1
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Fu J, Xie X, Yao H, Xiao H, Li Z, Wang Z, Ju R, Zhao Y, Liu Z, Zhang N. The Effectiveness of Traditional Chinese Medicine in Treating Malignancies via Regulatory Cell Death Pathways and the Tumor Immune Microenvironment: A Review of Recent Advances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:137-160. [PMID: 38328830 DOI: 10.1142/s0192415x2450006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traditional Chinese Medicine (TCM) has achieved high clinical efficacy in treating malignancies in recent years and is thus gradually becoming an important therapy for patients with advanced tumor for its benefits in reducing side effects and improving patients' immune status. However, it has not been internationally recognized for cancer treatment because TCM's anti-tumor mechanism is not fully elucidated, limiting its clinical application and international promotion. This review traced the mechanism of the TCM-mediated tumor cell death pathway and its effect on remodeling the tumor immune microenvironment, its direct impact on the microenvironment, its anti-tumor effect in combination with immunotherapy, and the current status of clinical application of TCM on tumor treatment. TCM can induce tumor cell death in many regulatory cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition, TCM-induced cell death could increase the immune cells' infiltration with an anti-tumor effect in the tumor tissue and elevate the proportion of these cells in the spleen or peripheral blood, enhancing the anti-tumor capacity of the tumor-bearing host. Moreover, TCM can directly affect immune function by increasing the population or activating the sub-type immune cells with an anti-tumor role. It was concluded that TCM could induce a pan-tumor death modality, remodeling the local TIME differently. It can also improve the systemic immune status of tumor-bearing hosts. This review aims to establish a theoretical basis for the clinical application of TCM in tumor treatment and to provide a reference for TCM's potential in combination with immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Jingya Fu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
- The First Affiliated Hospital of Nanyang Medical College Nanyang 473000, P. R. China
| | - Xiaoxia Xie
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Haijuan Xiao
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhenzhi Wang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| |
Collapse
|
3
|
Liu J, Sun Y, Chen W, Deng L, Chen M, Dong J. Proteomic analysis reveals the molecular mechanism of Astragaloside in the treatment of non-small cell lung cancer by inducing apoptosis. BMC Complement Med Ther 2023; 23:461. [PMID: 38102661 PMCID: PMC10722856 DOI: 10.1186/s12906-023-04305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Astragaloside III (AS III), a saponin-like metabolite derived from the traditional Chinese medicine Astragali Radix, has been shown to be effective in the treatment of cancer and heart failure, and a variety of digestive disorders. However, its molecular mechanism in the treatment of non-small cell lung cancer (NSCLC) is unknown. METHODS Human lung cancer A549 cells and NCI-H460 cells and a normal human lung epithelial cell BEAS-2B were treated with different concentrations of AS III. CCK-8 and EdU staining were used to determine the anti-proliferative effects of AS III in vitro. Quantitative proteomic analysis was performed on A549 cells treated with the indicated concentrations of AS III, and the expression levels of apoptosis-related proteins were examined by Western blotting. RESULTS AS III treatment significantly inhibited proliferation and increased apoptosis in A549 and H460 cells and modulated functional signaling pathways associated with apoptosis and metabolism. At the molecular level, AS III promoted a reduction in the expression of ANXA1 (p < 0.01), with increased levels of cleaved Caspase 3 and PARP 1. In addition, AS III treatment significantly decreased the LC3-I/LC3-II ratio. The results of experiment in vitro showed that AS III promoted NSCLC apoptosis by down-regulating the phosphorylation levels of P38, JNK, and AKT (p < 0.01), inhibiting the expression of Bcl-2 (p < 0.01), and up-regulating the expression of Bax (p < 0.01). CONCLUSION These findings provide a mechanism whereby AS III treatment induces apoptosis in NSCLC cells, which may be achieved in part via modulation of the P38, ERK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wen L, Xie L, Gong