1
|
Lee JH, Kim YG, Park I, Lee J. Antifungal and antibiofilm activities of flavonoids against Candida albicans: Focus on 3,2'-dihydroxyflavone as a potential therapeutic agent. Biofilm 2024; 8:100218. [PMID: 39175909 PMCID: PMC11340609 DOI: 10.1016/j.bioflm.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Effective management of microbial biofilms holds significance within food and medical environments. Candida albicans, an opportunistic fungus, forms mucosal biofilms closely linked to candidiasis and drug-resistant infections due to their drug tolerance. Morphologic change from yeast to filamentous cells is a key virulence factor and a prerequisite for biofilm development. This study investigated the anti-fungal and antibiofilm activities of 20 flavonoids against C. albicans. With their known antioxidant capabilities, flavonoids hold promise in combating infections associated with biofilms. Among them, flavone and its derivatives exhibited moderate antifungal activity, 3,2'-dihydroxyflavone (3,2'-DHF) at 1 μg/mL exhibited strong antibiofilm activity (MIC 50 μg/mL). In addition, 3,2'-DHF dramatically inhibited cell aggregation and germ tube/hyphae formation. Transcriptomic analyses revealed that flavone and 3,2'-DHF behaved differently, as 3,2'-DHF downregulated the expressions of germ tube/hyphae-forming and biofilm-related genes (ECE1, HWP1, TEC1, and UME6) but upregulated the biofilm/hyphal regulators (CHK1, IFD6, UCF1, and YWP1). Tests evaluating toxicity with plant and nematode models revealed that flavone and 3,2'-DHF exhibited mild toxicity. Current results indicate that hydroxylated flavone derivatives can enhance anti-fungal and antibiofilm activities and provide a source of potential anti-fungal agents against drug-resistant C. albicans.
Collapse
Affiliation(s)
| | | | - Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Park I, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Potentials of 3,2'-Dihydroxyflavone against Staphylococcus aureus. Int J Mol Sci 2024; 25:8059. [PMID: 39125628 PMCID: PMC11311418 DOI: 10.3390/ijms25158059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| |
Collapse
|
3
|
Faleye OS, Lee JH, Lee J. Selected flavonoids exhibit antibiofilm and antibacterial effects against Vibrio by disrupting membrane integrity, virulence and metabolic activities. Biofilm 2023; 6:100165. [PMID: 38034415 PMCID: PMC10681883 DOI: 10.1016/j.bioflm.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Vibrio parahaemolyticus is a high-risk foodborne pathogen associated with raw or undercooked seafoods and its biofilm forming potential has become a threat to food safety and economic values. Hence, this study aims to examine the antibacterial and antibiofilm activities as well as virulence inhibitory effects of selected flavonoids against V. parahaemolyticus. Out of the sixteen flavonoid derivatives, 6-aminoflavone (6-AF), 3,2-dihydroxyflavone (3,2-DHF) and 2,2-dihydroxy-4-methoxybenzophenone (DHMB) were found as active biofilm inhibitors. 3,2-DHF and DHMB had minimum inhibitory concentrations of 20 and 50 μg/mL respectively against Vibrio planktonic cells and displayed superior antibacterial activities to standard controls. Also, they disrupted preformed biofilms and suppressed virulence properties including motilities, cell hydrophobicity and aggregation. They impaired iron acquisition mechanism and hemolysin production at sub-MICs as supported by transcriptomic studies. Interestingly, the flavonoids interfered with the metabolic activity, cell division and membrane permeability to exert antibiofilm and antibacterial activities. 6-AF and 3,2-DHF were non-toxic in the C. elegans model and showed excellent capacity to protect shrimps from biodeterioration. Furthermore, the flavonoids inhibited biofilm formation by V. harveyi, Staphylococcus aureus and Salmonella typhimurium and the mixed-species biofilm with Vibrio. This study discovered flavonoid derivatives, especially 3,2-DHF as potential bioactive compounds capable of offering protection from risks associated with biofilm formation by V. parahaemolyticus and other food pathogens.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
4
|
Lotfi MS, Kalalinia F. Flavonoids in Combination with Stem Cells for the Treatment of Neurological Disorders. Neurochem Res 2023; 48:3270-3282. [PMID: 37462837 DOI: 10.1007/s11064-023-03986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 09/22/2023]
