1
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
2
|
Mennen RH, de Leeuw VC, Piersma AH. Cell differentiation in the cardiac embryonic stem cell test (ESTc) is influenced by the oxygen tension in its underlying embryonic stem cell culture. Toxicol In Vitro 2021; 77:105247. [PMID: 34537371 DOI: 10.1016/j.tiv.2021.105247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Oxygen (O2) levels in the mammalian embryo range between 2.4% and 8%. The cardiac embryonic stem cell test (ESTc) is a model for developmental toxicity predictions, which is usually performed under atmospheric O2 levels of 20%. We investigated the chemical sensitivity of the ESTc carried out under 20% O2, using embryonic stem cells (ESC) cultured under either 20% O2 or 5% O2. ESC viability was more sensitive to valproic acid (VPA) but less sensitive to flusilazole (FLU) when cultured under 5% versus 20% O2. For beating cardiomyocyte differentiation, lower ID50 values were found for FLU and VPA when the ESCs had been cultured under 5% versus 20% O2. At differentiation day 4, gene expression values were primarily driven by the level of O2 during ESC culture instead of exposure to FLU. In addition, using ESCs cultured under 5% O2 tension, VPA enhanced Nes (ectoderm) expression. Bmp4 (mesoderm) was enhanced by VPA when using ESCs cultured under 20% O2. At differentiation day 10, using ESCs cultured under 5% instead of 20% O2, Nkx2.5 and Myh6 (cardiomyocytes) were less affected after exposure to FLU or VPA. These results show that O2 tension in ESC culture influences chemical sensitivity in the ESTc. This enhances awareness of the standard culture conditions, which may impact the application of the ESTc in quantitative hazard assessment of chemicals.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - V C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Yan HS, Hang C, Chen SW, Wang KK, Bo P. Salvianolic acid B combined with mesenchymal stem cells contributes to nucleus pulposus regeneration. Connect Tissue Res 2020; 61:435-444. [PMID: 31023105 DOI: 10.1080/03008207.2019.1611794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether salvianolic acid B is able to enhance repair of degenerated intervertebral discs by mesenchymal stem cells (MSCs) through the promotion of MSC differentiation into nucleus pulposus cells in a nucleus-pulposus-like environment and by enhancing the trophic effect of MSCs on residual nucleus pulposus cells (mediated by transforming growth factor-β1). MATERIALS AND METHODS Successful intervertebral disc degeneration models, established by aspiration of the nucleus pulposus in New Zealand white rabbits, were randomly divided into eight groups: Group A was treated with MSC transplantation. Group B was treated with MSC transplantation and salvianolic acid B, with the subgroups B1, B2, B3, and B4 receiving 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L salvianolic acid B, respectively. Groups C and D were treated with phosphate buffer saline and sham graft, respectively. Group E was the normal control group. At the end of week 8, the type II collagen, proteoglycan, transforming growth factor-β1, and water contents in each group were examined by semi-quantitative immunohistochemistry, spectrophotometry, enzyme-linked immunosorbent assay, and magnetic resonance, respectively. RESULTS The content of type II collagen, proteoglycan, transforming growth factor-β1, and water in groups B3 and B4 were significantly higher than those in group A (p < 0.01). CONCLUSIONS Salvianolic acid B (1 mg/L to 10 mg/L) plus MSC transplantation was more effective in repairing degenerated intervertebral discs than was stem cell transplantation alone.
