membrane endothelial keratoplasty (DMEK), free-floating DMEK, and preloaded DMEK with endothelium inward and outward grafts. These tissues were preserved for another 4days at room temperature in dextran supplemented media following which they were subjected to trypan blue, alizarin red, live/dead and Zonula Occludens-1 (ZO-1) staining. A separate set of tissues (n = 16) from both the series was used for human corneal endothelial cell (HCEnC) culture. At confluence, the proliferation and cell doubling rate was calculated and the cultured cells were subjected to live/dead, ZO-1, 2A12 and Ki-67 staining. Mann-Whitney test was performed with p < 0.05 deemed statistically significant. RESULTS After preparation and preservation of the tissues for endothelial keratoplasty, alizarin red showed standard endothelial morphology from both the groups. Endothelial cell loss, hexagonality and uncovered areas did not show statistically significant differences (p > 0.05) between both groups. For HCEnC, cell doubling rate was 4.7 days (p > 0.05). All the antibodies were expressed in both the groups. Hexagonality, polymorphism, cell area, viable/dead cells and Ki-67 positivity were not statistically significant (p > 0.05). CONCLUSIONS Complete synthetic organ culture series is safe and advantageous for carrying out advanced endothelial keratoplasty graft preparation procedures and for HCEnC culture as it is free from animal or animal-derived products.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology University College London London UK
- International Center for Ocular Physiopathology Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Alessandro Ruzza
- International Center for Ocular Physiopathology Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Paola Gallon
- International Center for Ocular Physiopathology Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Diego Ponzin
- International Center for Ocular Physiopathology Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology University College London London UK
- Moorfields Eye Hospital NHS Foundation Trust London UK
| | - Stefano Ferrari
- International Center for Ocular Physiopathology Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| |
Collapse
|
45
|
Ong HS, Ang M, Mehta J. Evolution of therapies for the corneal endothelium: past, present and future approaches. Br J Ophthalmol 2021; 105:454-467. [PMID: 32709756 PMCID: PMC8005807 DOI: 10.1136/bjophthalmol-2020-316149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Corneal endothelial diseases are leading indications for corneal transplantations. With significant advancement in medical science and surgical techniques, corneal transplant surgeries are now increasingly effective at restoring vision in patients with corneal diseases. In the last 15 years, the introduction of endothelial keratoplasty (EK) procedures, where diseased corneal endothelium (CE) are selectively replaced, has significantly transformed the field of corneal transplantation. Compared to traditional penetrating keratoplasty, EK procedures, namely Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet membrane endothelial keratoplasty (DMEK), offer faster visual recovery, lower immunological rejection rates, and improved graft survival. Although these modern techniques can achieve high success, there are fundamental impediments to conventional transplantations. A lack of suitable donor corneas worldwide restricts the number of transplants that can be performed. Other barriers include the need for specialized expertise, high cost, and risks of graft rejection or failure. Research is underway to develop alternative treatments for corneal endothelial diseases, which are less dependent on the availability of allogeneic tissues - regenerative medicine and cell-based therapies. In this review, an overview of past and present transplantation procedures used to treat corneal endothelial diseases are described. Potential novel therapies that may be translated into clinical practice will also be presented.
Collapse
Affiliation(s)
- Hon Shing Ong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Marcus Ang
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Jodhbir Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Current development of alternative treatments for endothelial decompensation: Cell-based therapy. Exp Eye Res 2021; 207:108560. [PMID: 33811914 DOI: 10.1016/j.exer.2021.108560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Current treatment for corneal endothelial dysfunction consists in the replacement of corneal endothelium by keratoplasty. Owing to the scarcity of donor corneas and the increasing number of transplants, alternative treatments such as cell-based therapies are necessary. In this article, we highlight the biological aspects of the cornea and the corneal endothelium, as well as the context that surrounds the need for new alternatives to conventional keratoplasty. We then review some of those experimental treatments in more detail, focusing on the development of the in vitro and preclinical phases of two cell-based therapies: tissue-engineered endothelial keratoplasty (TE-EK) and cell injection. In the case of TE-EK graft construction, we analyse the current progress, considering all the requirements it must meet in order to be functional. Moreover, we discuss the inherent drawbacks of endothelial keratoplasties, which TE-EK grafts should overcome in order to make surgical intervention easier and to improve the outcomes of current endothelial keratoplasties. Finally, we analyse the development of preclinical trials and their limitations in terms of performing an optimal functional evaluation of cell-based therapy, and we conclude by discussing early clinical trials in humans.