Abstract
Neurological disorders are the leading cause of disability and the world's second leading cause of death. Despite the availability of significant knowledge to reduce the burden of some neurological disorders, various studies are exploring more effective treatment options. While the human body can repair and regenerate damaged tissue through stem cell recruitment, nerve regeneration in case of injury is minimal due to the restriction on the location of nerve stem cells. Recently, different types of stem cells extracted from various tissues have been used in combination with natural stimuli to treat neurologic disorders in neuronal tissue engineering. Flavonoids are polyphenolic compounds that can induce the differentiation of stem cells into neurons and stimulate stem cell proliferation, migration, and survival. They can also increase the secretion of nutritional factors from stem cells. In addition to the effects that flavonoids can have on stem cells, they can also have beneficial therapeutic effects on the nervous system alone. Therefore, the simultaneous use of these compounds and stem cells can multiply the therapeutic effect. In this review, we first introduce flavonoid compounds and provide background information on stem cells. We then compile available reports on the effects of flavonoids on stem cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Mohammad Sadegh Lotfi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Vakilabad Blvd, Pardis University Campus, Mashhad, 91886 17871, Iran.
| |
Collapse
|
5
|
Song K, Yang GM, Han J, Gil M, Dayem AA, Kim K, Lim KM, Kang GH, Kim S, Jang SB, Vellingiri B, Cho SG. Modulation of Osteogenic Differentiation of Adipose-Derived Stromal Cells by Co-Treatment with 3, 4'-Dihydroxyflavone, U0126, and N-Acetyl Cysteine. Int J Stem Cells 2022; 15:334-345. [PMID: 35769058 PMCID: PMC9396012 DOI: 10.15283/ijsc22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives Flavonoids form the largest group of plant phenols and have various biological and pharmacological activities. In this study, we investigated the effect of a flavonoid, 3, 4’-dihydroxyflavone (3, 4’-DHF) on osteogenic differentiation of equine adipose-derived stromal cells (eADSCs). Methods and Results Treatment of 3, 4’-DHF led to increased osteogenic differentiation of eADSCs by increasing phosphorylation of ERK and modulating Reactive Oxygen Species (ROS) generation. Although PD98059, an ERK inhibitor, suppressed osteogenic differentiation, another ERK inhibitor, U0126, apparently increased osteogenic differentiation of the 3, 4’-DHF-treated eADSCs, which may indicate that the effect of U0126 on bone morphogenetic protein signaling is involved in the regulation of 3, 4’-DHF in osteogenic differentiation of eADSCs. We revealed that 3, 4’-DHF could induce osteogenic differentiation of eADSCs by suppressing ROS generation and co-treatment of 3, 4’-DHF, U0126, and/or N-acetyl cysteine (NAC) resulted in the additive enhancement of osteogenic differentiation of eADSCs. Conclusions Our results showed that co-treatment of 3, 4’-DHF, U0126, and/or NAC cumulatively regulated osteogenesis in eADSCs, suggesting that 3, 4’-DHF, a flavonoid, can provide a novel approach to the treatment of osteoporosis and can provide potential therapeutic applications in therapeutics and regenerative medicine for human and companion animals.
Collapse
Affiliation(s)
- Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Jihae Han
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Sejong Kim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| |
Collapse
|
6
|
Jameel S, Kaur L, Bhat SA, Malik FA, Bhat KA. Neuroprotective activity of natural products isolated from Senecio graciliflorus DC against corticosterone-induced impairment in SH-SY5Y cells. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2389-2399. [PMID: 34554266 DOI: 10.1007/s00210-021-02136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, β-sitosterol, 2β-(angeloyloxy)furanoeremophilane, gallic acid, 2β-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-β-D-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and β-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)-induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.