Collapse
Affiliation(s)
- Hui-Shen Yan
- Medical College, Yangzhou University , Yangzhou, China.,Department of Medical Science, Yangzhou Polytechnic College , Yangzhou, China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University , Suzhou, China
| | - Shu-Wen Chen
- Department of Mathematics and Information Technology, Jiangsu Second Normal University , Nanjing, China
| | - Ke-Ke Wang
- Department of Medical Science, Yangzhou Polytechnic College , Yangzhou, China
| | - Ping Bo
- Medical College, Yangzhou University , Yangzhou, China
| |
Collapse
|
4
|
Mennen RH, de Leeuw VC, Piersma AH. Oxygen tension influences embryonic stem cell maintenance and has lineage specific effects on neural and cardiac differentiation. Differentiation 2020; 115:1-10. [PMID: 32738735 DOI: 10.1016/j.diff.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The importance of oxygen tension in in vitro cultures and its effect on embryonic stem cell (ESC) differentiation has been widely acknowledged. Research has mainly focussed on ESC maintenance or on one line of differentiation and only few studies have examined the potential relation between oxygen tension during ESC maintenance and differentiation. In this study we investigated the influence of atmospheric (20%) versus physiologic (5%) oxygen tension in ESC cultures and their differentiation within the cardiac and neural embryonic stem cell tests (ESTc, ESTn). Oxygen tension was set at 5% or 20% and cells were kept in these conditions from starting up cell culture until use for differentiation. Under these oxygen tensions, ESC culture showed no differences in proliferation and gene and protein expression levels. Differentiation was either performed in the same or in the alternative oxygen tension compared to ESC culture creating four different experimental conditions. Cardiac differentiation in 5% instead of 20% oxygen resulted in reduced development of spontaneously beating cardiomyocytes and lower expression of cardiac markers Nkx2.5, Myh6 and MF20 (myosin), regardless whether ESC had been cultured in 5% or 20% oxygen tension. As compared to the control (20% oxygen during stem cell maintenance and differentiation), neural differentiation in 5% oxygen with ESC cultured in 20% oxygen led to more cardiac and neural crest cell differentiation. The opposite experimental condition of neural differentiation in 20% oxygen with ESC cultured in 5% oxygen resulted in more glial differentiation. ESC that were maintained and differentiated in 5% oxygen showed an increase in neural crest and oligodendrocytes as compared to 20% oxygen during stem cell maintenance and differentiation. This study showed major effects on ESC differentiation in ESTc and ESTn of oxygen tension, which is an important variable to consider when designing and developing a stem cell-based in vitro system.
Collapse
Affiliation(s)
- Regina H Mennen
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Victoria C de Leeuw
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Lu P, Xing Y, Peng H, Liu Z, Zhou Q(T, Xue Z, Ma Z, Kebebe D, Zhang B, Liu H. Physicochemical and Pharmacokinetic Evaluation of Spray-Dried Coformulation of Salvia miltiorrhiza Polyphenolic Acid and L-Leucine with Improved Bioavailability. J Aerosol Med Pulm Drug Deliv 2020; 33:73-82. [DOI: 10.1089/jamp.2019.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Lv Y, Liu B, Liu Y, Wang H, Wang H. TGF-β1 combined with Sal-B promotes cardiomyocyte differentiation of rat mesenchymal stem cells. Exp Ther Med 2018; 15:5359-5364. [PMID: 29904415 DOI: 10.3892/etm.2018.6105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor β1 (TGF-β1) and salvianolic acid B (Sal-B) are key signaling factors for stem cell differentiation into cardiomyocytes (CMs). The present study compared the biological effect of TGF-β1 and Sal-B, alone or in combination, on bone marrow mesenchymal stromal cells (BMSCs) that differentiate into myocardial-like cells in a simulated myocardial microenvironment in vitro. BMSCs were isolated from bones of limbs of 10 male Sprague Dawley rats and cultured. The 2nd-generation BMSCs were co-incubated with TGF-β1 and Sal-B, alone or in combination, for 72 h. The control group was BMSCs cultured without any inductive substance. The levels GATA binding protein 4 (GATA4) and homeobox protein NKx2.5 were determined by reverse-transcription quantitative polymerase chain reaction and immunofluorescence staining was used to evaluate