1
|
Tao Y, Lu J, Li L, Lu L, Fu B, Zhang J, Zhang S, Ma R, Ma J, Sun J, Fu S, Liu S, Wang Z. Raltitrexed induces apoptosis through activating ROS-mediated ER stress by impeding HSPA8 expression in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119684. [PMID: 38301906 DOI: 10.1016/j.bbamcr.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Prostate cancer is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC). CRPC metastasis is the main reason for its high mortality rate. At present, it lacks effective treatment for patients with CRPC. Raltitrexed (RTX) has been shown to be effective in the treatment of colorectal cancer. However, the effect of RTX on prostate cancer and the underlying mechanism remain unknown. In the current study, we found that RTX could dose-dependently inhibit proliferation, migration, colony formation and induce apoptosis in DU145 and PC-3 cells. RTX also increased ROS generation in prostate cancer cells. Pretreatment with N-acetyl-L-cysteine (NAC) significantly prevented RTX-induced cell apoptosis and endoplasmic reticulum (ER) stress signaling activation in prostate cancer cells. Additionally, we found RTX-induced ROS generation and ER stress activation depended on the expression of heat shock protein family A member 8 (HSPA8). Over-expression of HSPA8 could alleviate RTX-induced cell apoptosis, ROS generation and ER stress signaling activation. Finally, our study also showed that RTX attenuated the tumor growth of prostate cancer in the DU145 xenograft model and significantly downregulated HSPA8 expression and activated ER stress signaling pathway in tumor tissues. Our study is the first to reveal that RTX induces prostate cancer cells apoptosis through inhibiting the expression of HSPA8 and further inducing ROS-mediated ER stress pathway action. This study suggests that RTX may be a novel promising candidate drug for prostate cancer therapy.
Collapse
Affiliation(s)
- Yan Tao
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jianzhong Lu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Lanlan Li
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Jing Zhang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Shuni Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Ruicong Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jialong Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jiaping Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Shengjun Fu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| | - Shanhui Liu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| | - Zhiping Wang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Feng Z, Cui G, Tan J, Liu P, Chen Y, Jiang Z, Han Y, Zeng S, Shen H, Cai C. Immune infiltration related CENPI associates with the malignant features and drug resistance of lung adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167017. [PMID: 38232915 DOI: 10.1016/j.bbadis.2024.167017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Centromere protein I (CENPI) is an important member of centromeric proteins family, which is crucial to chromosome alignment and segregation. Nevertheless, the interrelation between CENPI expression and tumor progression is in the shadows. In this reserch, we carried out a panoramic bioinformatic analysis about CENPI with TCGA, Timer 2.0, Oncomine, GEPIA, Cbioportal, LinkedOmics and CancerSEA databases. Besides, our bioinformatic results have been further confirmed through in vitro experiments, including Real-Time quantitative PCR (RT-qPCR), immunofluorescence (IF), immunohistochemistry (IHC), western blotting (WB), cell proliferation assays, EdU, cell cycle and apoptosis test. Our results suggested that CENPI was increased in most of the cancers, and may serve as a potential biomarker. What's more, the knock down of CENPI inhibited the expression of CDK2 in lung adenocarcinoma (LUAD), and resulted in the arrest of G0/G1 phase and apoptosis. Besides, CENPI was related to immune cells infiltration and drug sensitivity in pan-cancer, and can act as a potential treatment target to cure cancer patients.
Collapse
Affiliation(s)
- Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangzu Cui
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhaohui Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Chen J, Li W, Li G, Liu X, Huang C, Nie H, Liang L, Wang Y, Liu Y. Targeted liposomes encapsulated iridium(III) compound greatly enhance anticancer efficacy and induce cell death via ferroptosis on HepG2 cells. Eur J Med Chem 2024; 265:116078. [PMID: 38141286 DOI: 10.1016/j.ejmech.2023.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 μM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | | | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hua Nie
- Jiaying University, Meizhou, 514031, PR China.