Collapse
Affiliation(s)
- Salman Jameel
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Loveleena Kaur
- Pharmacology Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, Srinagar, 190005, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Showkat Ahmad Bhat
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Fayaz A Malik
- Pharmacology Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, Srinagar, 190005, India.,Academy of Scientific & Innovative Research, Indian Institute of Integrative Medicine, 190005, Sringar, India
| | - Khursheed Ahmad Bhat
- Bioorganicl Chemistry Division, Indian Institute of Integrative Medicine, Jammu and Kashmir, 190005, Srinagar, India.
| |
Collapse
|
7
|
Kim K, Park S, Kim H, Min S, Ku S, Seo J, Roh S. Enterococcus faecium L-15 Extract Enhances the Self-Renewal and Proliferation of Mouse Skin-Derived Precursor Cells. Probiotics Antimicrob Proteins 2021; 12:1492-1501. [PMID: 32162154 DOI: 10.1007/s12602-020-09635-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) in the gastrointestinal tract have beneficial health effects. LAB activate the proliferation of intestinal stem cells and speed the recovery of damaged intestinal cells, but little is known about effect of LAB on other adult stem cells. In this study, a cell-free extract of Enterococcus faecium L-15 (L15) was exposed to mouse skin-derived precursor cells (SKPs), and the changes in characteristics associated with proliferation and self-renewal capacity were investigated. L15 increased the size of the spheres and the proliferation rate of SKPs. Cell cycle analysis revealed that cells in the S-phase increased after treatment with L15. In the L15-treated group, the total number of spheres significantly increased. The expression level of pluripotency marker genes also increased, while the mesenchymal lineage-related differentiation marker genes significantly decreased in the L15-treated group. The PI3K/Akt signaling pathway was activated by L15 in SKPs. These results indicate that L15 enhances proliferation and self-renewal of SKPs and may be used as a supplement for stem cell maintenance or application of stem cell therapy. This is the first report to investigate the functional effects of E. faecium on the proliferation and self-renewal capacity of SKPs.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea. .,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Kim K, Gil M, Dayem AA, Choi S, Kang GH, Yang GM, Cho S, Jeong Y, Kim SJ, Seok J, Kwak HJ, Kumar Saha S, Kim A, Cho SG. Improved Isolation and Culture of Urine-Derived Stem Cells (USCs) and Enhanced Production of Immune Cells from the USC-Derived Induced Pluripotent Stem Cells. J Clin Med 2020; 9:E827. [PMID: 32197458 PMCID: PMC7141314 DOI: 10.3390/jcm9030827] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The availability of autologous adult stem cells is one of the essential prerequisites for human stem cell therapy. Urine-derived stem cells (USCs) are considered as desirable cell sources for cell therapy because donor-specific USCs are easily and non-invasively obtained from urine. Efficient isolation, expansion, and differentiation methods of USCs are necessary to increase their availability. Here, we developed a method for efficient isolation and expansion of USCs using Matrigel, and the rho-associated protein kinase (ROCK) inhibitor, Y-27632. The prepared USCs showed significantly enhanced migration, colony forming capacity, and differentiation into osteogenic or chondrogenic lineage. The USCs were successfully reprogramed into induced pluripotent stem cells (USC-iPSCs) and further differentiated into kidney organoid and hematopoietic progenitor cells (HPCs). Using flavonoid molecules, the isolation efficiency of USCs and the production of HPCs from the USC-iPSCs was increased. Taken together, we present an improved isolation method of USCs utilizing Matrigel, a ROCK inhibitor and flavonoids, and enhanced differentiation of USC-iPSC to HPC by flavonoids. These novel findings could significantly enhance the use of USCs and USC-iPSCs for stem cell research and further application in regenerative stem cell-based therapies.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sungha Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Se Jong Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Jaekwon Seok
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Hee Jeong Kwak
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| |
Collapse
|
10
|
