1
|
Buron F, Reffet S, Badet L, Morelon E, Thaunat O. Immunological Monitoring in Beta Cell Replacement: Towards a Pathophysiology-Guided Implementation of Biomarkers. Curr Diab Rep 2021; 21:19. [PMID: 33895937 DOI: 10.1007/s11892-021-01386-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Grafted beta cells are lost because of recurrence of T1D and/or allograft rejection, two conditions diagnosed with pancreas graft biopsy, which is invasive and impossible in case of islet transplantation. This review synthetizes the current pathophysiological knowledge and discusses the interest of available immune biomarkers. RECENT FINDINGS Despite the central role of auto-(recurrence of T1D) and allo-(T-cell mediated rejection) immune cellular responses, the latter are not directly monitored in routine. In striking contrast, there have been undisputable progresses in monitoring of auto and alloantibodies. Except for pancreas recipients in whom anti-donor HLA antibodies can be directly responsible for antibody-mediated rejection, autoantibodies (and alloantibodies in islet recipients) have no direct pathogenic effect. However, their fluctuation offers a surrogate marker for the activation status of T cells (because antibody generation depends on T cells). This illustrates the necessity to understand the pathophysiology when interpreting a biomarker and selecting the appropriate treatment.
Collapse
Affiliation(s)
- Fanny Buron
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France
| | - Sophie Reffet
- Department of Endocrinology and Diabetes, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Lionel Badet
- Department of Urology and Transplantation surgery, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France.
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France.
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.
| |
Collapse
|
2
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|