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Zhen H, Tian J, Li G, Zhao P, Zhang Y, Che J, Cao B. Raltitrexed enhanced antitumor effect of anlotinib in human esophageal squamous carcinoma cells on proliferation, invasiveness, and apoptosis. BMC Cancer 2023; 23:207. [PMID: 36870981 PMCID: PMC9985835 DOI: 10.1186/s12885-023-10691-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Anlotinib is a multi-targeted receptor tyrosine kinase inhibitor (TKI) which has exhibited encouraging clinical activity in advanced non-small cell lung cancer (NSCLC) and soft tissue sarcoma. Raltitrexed is well known to be effective in the treatment of colorectal cancer in China. The present study aims to investigate the combinatory antitumor effect of anlotinib and raltitrexed on human esophageal squamous carcinoma cells and further explore the molecular mechanisms in vitro. METHODS Human esophageal squamous cell lines KYSE-30 and TE-1 were treated with anlotinib or raltitrexed, or both, then cell proliferation was measured by MTS and colony formation assay; cell migration and invasion were detected by wound-healing and transwell assays; cell apoptosis rate was studied by flow cytometry and the transcription of apoptosis-associated proteins were monitored by quantitative polymerase chain reaction (qPCR) analysis. Finally, western blot was performed to check phosphorylation of apoptotic proteins after treatment. RESULTS Treatment with raltitrexed and anlotinib showed enhanced inhibitory effects on cell proliferation, migration and invasiveness compared with raltitrexed or anlotinib monotherapy. Meanwhile, raltitrexed combined with anlotinib strongly increased cell apoptosis percentage. Moreover, the combined treatment down-regulated mRNA level of the anti-apoptotic protein Bcl-2 and invasiveness-associated protein matrix metalloproteinases-9 (MMP-9), while up-regulated pro-apoptotic Bax and caspase-3 transcription. Western blotting showed that the combination of raltitrexed and anlotinib could inhibit the expression of phosphorylated Akt (p-Akt), Erk (p-Erk) and MMP-9. CONCLUSIONS This study indicated that raltitrexed enhanced the antitumor effects of anlotinib on human ESCC cells by down-regulating phosphorylation of Akt and Erk, providing a novel treatment option for patients with esophageal squamous cell carcinoma (ESCC).
Collapse
Affiliation(s)
- Hongchao Zhen
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Jizheng Tian
- Department of Oncology, Beijing Shunyi District Hospital, Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, China
| | - Guangxin Li
- Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Pengfei Zhao
- Department of Radiotherapy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Zhang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
5
|
Jamialahmadi O, Salehabadi E, Hashemi-Najafabadi S, Motamedian E, Bagheri F, Mancina RM, Romeo S. Cellular Genome-Scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:671-682. [PMID: 36508280 DOI: 10.1089/omi.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Salehabadi
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Hu C, Chen X, Lin X, Dai J, Yu J. Raltitrexed regulates proliferation and apoptosis of HGC-27 cells by upregulating RSK4. BMC Pharmacol Toxicol 2022; 23:65. [PMID: 36031631 PMCID: PMC9420250 DOI: 10.1186/s40360-022-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Raltitrexed is a specific inhibitor of thymidylate synthase and a potential chemotherapeutic agent for the treatment of advanced gastric cancer. In this study, we investigated the effect of raltitrexed on the proliferation of HGC-27 human gastric cancer cells and its potential underlying molecular mechanism(s). Methods RT-qPCR and western blotting were used to quantify RSK4 levels. Colony formation and flow cytometry assays were used to assess HGC-27 cell proliferation, cell cycle progression, mitochondrial membrane potential, and apoptosis. The expression of cell cycle and apoptosis markers were determined by western blotting. Results Our results demonstrate that raltitrexed upregulated RSK4 mRNA and protein levels in HGC-27 cells. Moreover, raltitrexed significantly inhibited tumor cell colony formation, arrested the cell cycle, decreased the mitochondrial membrane potential, and induced apoptosis. We observed that raltitrexed was capable of upregulating the expression of Bax, cyclin A1, and CDK3, and downregulating the expression of Bcl-2 and cleaved caspase-3. Importantly, siRNA-mediated RSK4 knockdown significantly reduced the inhibitory effect of raltitrexed on cell proliferation and its promotion of cell apoptosis. Moreover, silencing of RSK4 inhibited the raltitrexed-induced upregulation of cytochrome C. In addition, the changes in molecular markers related to the cell cycle and apoptosis induced by raltitrexed were reduced upon RSK4 depletion. Conclusion Our study shows that RSK4 is a key target of raltitrexed in the regulation of gastric cancer cell proliferation, cell cycle progression, and apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00605-2.