Kim K, Abdal Dayem A, Gil M, Yang GM, Lee SB, Kwon OH, Choi S, Kang GH, Lim KM, Kim D, Cho SG. 3,2'-Dihydroxyflavone Improves the Proliferation and Survival of Human Pluripotent Stem Cells and Their Differentiation into Hematopoietic Progenitor Cells. J Clin Med 2020; 9:jcm9030669. [PMID: 32131506 PMCID: PMC7141312 DOI: 10.3390/jcm9030669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Efficient maintenance of the undifferentiated status of human pluripotent stem cells (hiPSCs) is crucial for producing cells with improved proliferation, survival and differentiation, which can be successfully used for stem cell research and therapy. Here, we generated iPSCs from healthy donor peripheral blood mononuclear cells (PBMCs) and analyzed the proliferation and differentiation capacities of the generated iPSCs using single cell NGS-based 24-chromosome aneuploidy screening and RNA sequencing. In addition, we screened various natural compounds for molecules that could enhance the proliferation and differentiation potential of hiPSCs. Among the tested compounds, 3,2′-dihydroxyflavone (3,2′-DHF) significantly increased cell proliferation and expression of naïve stemness markers and decreased the dissociation-induced apoptosis of hiPSCs. Of note, 3,2′-DHF-treated hiPSCs showed upregulation of intracellular glutathione (GSH) and an increase in the percentage of GSH-high cells in an analysis with a FreSHtracer system. Interestingly, culture of the 3,2′-DHF-treated hiPSCs in differentiation media enhanced their mesodermal differentiation and differentiation into CD34+ CD45+ hematopoietic progenitor cells (HPC) and natural killer cells (NK) cells. Taken together, our results demonstrate that the natural compound 3,2′-DHF can improve the proliferation and differentiation capacities of hiPSCs and increase the efficiency of HPC and NK cell production from hiPSCs.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Oh-Hyung Kwon
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Dongho Kim
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
- Correspondence: ; Tel.: +82-2-450-4207
| |
Collapse
|
11
|
Bradley JR, Wang J, Pacey S, Warren AY, Pober JS, Al‐Lamki RS. Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133 + cells in clear cell renal carcinoma. FASEB Bioadv 2020; 2:126-144. [PMID: 32123862 PMCID: PMC7003657 DOI: 10.1096/fba.2019-00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 08/25/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) contains cancer stem-like cells (CSCs) that express CD133 (ccRCC-CD133+). CSCs are rarely in cell cycle and, as nonproliferating cells, resist most chemotherapeutic agents. Previously, we reported that tumor necrosis factor receptor-2 (TNFR2) signaling promotes the cell cycle entry of ccRCC-CD133+CSCs, rendering them susceptible to cell-cycle-dependent chemotherapeutics. Here, we describe a TNFR2-activated signaling pathway in ccRCC-CD133+CSCs that is required for cell survival. Wild-type (wt)TNF or R2TNF but not R1TNF (TNF muteins that selectively bind to TNFR2 and TNFR1) induces phosphorylation of signal transducer and activator of transcription 3 (STAT3) on serine727 but not tyrosine705, resulting in pSTAT3Ser727 translocation to and colocalization with TNFR2 in mitochondria. R2TNF signaling activates a kinase cascade involving the phosphorylation of VEGFR2, PI-3K, Akt, and mTORC. Inhibition of any of the kinases or siRNA knockdown of TNFR2 or STAT3 promotes cell death associated with mitochondrial morphological changes, cytochrome c release, generation of reactive oxygen species, and TUNEL+cells expressing phosphorylated mixed lineage kinase-like (MLKL). Pretreatment with necrostatin-1 is more protective than z-VAD.fmk, suggesting that most death is necroptotic and TNFR2 signaling promotes cell survival by preventing mitochondrial-mediated necroptosis. These data suggest that a TNFR2 selective agonist may offer a potential therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- John R. Bradley
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Jun Wang
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Simon Pacey
- Department of OncologyNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Anne Y. Warren
- Department of HistopathologyAddenbrooke's Hospital and University of CambridgeCambridgeUK
| | | | - Rafia S. Al‐Lamki
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Labarrière L, Moncomble A, Cornard JP. pH dependency of the structural and photophysical properties of the atypical 2′,3-dihydroxyflavone. RSC Adv 2020; 10:35017-35030. [PMID: 35515691 PMCID: PMC9056863 DOI: 10.1039/d0ra06833k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