α-sarcomeric actin and cardiac troponin I (cTNI) as cardiomyogenic differentiation markers. The ultrastructure of BMSCs in each group was also observed. BMSCs were initially spindle-shaped with irregular processes. The cells gradually increased in number 24 h post-inoculation and proliferated 7 days later. Compared with the control group, BMSCs in the treatment groups had fusiform shapes, orientating with one accord and were connected with adjoining cells forming myotube-like structures on day 28. The morphology and architecture/myotubes of BMSCs was similar among the treatment groups, but the amount of cells in the combined group was comparatively higher. The results of immunofluorescence staining revealed the expression of the CM-specific proteins α-sarcomeric actin and cTNI in these cells. The expression of these cardiac-specific markers in the combined group was significantly higher than that in the other groups (P<0.01 or P<0.05). In addition, the transcriptional expression of GATA4 and NKx2.5 in the treatment groups was stable and significantly higher than that in the control group on day 7. Transmission electron microscopy showed that BMSCs in the treatment groups all had myofilaments, rough endoplasmic reticulum and mitochondria in the cytoplasm when compared with the control group. Taken together, these results indicated that the combination of TGF-β1 and Sal-B effectively promotes cardiomyogenic differentiation of BMSCs in vitro and their application may represent a therapeutic strategy for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Yang Lv
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Bo Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yuan Liu
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Haoyu Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Haiping Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
7
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Chen J, Tschudy-Seney B, Ma X, Zern MA, Liu P, Duan Y. Salvianolic Acid B Enhances Hepatic Differentiation of Human Embryonic Stem Cells Through Upregulation of WNT Pathway and Inhibition of Notch Pathway. Stem Cells Dev 2018; 27:252-261. [PMID: 29256825 DOI: 10.1089/scd.2017.0168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes differentiated from human embryonic stem cells (ESCs) could provide a powerful tool for enabling cell-based therapies, studying the mechanisms underlying human liver development and disease, and testing the efficacy and safety of pharmaceuticals. However, currently most in vitro protocols yield hepatocytes with low levels of liver function. In this study, we investigated the potential of Salvianolic acid B (Sal B), an active pharmaceutical compound present in Salvia miltiorrhiza, which has been shown to have an antifibrotic effect in previous studies, to enhance hepatocyte differentiation from human ESCs. After treatment with Sal B, albumin expression and secretion were consistently increased, indicating that Sal B could promote hepatocyte differentiation process. Expression of a large number of important phase 1 and 2 metabolizing enzymes and phase 3 transporters was also increased in treated cells, indicating an enhanced biotransformation function. Our investigations further revealed the activation of Wnt pathway in treated cells, as determined by upregulation of Wnts, which increased amounts of nuclear β-catenin. This increased nuclear β-catenin led in turn to the enhanced expression of T cell factor (TCF) 3 and lymphoid enhancer-binding factor (LEF) 1 which upregulated their downstream targets, cyclin D1 and c-Myc. Notch receptors (Notch1, Notch3), Notch ligand (Jagged2), and Notch receptor targets [hairy and enhancer of split (Hes) 1, 5] were downregulated in treated cells, suggesting that Notch pathway was inhibited. Consistent with the inhibition of Notch pathway, expression of cholangiocyte marker, CK7, was significantly reduced by treatment with Sal B. Numb, a direct transcriptional target of Wnt pathway and a negative regulator of Notch pathway, was upregulated, consistent with activation of Wnt signaling and suppression of Notch signaling. In conclusion, our study demonstrated that Sal B enhanced hepatocyte differentiation from human ESCs through activation of Wnt pathway and inhibition of Notch pathway. Therefore, this study suggests that Sal B can be used as a potential agent to generate more mature hepatocytes for cell-based therapeutics and pharmaceutical studies.