Collapse
|
7
|
Bi Y, Jiao D, Wang Y, Han X, Ren J. Preliminary outcomes of raltitrexed eluting bead-transarterial chemoembolization using Callispheres® beads for gastrointestinal adenocarcinoma liver metastasis. World J Surg Oncol 2022; 20:229. [PMID: 35821043 PMCID: PMC9277920 DOI: 10.1186/s12957-022-02696-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Background Drug-eluting bead transarterial chemoembolization (DEB-TACE) with Callispheres® beads (CB) is currently used in the treatment of hepatocellular carcinoma. However, clinical data regarding DEB-TACE using raltitrexed-eluting CB for gastrointestinal adenocarcinoma liver metastases (GALM) treatment is limited. We aimed to report the preliminary outcomes of DEB-TACE using CB in unresectable GALM patients. Methods This retrospective study enrolled unresectable GALM patients who were treated with DEB-TACE using raltitrexed-eluting CB from October 2018 to October 2021. Totally, 25 patients, 18 males and 7 females, mean age 66.8±9.5 years, were continuously enrolled. Postoperative treatment response, survival rates, and complication were calculated during the procedure and follow-up. Results Twenty-four patients were technically successful, with a technical success rate of 96.0%. The 3-month overall response rate and disease control rate were 21.7% and 73.9%, and 6-month overall response rate and disease control rate were 30.0% and 65.0%. The median survival time from diagnosis of GALM was 31.3 months. The median survival time and median PFS from first DEB-TACE was 21.3 months (95% confidence interval 9.1–33.5) and 10.7 months (3.7–17.7), respectively. Main adverse events included abdominal pain (36.0%), fever (12.0%), and nausea/vomiting (28.0%) after DEB-TACE. No treatment-related deaths and grade 3 or grade 4 adverse events were observed. Conclusions DEB-TACE using raltitrexed eluting CB was demonstrated as a safe and efficient alternative choice for GALM.
Collapse
Affiliation(s)
- Yonghua Bi
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, China
| | - Yang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, China.
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Taayoshi F, Iraji A, Moazzam A, Soleimani M, Asadi M, Pedrood K, Akbari M, Salehabadi H, Larijani B, Adibpour N, Mahdavi M. Synthesis, molecular docking, and cytotoxicity of quinazolinone and dihydroquinazolinone derivatives as cytotoxic agents. BMC Chem 2022; 16:35. [PMID: 35585608 PMCID: PMC9118628 DOI: 10.1186/s13065-022-00825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cancer is the most cause of morbidity and mortality, and a major public health problem worldwide. In this context, two series of quinazolinone 5a–e and dihydroquinazolinone 10a–f compounds were designed, synthesized as cytotoxic agents. Methodology All derivatives (5a–e and 10a–f) were synthesized via straightforward pathways and elucidated by FTIR, 1H-NMR, CHNS elemental analysis, as well as the melting point. All the compounds were evaluated for their in vitro cytotoxicity effects using the MTT assay against two human cancer cell lines (MCF-7 and HCT-116) using doxorubicin as the standard drug. The test derivatives were additionally docked into the PARP10 active site using Gold software. Results and discussion Most of the synthesized compounds, especially 5a and 10f were found to be highly potent against both cell lines. Synthesized compounds demonstrated IC50 in the range of 4.87–205.9 μM against HCT-116 cell line and 14.70–98.45 μM against MCF-7 cell line compared with doxorubicin with IC50 values of 1.20 and 1.08 μM after 72 h, respectively, indicated the plausible activities of the synthesized compounds. Conclusion The compounds quinazolinone 5a–e and dihydroquinazolinone 10a–f showed potential activity against cancer cell lines which can lead to rational drug designing of the cytotoxic agents. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00825-x.