Collapse
|
47
|
Parekh M, Romano V, Hassanin K, Testa V, Wongvisavavit R, Ferrari S, Haneef A, Willoughby C, Ponzin D, Jhanji V, Sharma N, Daniels J, Kaye SB, Ahmad S, Levis HJ. Biomaterials for corneal endothelial cell culture and tissue engineering. J Tissue Eng 2021; 12:2041731421990536. [PMID: 33643603 PMCID: PMC7894589 DOI: 10.1177/2041731421990536] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The corneal endothelium is the posterior monolayer of cells that are responsible for maintaining overall transparency of the avascular corneal tissue via pump function. These cells are non-regenerative in vivo and therefore, approximately 40% of corneal transplants undertaken worldwide are a result of damage or dysfunction of endothelial cells. The number of available corneal donor tissues is limited worldwide, hence, cultivation of human corneal endothelial cells (hCECs) in vitro has been attempted in order to produce tissue engineered corneal endothelial grafts. Researchers have attempted to recreate the current gold standard treatment of replacing the endothelial layer with accompanying Descemet's membrane or a small portion of stroma as support with tissue engineering strategies using various substrates of both biologically derived and synthetic origin. Here we review the potential biomaterials that are currently in development to support the transplantation of a cultured monolayer of hCECs.
Collapse
Affiliation(s)
- Mohit Parekh
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Vito Romano
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK.,Instituto Universitario Fernandez-Vega, Universidad de Oviedo and Fundacion de Investigacion on Oftalmologica, Oviedo, Spain.,Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Kareem Hassanin
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK
| | - Valeria Testa
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Rintra Wongvisavavit
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,HRH Princess Chulabhorn College of Medical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Atikah Haneef
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Colin Willoughby
- School of biomedical sciences, University of Ulster, Belfast, UK
| | - Diego Ponzin
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Julie Daniels
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK
| | - Stephen B Kaye
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK
| | - Sajjad Ahmad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Trust Foundation, London, UK
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
49
|
Abstract
The corneal endothelium is the innermost layer of the cornea that selectively pumps ions and metabolites and regulates the hydration level of the cornea, ensuring its transparency. Trauma or disease affecting human corneal endothelial cells (hCECs) can result in major imbalances of such transport activity with consequent deterioration or loss of vision. Since tissue transplantation from deceased donors is only available to a fraction of patients worldwide, alternative solutions are urgently needed. Cell therapy approaches, in particular by attempting to expand primary culture of hCECs in vitro, aim to tackle this issue. However, existing cell culture protocols result in limited expansion of this cell type. Recent studies in this field have shown that topographical features with specific dimensions and shapes could improve the efficacy of hCEC expansion. Therefore, potential solutions to overcome the limitation of the conventional culture of hCECs may include recreating nanometer scale topographies (nanotopographies) that mimic essential biophysical cues present in their native environment. In this review, we summarize the current knowledge and understanding of the effect of substrate topographies on the response of hCECs. Moreover, we also review the latest developments for the nanofabrication of such bio-instructive cell substrates.
Collapse
|
50
|
Ting DSJ, Peh GSL, Adnan K, Mehta JS. Translational and Regulatory Challenges of Corneal Endothelial Cell Therapy: A Global Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:52-62. [PMID: 33267724 DOI: 10.1089/ten.teb.2020.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy. However, to generalize and commercialize cell therapies on a global scale, stringent translational and regulatory requirements need to be fulfilled at both local and international levels. Over the past decade, the Singapore group has taken significant steps in developing human corneal endothelial cell (HCEnC) therapy for treating corneal endothelial diseases, which are currently the leading indication for corneal transplantation in many countries. Successful development of HCEnC therapy may serve as a novel solution to the current global shortage of donor corneas. Based on the experience in Singapore, this review aims to provide a global perspective on the translational and regulatory challenges for bench-to-bedside translation of cell therapy. Specifically, we discussed about the characterization of the critical quality attributes (CQA), the challenges that can affect the CQA, and the variations in the regulatory framework embedded within different regions, including Singapore, Europe, and the United States. Impact statement Functional corneal endothelium is critical to normal vision. Corneal endothelial disease-secondary to trauma, surgery, or pathology-represents an important cause of visual impairment and blindness in both developed and developing countries. Currently, corneal transplantation serves as the current gold standard for treating visually significant corneal endothelial diseases, although limited by the shortage of donor corneas. Over the past decade, human corneal endothelial cell therapy has emerged as a promising treatment option for treating corneal endothelial diseases. To allow widespread application of this therapy, significant regulatory challenges will need to be systematically overcome.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Singapore Eye Research Institute, Singapore, Singapore
| | - Gary S L Peh
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Schools of Material Science and Engineering, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|