Collapse
Affiliation(s)
- Jiamei Chen
- 1 Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China .,2 Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China .,3 Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China .,4 E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine , Shanghai, China .,5 Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Benjamin Tschudy-Seney
- 5 Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Xiaocui Ma
- 5 Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Mark A Zern
- 5 Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Ping Liu
- 1 Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China .,2 Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China .,3 Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China .,4 E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Yuyou Duan
- 5 Department of Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,6 Department of Dermatology, Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| |
Collapse
|
9
|
Chen YF, Pandey S, Day CH, Chen YF, Jiang AZ, Ho TJ, Chen RJ, Padma VV, Kuo WW, Huang CY. Synergistic effect of HIF-1α and FoxO3a trigger cardiomyocyte apoptosis under hyperglycemic ischemia condition. J Cell Physiol 2017; 233:3660-3671. [PMID: 29030976 DOI: 10.1002/jcp.26235] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023]
Abstract
Cardiomyocyte death is an important pathogenic feature of ischemia and heart failure. Through this study, we showed the synergistic role of HIF-1α and FoxO3a in cardiomyocyte apoptosis subjected to hypoxia plus elevated glucose levels. Using gene specific small interfering RNAs (siRNA), semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, nuclear and cytosolic localization and TUNEL assay techniques, we determined that combined function of HIF-1α and FoxO3a under high glucose plus hypoxia condition lead to enhanced expression of BNIP3 inducing cardiomyocyte death. Our results highlighted the importance of the synergistic role of HIF-1α and FoxO3a in cardiomyocyte death which may add insight into therapeutic approaches to pathophysiology associated with ischemic diabetic cardiomyopathies.
Collapse
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Ai-Zhi Jiang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vijaya V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, Ho Chi Minh City, Vietnam.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Lv Y, Gao CW, Liu B, Wang HY, Wang HP. BMP-2 combined with salvianolic acid B promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Kaohsiung J Med Sci 2017; 33:477-485. [PMID: 28962818 DOI: 10.1016/j.kjms.2017.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022] Open
Abstract
The present study tested the hypotheses that bone morphogenetic protein 2(BMP-2) combined with salvianolic acid B(Sal-B) enhance the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) towards cardiomyocytes in vitro. BMSCs were treated with BMP-2 and Sal-B, alone or in combination, for 72 h, then added new media (excluding inductive substance) and cultured for 4 weeks. The morphologic characteristics, surface antigens and mRNA expression of several transcription factors were also assessed. We found that they could all be identified by the positive staining for cardiomyocyte-specific proteins, desmin and cardiac troponin T, in these cells. Furthermore, the mRNA expression of GATA-4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. The expression of these cardiac-specific markers in treatment groups were all significantly higher than those in the control group, respectively (P < 0.05). Transmission electron microscopy showed that BMSCs in treatment groups all had myofilaments, z line-like substances and mitochondria. Taken together, these results indicate that BMP-2 combined with Sal-B promotes myocardial differentiation of BMSCs, which may represent a potential therapeutic strategy for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Yang Lv
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Chen-Wei Gao
- Department of Ultrasound, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Bo Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hao-Yu Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Hai-Ping Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China.
| |
Collapse
|
11
|
Asokan Shibu M, Kuo WW, Kuo CH, Day CH, Shen CY, Chung LC, Lai CH, Pan LF, Vijaya Padma V, Huang CY. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine (Taipei) 2017; 7:11. [PMID: 28612709 PMCID: PMC5479424 DOI: 10.1051/bmdcn/2017070204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
The 17 beta-estradiol (E2) is a sex hormone that is most abundant and most active estrogen in premenopausal women. The importance of E2 in providing cardioprotection and reducing the occurrence of heart disease in women of reproductive age has been well recognized. There are three subtype of estrogen receptors (ERs), including ERα, ERβ and GPR30 have been identified and accumulating evidence reveal their roles on E2-mediated genomic and nongenomic pathway in cardiomyocytes against various cardiac insults. In this review, we focus on the estrogen and ERs mediated signaling pathways in cardiomyocytes that determines cardio-protection against various stresses and further discuss the clinical implication of ERs and phytoestrogens. Further we provide some insights on phytoeostrogens which may play as alternatives in estrogen replacement therapies.