Collapse
Affiliation(s)
- Fahimeh Taayoshi
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Science Hamadan, Hamedan, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mosayeb Akbari
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hafezeh Salehabadi
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Adibpour
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhou T, Qin R, Shi S, Zhang H, Niu C, Ju G, Miao S. DTYMK promote hepatocellular carcinoma proliferation by regulating cell cycle. Cell Cycle 2021; 20:1681-1691. [PMID: 34369850 DOI: 10.1080/15384101.2021.1958502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Overexpression of DTYMK is related with tumorigenesis and progression in several human tumors. However, the role of upregulated DTYMK in hepatocellular carcinoma (HCC) patients still remains unclear. In this study, the DTYMK expression in HCC tumors was evaluated in three GEO series (GSE14520, GSE54236, GSE63898), TCGA-LIHC, and ICGC-IRLR-JP cohorts. Survival analysis of DTYMK based on TCGA-LIHC and ICGC-LIRI-JP cohorts was conducted. We found that DTYMK was dramatically upregulated in tumor tissue compared with that in adjacent liver tissue. Kaplan-Meier analysis revealed that high expression of DTYMK in HCC patients' tumor tissue was significantly corresponded to worse overall survival (OS) (P < 0.05). Further analysis showed that overexpressing DTYMK led to poor relapse free survival (RFS) and disease-specific survival (DSS) (all P < 0.05). In conclusion, DTYMK is upregulated in tumors and correlated with poor prognosis in HCC patients. In our report, DTYMK is higher expression in HCC cancer tissue and cell line than tumor adjacent tissue and normal liver cell line. Knocking down DTYMK can inhabit tumor cell proliferation by interfering cell cycle, whereas overexpression of DTYMK can promote tumor cell proliferation. These findings indicate that upregulation of DTYMK enhances tumor growth and proliferation by promoting cell cycle.
Collapse
Affiliation(s)
- Tianhao Zhou
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Department of Oncology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Qin
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Susu Shi
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Hua Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chuanling Niu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Gaoda Ju
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
10
|
Gu Y, Zhang L, Yang H, Zhuang J, Sun Z, Guo J, Guan M. Nanosecond pulsed electric fields impair viability and mucin expression in mucinous colorectal carcinoma cell. Bioelectrochemistry 2021; 141:107844. [PMID: 34052542 DOI: 10.1016/j.bioelechem.2021.107844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a non-thermal technology that can induce a myriad of biological responses and changes in cellular physiology. nsPEFs have gained significant attention as a novel cancer therapy. However, studies investigating the application of nsPEF in mucinous carcinomas are scarce. In this study, we explored several biological responses in two mucinous colorectal adenocarcinoma cell lines, LS 174T and HT-29, to nsPEF treatment. We determined the overall cell survival and viability rates following nsPEF treatment using CCK-8 and colony formation assays. We measured the intracellular effects of nsPEF treatment by analyzing cell cycle distribution, cell apoptosis and mitochondrial potential. We also analyzed mucin production at both mRNA and protein levels. Our results showed that nsPEF treatment significantly reduced mucinous cell viability in a dose-dependent manner. nsPEF treatment increased cell cycles arrest at G0/G1 while the proportion of G2/M cells gradually decreased. Cell apoptosis increased following nsPEF treatment with a clear loss in mitochondrial membrane potential. Furthermore, the protein expression of functional mucin family members decreased after nsPEF treatment. In conclusion, nsPEF treatment reduced MCRC cell viability, cell proliferation, and mucin protein production while promoted apoptosis. Our work is a pilot study that projects some insights into the potential clinical applications of nsPEFs in treating mucinous colorectal carcinoma.