2′,3-Dihydroxyflavone (2′3HF) is a natural flavonol that has barely ever been studied, however the scarce studies of its physico-chemical properties have highlighted its atypical behaviour. We present a structural and spectral study of 2′3HF, performed using UV-visible absorption and fluorescence spectroscopies, coupled with DFT and TD-DFT calculations. Although its structure is close to that of 3-hydroxyflavone, 2′3HF shows a much lower pKa value. We show that the origin of this particularity is the substitution by a hydroxyl group on position 2′, that induces a stronger inter-ring interaction weakening the bonding of the proton at position 3. The main absorption band of the is red-shifted upon deprotonation. The remaining proton is highly bonded in between oxygen atoms 3 and 2′, making the second deprotonation unattainable in methanol. The neutral form can undergo an excited-state intramolecular proton transfer to emit dual fluorescence by the normal and tautomer forms. We suggested five geometries to be the sources of the emission bands, and showed that the energy barriers to interconversions were almost null. The anion is also fluorescent. The Stokes shifts for the neutral normal and anion species are extremely high, that can be explained by the conformational rearrangement, as the species go from twisted in the ground-state, to planar in the excited-state. Finally, another emission band is evidenced when exciting in the vicinity of the absorption maximum of the anion species in acidic medium. We suggest an aggregate with the solvent to be the origin of the emission. The assignment of the multiple fluorescence emission wavelengths of 2′,3-dihydroxyflavone highlights its particular properties compared to analogues.![]()
Collapse
Affiliation(s)
- Luc Labarrière
- Univ. Lille
- CNRS
- UMR 8516 – LASIRE – Laboratoire avancé de spectroscopie pour les interactions, la réactivité et l'environnement
- F-59000 Lille
- France
| | - Aurélien Moncomble
- Univ. Lille
- CNRS
- UMR 8516 – LASIRE – Laboratoire avancé de spectroscopie pour les interactions, la réactivité et l'environnement
- F-59000 Lille
- France
| | - Jean-Paul Cornard
- Univ. Lille
- CNRS
- UMR 8516 – LASIRE – Laboratoire avancé de spectroscopie pour les interactions, la réactivité et l'environnement
- F-59000 Lille
- France
| |
Collapse
|
13
|
Maraldi T, Prata C, Marrazzo P, Hrelia S, Angeloni C. Natural Compounds as a Strategy to Optimize " In Vitro" Expansion of Stem Cells. Rejuvenation Res 2019; 23:93-106. [PMID: 31368407 DOI: 10.1089/rej.2019.2187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficient use of stem cells for transplantation is often limited by the relatively low number of stem cells collected. The ex vivo expansion of human stem cells for clinical use is a potentially valuable approach to increase stem cell number. Currently, most of the procedures used to expand stem cells are carried out using a 21% oxygen concentration, which is about 4- to 10-fold greater than the concentration characteristic of their natural niches. Hyperoxia might cause oxidative stress with a deleterious effect on the physiology of cultured stem cells. In this review, we investigate and critically examine the available information on the ability of natural compounds to counteract hyperoxia-induced damage in different types of stem cells ex vivo. In particular, we focused on proliferation and stemness maintenance in an attempt to draw up useful indications to define new culture media with a promoting activity on cell expansion in vitro.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | | |
Collapse
|
14
|
Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, Hong K, Kim JH, Yee C, Lee KM, Cho SG. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res 2019; 21:6. [PMID: 30651129 PMCID: PMC6335853 DOI: 10.1186/s13058-018-1071-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) occurs in the tumor microenvironment and presents an important mechanism of tumor cell intravasation, stemness acquisition, and metastasis. During metastasis, tumor cells enter the circulation to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. METHODS AND RESULTS Here, we present both in vivo and in vitro evidence that EMT-like transition also occurs in circulating tumor cells (CTCs) as a result of hydrodynamic shear stress (+SS), which promotes conversion of CD24middle/CD44high/CD133middle/CXCR4low/ALDH1low primary patient epithelial