Collapse
Affiliation(s)
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Department of Sports Sciences, University of Taipei, Taipei 100, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung 912,Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
12
|
Zhang Q, Jiao F, Hua C. Perioperative application of salvianolate on oxidative stress and plasma IMD/ADM2 in patients with acute myocardial infarction undergoing PCI. Exp Ther Med 2017; 13:1475-1479. [PMID: 28413495 PMCID: PMC5377299 DOI: 10.3892/etm.2017.4114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
The present study was conducted to investigate the effects of salvianolate on perioperative oxidative stress and plasma Intermedin/adrenomedullin 2 (IMD/ADM2) in patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI). The clinical data of 108 patients with AMI treated by PCI were retrospectively analyzed. According to the use of salvianolate in perioperative period, the patients were divided into the study group (n=62) and the control group (n=46). The control group was given routine treatment while the study group was given routine treatment combined with intravenous infusion of salvianolate (200 mg administered once at 24 h before operation, once/day after operation, 1 week later, the curative effect was observed). The changes in levels of hemodynamic indexes [fibrinogen (FIB), platelet aggregation rate (PAG), plasma viscosity, packed-cell volume (PCV)], oxidative stress indexes [superoxide dismutase (SOD), glutathione peroxidase (GSH Px)], cardiac function indexes [left ventricular ejection fraction (LVEF), cardiac output (CO)], related biochemical indexes [high-sensitivity C-reactive protein (hs-CRP), N-terminal pro brain natriuretic peptide (NT proBNP)] and plasma IMD/ADM2 in the two groups at 24 h pre-operation and the 8th day postoperation were analyzed. On the 8th day post-operation, hemodynamic indexes such as FIB (3.3±1.0 and 3.9±0.9) g/l, PAG (20.6±6.5 and 41.6±7.7)%, plasma viscosity (1.1±0.5 and 1.7±0.6) mPa•s/120 s−1 and PCV (40.0±3.8 and 45.5±3.7)%, the related biochemical indexes such as hs-CRP (55.1±4.8 and 79.3±5.3) mg/l and NT-proBNP (435.6±305.2 and 788.6±310.8) ng/l in the two groups were significantly decreased compared to those pre-operation; the differences were statistically significant (P<0.05). The oxidative stress indexes such as SOD (43.6±1.9 and 24.2±2.0) U/ml and GSH-Px (822.6±13.52 and 742.6±62.6) enzyme activity unit, the cardiac function indexes such as LVEF (45.1±3.5 and 41.9±3.3)% and CO (4.6±0.5 and 4.1±0.5) l/min and plasma IMD/ADM2 (163.5±20.2 and 144.2±22.5) pg/ml in the two groups were significantly increased compared to those pre-operation; the differences were statistically significant (P<0.05). In conclusion, applying intravenous infusion of salvianolate in patients with AMI during perioperative period of PCI can effectively improve the oxidative stress reaction and have positive effects on regulating plasma IMD/ADM2 level, which promoted cardiac function recovery and enhances myocardial perfusion volume.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Fengjun Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, P.R. China
| | - Chongjun Hua
- Department of Cardiology, Jinhua Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
13
|
Wu CF, Karioti A, Rohr D, Bilia AR, Efferth T. Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemia cells. Food Chem 2016; 201:292-7. [PMID: 26868579 DOI: 10.1016/j.foodchem.2016.01.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza (SM) Bunge is one of the widely-used Chinese medicinal herbs. In this study, the chemical constituents and anticancer potential of SM stems and leaves were examined with those of respective callus cultures. The callus culture for stem and leaf explants was initiated in modified Murashige and Skoog (MS) medium. Active constituents of respective extracts were analyzed by high performance liquid chromatography coupled with DAD and MS (HPLC-DAD-MS). Rosmarinic acid (RA) and salvianolic acid B (Sal B) were determined to be the main phenolic compounds. Quantitative analyses revealed that callus stem extracts produced higher amount of RA and Sal B (stem RA: 1.27±0.38%; stem Sal B: 0.87±0.20%) than callus leaf did (leaf RA: 0.28±0.02%; leaf Sal B: 0.07±0.03%). Stem and leaf callus extracts exerted cytotoxic effects towards CCRF-CEM cells (stem: 13.1±0.90 μg/ml; leaf: 18.1±0.33 μg/ml). As expected, stem extract with higher amount of RA and Sal B showed lower IC50 value than leaf extract. These findings suggest the possibility to isolate bioactive constituents with anticancer properties from in vitro callus cultures of stems and leaves of SM.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Anastasia Karioti
- Department of Chemistry, Building of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Doris Rohr
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
| | - Anna Rita Bilia
- Department of Chemistry, Building of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|