Collapse
Affiliation(s)
- Yiran Gu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Life Science, Shanghai University, Shanghai 200444, China
| | - Long Zhang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Hua Yang
- Department of General Surgery, Zhongshan Hospital (South Branch), Fudan University, Shanghai 200083, China
| | - Jie Zhuang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinsong Guo
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Miao Guan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
11
|
Chen K, Hou Y, Liao R, Li Y, Yang H, Gong J. LncRNA SNHG6 promotes G1/S-phase transition in hepatocellular carcinoma by impairing miR-204-5p-mediated inhibition of E2F1. Oncogene 2021; 40:3217-3230. [PMID: 33824472 DOI: 10.1038/s41388-021-01671-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) function as competitive endogenous RNA (ceRNA) targeting proteins and genes; however, the role of lncRNAs in hepatocellular carcinoma (HCC) is not well understood. We investigated the mechanism by which lncRNA SNHG6 promotes the development of HCC. RT-qPCR revealed upregulated lncRNA SNHG6 in the HCC setting. Elevated SNHG6 expression was indicative of poor prognosis in patients with HCC. SNHG6 overexpression resulted in increased cyclin D1, cyclin E1, and E2F1 expression both in vitro and in vivo. SNHG6 also promoted HCC cell proliferation by enhancing G1-S phase transition in vitro. Dual luciferase reporter assays, RIP, and RNA pull-down assays demonstrated SNHG6 competitively bound to miR-204-5p and inhibited its expression preventing miR-204-5p from targeting E2F1. Overexpression of miR-204-5p abolished the effect of SNHG6. Our data suggest that SNHG6 functions as a ceRNA that targets miR-204-5p resulting in an increased E2F1 expression and enhanced G1-S phase transition, thereby promoting the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Kai Chen
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Yifu Hou
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- The Second Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
12
|
Murthy SS, Narsaiah TB. Cytotoxic Effect of Bromelain on HepG2 Hepatocellular Carcinoma Cell Line. Appl Biochem Biotechnol 2021; 193:1873-1897. [PMID: 33735410 DOI: 10.1007/s12010-021-03505-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/17/2023]
Abstract
Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and β-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (Ananas comosus), belongs to the family Bromeliaceae. The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and β-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of β-catenin protein in HepG2 cells which interferes in β-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines.
Collapse
Affiliation(s)
- Sushma S Murthy
- Department of Biotechnology, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India.
| | - T Bala Narsaiah
- Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India
| |
Collapse
|
13
|
Wang S, Yuan XH, Wang SQ, Zhao W, Chen XB, Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur J Med Chem 2021; 214:113218. [PMID: 33540357 DOI: 10.1016/j.ejmech.2021.113218] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Considerable progress has been made in the development of anticancer agents over the past few decades, and a lot of new anticancer agents from natural and synthetic sources have been produced. Among heterocyclic compounds, pyrimidine-fused bicyclic heterocycles possess a variety of biological activities such as anticancer, antiviral, etc. To date, 147 pyrimidine-fused bicyclic heterocycles have been approved for clinical assessment or are currently being used in clinic, 57 of which have been approved by FDA for clinical treatment of various diseases, and 22 of them are being used in the clinic for the treatment of different cancers. As the potentially privileged scaffolds, pyrimidine-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy. This review aims to provide an overview of the anticancer applications and synthetic routes of 22 approved pyrimidine-fused bicyclic heterocyclic drugs in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
14
|