tumor cells into specific high sphere-forming CD24low/CD44low/CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs) or tumor-initiating cells (TICs) with elevated tumor progression and metastasis capacity in vitro and in vivo. We demonstrate that conversion of CSLCs/TICs from epithelial tumor cells via +SS is dependent on reactive oxygen species (ROS)/nitric oxide (NO) generation, and suppression of extracellular signal-related kinase (ERK)/glycogen synthase kinase (GSK)3β, a mechanism similar to that operating in embryonic stem cells to prevent their differentiation while promoting self-renewal. CONCLUSION Fluid shear stress experienced during systemic circulation of human breast tumor cells can lead to specific acquisition of mesenchymal stem cell (MSC)-like potential that promotes EMT, mesenchymal-epithelial transition, and metastasis to distant organs. Our data revealed that biomechanical forces appeared to be important microenvironmental factors that not only drive hematopoietic development but also lead to acquisition of CSLCs/TIC potential in cancer metastasis. Our data highlight that +SS is a critical factor that promotes the conversion of CTCs into distinct TICs in blood circulation by endowing plasticity to these cells and by maintaining their self-renewal signaling pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Youngbum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 26-1 Anam-dong, Sungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Han J, Choi HY, Dayem AA, Kim K, Yang G, Won J, Do SH, Kim JH, Jeong KS, Cho SG. Regulation of Adipogenesis Through Differential Modulation of ROS and Kinase Signaling Pathways by 3,4'-Dihydroxyflavone Treatment. J Cell Biochem 2017; 118:1065-1077. [PMID: 27579626 DOI: 10.1002/jcb.25681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Abstract
Studies on adipogenesis may be important for regulating human and/or animal obesity, which causes several complications such as, type II diabetes, hypertension, and cardiovascular disease, thus giving rise to increased economic burden in many countries. Previous reports revealed that various flavonoids have anti-apoptotic, antioxidant, and cell differentiation-regulating activities with a number of physiological benefits, including protection from cardiovascular disease, cancers, and oxidative stress. As we found that the hydroxylation patterns of the flavonoid B ring are known to play a critical role in their function, we screened several flavonoids containing different numbers and positions of OH substitutions in B ring for their modulatory property on adipogenesis. In this study, we revealed the anti-adipogenic activity of the naturally derived flavonoid, 3,4'-dihydroxyflavone (3,4'-DHF) in murine 3T3-L1 pre-adipocytes and equine adipose-derived stromal cells (eADSCs). We found that treatment with 3,4'-dihydroxyflavone (3,4'-DHF) led to decreased expression of adipogenic markers and lipid deposition with differential modulation of ROS and kinase signaling pathways. Regulation of ROS generation through the differential modulation of ROS-regulating gene expression was revealed to have an important role in the suppression of adipogenesis and increase of osteogenesis in eADSCs following 3,4'-DHF treatment. These results suggest that the flavonoid 3,4'-DHF can be used to regulate adipogenesis in ADSCs, which has potential therapeutic application in regenerative medicine or health care for humans and many sport or companion animals. J. Cell. Biochem. 118: 1065-1077, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jihae Han
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Gwangmo Yang
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Animal Resources Research Center, Bio-Organ Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| |
Collapse
|
16
|
Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Rep 2015; 48:68-80. [PMID: 25413305 PMCID: PMC4352616 DOI: 10.5483/bmbrep.2015.48.2.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Sangsu Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - BongWoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Jin-hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
17
|
Dayem AA, Choi HY, Kim YB, Cho SG. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 2015; 10:e0121610. [PMID: 25806943 PMCID: PMC4373826 DOI: 10.1371/journal.pone.0121610] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Young Bong Kim
- Department of Bio-Industrial Technologies, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|