Zhen H, Li G, Zhao P, Zhang Y, Wang J, Yu J, Cao B. Raltitrexed Enhances the Antitumor Effect of Apatinib in Human Esophageal Squamous Carcinoma Cells via Akt and Erk Pathways. Onco Targets Ther 2020; 13:12325-12339. [PMID: 33293826 PMCID: PMC7719348 DOI: 10.2147/ott.s276125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Apatinib has been proved effective in the treatment of advanced gastric cancer and a variety of solid tumors. Raltitrexed is emerging as a promising alternative for treating advanced colorectal cancer in China. This work aims to study the combinatory antitumor effect of apatinib and raltitrexed on human esophageal squamous carcinoma cells (ESCC). Materials and Methods Two VEGFR-2-positive human ESCC lines, KYSE-30 and TE-1, were treated with apatinib or raltitrexed, or both, then the cell proliferation rate was measured by MTS assay; cell migration and invasion were studied by transwell assays; cell apoptosis rate was determined by flow cytometry; cellular autophagy level affected was analyzed by Western blot analysis; finally, quantitative polymerase chain reaction (qPCR) was used to monitor transcription and Western blot was performed to check phosphorylation of apoptotic proteins after treatment. Results Both apatinib and raltitrexed significantly inhibited KYSE-30 and TE-1 cell proliferation in a dose-dependent manner. Treatment with both drugs showed enhanced inhibitory effects on cell proliferation, migration, and invasiveness compared with apatinib monotherapy. Apoptosis percentages in both cell lines were also remarkably increased by the combined treatment. Moreover, the combination of apatinib and raltitrexed down-regulated mRNA level of the anti-apoptotic protein Bcl-2, while up-regulated pro-apoptotic protein PARP, Bax, and caspase-3 transcription. Western blot analysis showed that phosphorylation levels of Erk, Akt, and invasiveness-associated protein matrix metalloproteinases-9 (MMP-9) were decreased in the combination group. Conclusion Taken together, these results indicate that raltitrexed enhances the antitumor effects of apatinib on human ESCC cells by down-regulating phosphorylation of Akt and Erk, implying a combination of raltitrexed and apatinib might be an effective option for treating esophageal squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Hongchao Zhen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Guangxin Li
- Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Pengfei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ying Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jing Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Junxian Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
15
|
Zuo S, Shi G, Fan J, Fan B, Zhang X, Liu S, Hao Y, Wei Z, Zhou X, Feng S. Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 2020; 21:48. [PMID: 33273976 PMCID: PMC7706384 DOI: 10.3892/etm.2020.9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit β6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.
Collapse
Affiliation(s)
- Shanhuai Zuo
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guidong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianchao Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
16
|
Pálinkás HL, Békési A, Róna G, Pongor L, Papp G, Tihanyi G, Holub E, Póti Á, Gemma C, Ali S, Morten MJ, Rothenberg E, Pagano M, Szűts D, Győrffy B, Vértessy BG. Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments. eLife 2020; 9:e60498. [PMID: 32956035 PMCID: PMC7505663 DOI: 10.7554/elife.60498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
Collapse
Affiliation(s)
- Hajnalka L Pálinkás
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Doctoral School of Multidisciplinary Medical Science, University of SzegedSzegedHungary
| | - Angéla Békési
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Róna
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Lőrinc Pongor
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Gábor Papp
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Tihanyi
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Eszter Holub
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Ádám Póti
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Carolina Gemma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Michael J Morten
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Dávid Szűts
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Beáta G Vértessy
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| |
Collapse
|
17
|
Gong Q, Song C, Wang X, Wang R, Cai G, Liang X, Liu J. Hyperthermic intraperitoneal chemotherapy with recombinant mutant human TNF-α and raltitrexed in mice with colorectal-peritoneal carcinomatosis. Exp Biol Med (Maywood) 2020; 245:542-551. [PMID: 32041417 DOI: 10.1177/1535370220905047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peritoneum is one of the most common metastatic sites of colorectal cancer (CRC). It has been reported that cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) prolongs the lifespan of patients with peritoneal carcinomatosis of colorectal origin (CRC-PC), while the drugs used for HIPEC are limited. We investigated the application of recombinant mutant human tumor necrosis factor-α (rmhTNF) combined with raltitrexed in the HIPEC treatment in a mice model with CRC-PC. In vitro, we detected the cytotoxicity and apoptosis of human colorectal cancer cells by 3–(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, Western blot, and TdT-mediated dUTP Nick End Labeling (TUNEL) assay. In vivo, we established xenograft models of CRC-PC and assessed the antitumor effect by in vivo imaging, peritoneal cancer index scoring, and TUNEL assay. The results showed that the combination of rmhTNF and raltitrexed under hyperthermia with a temperature of 42°C inhibited the growth of colorectal cancer cells significantly in vitro, and after HIPEC treatments with rmhTNF and raltitrexed, peritoneal tumor growth was prohibited in vivo. Our findings about the efficacy of rmhTNF and raltitrexed used for HIPEC to treat CRC-PC will provide experimental data and basis for their potential clinical application. Impact statement Colorectal peritoneal carcinomatosis exhibits poor prognosis and presents a treatment challenge. At present, the main treatment is surgery, supplemented by hyperthermic intraperitoneal chemotherapy (HIPEC), but the drugs used for HIPEC are limited. Our study found that the combination of recombinant mutant human TNF-α (rmhTNF) and raltitrexed (RTX) under hyperthermia with a temperature of 42°C had antitumor effect both in vitro and vivo. The findings will provide experimental data and basis for the potential clinical application of rmhTNF and RTX, which might offer patients a new choice of therapeutic drugs.
Collapse
Affiliation(s)
- Qianyi Gong
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Efficacy and safety of raltitrexed-based transarterial chemoembolization for colorectal cancer liver metastases. Anticancer Drugs 2019; 29:1021-1025. [PMID: 30134285 DOI: 10.1097/cad.0000000000000690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The liver is the most common site of colorectal cancer metastases. The present study aimed to evaluate the efficacy and safety of transarterial chemoembolization (TACE) with raltitrexed and oxaliplatin for colorectal liver metastases in a prospective, multicenter, single-arm trial conducted in 12 hospitals from different areas in China. A total of 90 patients with colorectal liver metastases were enrolled and treated by TACE with raltitrexed 4 mg and oxaliplatin 100 mg, followed by embolotherapy with 50 mg oxaliplatin and 5-20 ml lipiodol, administered every 28 days for four cycles. Patients were followed up every 3 months after the treatment and up to 12 months. The primary endpoint was time to progression. For the full analysis set (FAS), the median time to progression and overall survival were 9.1 and 17.8 months, respectively. The disease control rate in FAS was 71 (78.9%). Grade 3 or 4 adverse events were reported for 24 (26.7%) out of all 90 patients. Grade 3 thrombocytopenia, transglutaminase abnormality, and decreased neutrophil were observed in eight (8.9%), six (6.7%), and five (5.6%) patients, respectively. No unexpected adverse events or toxic deaths were observed. TACE with raltitrexed plus oxaliplatin is feasible, clinically beneficial, and well tolerated with low-grade toxicity for colorectal cancer patients with liver metastases.
Collapse
|
19
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Ding WX, Liu S, Ma JX, Pu J, Wang HJ, Zhang S, Sun XC. Raltitrexed increases radiation sensitivity of esophageal squamous carcinoma cells. Cancer Cell Int 2019; 19:36. [PMID: 30820189 PMCID: PMC6378748 DOI: 10.1186/s12935-019-0752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background Radiation therapy remains an important therapeutic modality, especially for those patients who are not candidates for radical resection. Many strategies have been developed to increase the radiosensitivity of esophageal cancer, with some success. Methods This study was conducted to determine whether raltitrexed can enhance radiosensitivity of esophageal squamous cell carcinoma (ESCC). ESCC cell lines 24 h were incubated with raltitrexed or DMSO with or without subsequent irradiation. Cell Counting Kit assay-8 assay and clonogenic survival assay were used to measure the cell proliferation and radiosensitization, respectively. Flow cytometry was utilized to examine cell apoptosis and cell cycle distribution in different groups. Immunofluorescence analysis was performed to detect deoxyribonucleic acid (DNA) double-strand breaks. In addition, the expression levels of proteins that are involved in radiation induced signal transduction including Bax, Cyclin B1, Cdc2/pCdc2, and Cdc25C/pCdc25C were examined by western blot analysis. Results The results indicated that raltitrexed enhanced radiosensitivity of ESCC cells with increased DNA double-strand breaks, the G2/M arrest, and the apoptosis of ESCC cells induced by radiation. The sensitization enhancement ratio of 1.23–2.10 was detected for ESCC cells with raltitrexed treatment in TE-13 cell line. In vitro, raltitrexed also increased the therapeutic effect of radiation in nude mice. Conclusion Raltitrexed increases the radiosensitivity of ESCC. This antimetabolite drug is promising for future clinical trials with concurrent radiation in esophageal cancer.
Collapse
Affiliation(s)
- Wen-Xiu Ding
- 1Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029 Jiangsu China.,2Department of Radiation Oncology, The Sixth Affiliated Hospital of Yangzhou University, Taixing Peoples' Hospital, Taizhou, Jiangsu China
| | - Shu Liu
- 1Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029 Jiangsu China
| | - Jian-Xin Ma
- 3Department of Radiation Oncology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu China
| | - Juan Pu
- Department of Radiation Oncology, Lianshui Peoples' Hospital, Huaian, Jiangsu China
| | - Hai-Jing Wang
- 1Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029 Jiangsu China.,5Department of Radiation Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Zhang
- 1Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029 Jiangsu China
| | - Xin-Chen Sun
- 1Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
21
|
Cui W, Fan W, Zhang Q, Wen J, Huang Y, Yang J, Li J, Wang Y. Comparison of two transarterial chemoembolization regimens in patients with unresectable hepatocellular carcinoma: raltitrexed plus oxaliplatin versus 5-fluorouracil plus oxaliplatin. Oncotarget 2017; 8:79165-79174. [PMID: 29108296 PMCID: PMC5668029 DOI: 10.18632/oncotarget.16298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/01/2017] [Indexed: 12/26/2022] Open
Abstract
AIMS To compare the safety and efficacy of TACE using raltitrexed, oxaliplatin and epirubicin with 5-fluorouracil, oxaliplatin and epirubicin for patients with unresectable hepatocelluar carcinoma. RESULTS Median overall survival (OS) was 7.4 months in the raltitrexed group [95% confidence interval (CI): 5.4, 9.4) and 5.8 months in the control group (95% CI: 5.2, 6.4; P = 0.177). The median progression-free survival (PFS) time was significantly higher in the raltitrexed group (3.6 months, 95% CI: 2.8, 4.4) than in the control group (2.6 months, 95% CI: 2.2, 3.0; P = 0.038). The disease control rate (DCR) was higher in the raltitrexed group than in the control group (40% versus 30.4%; P = 0.353). The incidence of adverse events was similar between the two groups. MATERIALS AND METHODS From January 2012 to December 2014, 86 patients with unresectable HCC were treated with TACE using the combination of raltitrexed, oxaliplatin and epirubicin (raltitrexed group), and the combination of 5-fluorouracil, oxaliplatin and epirubicin (control group). The primary endpoint was OS, and the secondary endpoints were PFS, DCR and adverse events. CONCLUSIONS Although the study did not meet its primary endpoint, raltitrexed group reach a higher PFS, which suggests that this combination regimen of TACE as alternative may confer some benefits to selected patients.
Collapse
Affiliation(s)
- Wei Cui
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenzhe Fan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Zhang
- Department of Radiotherapy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Wen
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yonghui Huang
- Department of Interventional Radiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianyong Yang
- Department of Interventional Radiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|