F, Zhang S, Xi T. Efficacy and safety of Chinese medicine injections in combination with docetaxel and cisplatin for non-small cell lung cancer: a network meta-analysis. Front Pharmacol 2023; 14:1277284. [PMID: 38146464 PMCID: PMC10749328 DOI: 10.3389/fphar.2023.1277284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) poses a serious threat to human health. Several clinical studies have reported the benefits of Chinese herbal injections (CHIs) in combination with docetaxel and cisplatin (DP). This multidimensional network meta-analysis aimed to investigate the preferred regimen of CHIs in combination with DP for the treatment of NSCLC. Methods: Multiple databases were searched to identify randomized controlled trials (RCTs) of CHIs for NSCLC from the database inception to 30 April 2023. Studies that met the inclusion criteria and exhibited good methodological quality were included. Data analysis was conducted using Stata 15.0 and R 4.2.1 software. An odds ratio (OR) was used as the effect size, and the surface under the cumulative ranking curve (SCURA) was employed to rank the evaluated treatments. Results: The network meta-analysis included 85 eligible RCTs, encompassing 6,580 patients and 11 CHIs. Astragalus Injection combined with DP was identified as the most effective regimen for improving the response rate (SUCRAs: 90.25%). Brucea Javanica Oil Milk Injection combined with DP proved most effective in ameliorating the quality of life (SUCRAs: 76.89%). Shenfu Injection combined with DP emerged as the most effective for enhancing CD3+ and CD4+ (SUCRAs: 93.75%, 88.50%). Kanglaite Injection combined with DP exhibited the best efficacy in improving CD8+ (SUCRAs: 88.96%). Brucea Javanica Oil Milk Injection combined with DP was the most potent regimen for enhancing CD4+/CD8+ (SUCRAs: 93.13%). Conclusion: CHIs in combination with DP outperformed DP alone in NSCLC patients. Astragalus Injection plus DP, Brucea Javanica Oil Milk Injection plus DP, Shenfu Injection plus DP, Kanglaite Injection plus DP, and Brucea Javanica Oil Milk Injection plus DP were significantly effective. However, further multicenter and well-designed RCTs are required to validate our findings.
Collapse
Affiliation(s)
- Liangtao Wen
- General Practice, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Lixiang Xie
- General Practice, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Fengying Gong
- Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Shunan Zhang
- General Practice, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Tieju Xi
- General Practice, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Wan S, Li KP, Wang CY, Chen SY, Cao JL, Yang JW, Wang HB, Li XR, Yang L. Exploring potential targets of HPV&BC based on network pharmacology and urine proteomics. J Pharm Biomed Anal 2023; 236:115694. [PMID: 37696190 DOI: 10.1016/j.jpba.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) caused by Human papillomavirus (HPV) infection remains a complex public health problem in developing countries. Although the HPV vaccine effectively prevents HPV infection, it does not benefit patients with BC who already have HPV. METHODS Firstly, the differential genes of HPV-related BC patients were screened by transcriptomics, and then the prognostic and clinical characteristics of the differential genes were analyzed to screen out the valuable protein signatures. Furthermore, the compound components and targets of Astragali Radix (AR) were analyzed by network pharmacology, and the intersection targets of drug components and HPV_BC were screened out for pathway analysis. In addition, the binding ability of the compound to the Astragali-HPV_BC target was verified by molecular docking and virtual simulation. Finally, to identify potential targets in BC patients through urine proteomics and in vitro experiments. RESULTS Eleven HPV_BC-related protein signatures were screened out, among which high expression of EGFR, CTNNB1, MYC, GSTM1, MMP9, CXCR4, NOTCH1, JUN, CXCL12, and KRT14 had a poor prognosis, while low expression of CASP3 had a poor prognosis. In the analysis of clinical characteristics, it was found that high-risk scores, EGFR, MMP9, CXCR4, JUN, and CXCL12 tended to have higher T stage, pathological stage, and grade. Pharmacological and molecular docking analysis identified a natural component of AR (Quercetin) and it corresponding core targets (EGFR). The OB of the natural component was 46.43, and the DL was 0.28, respectively. In addition, EGFR-Quercetin has high affinity. Urine proteomics and RT-PCR showed that EGFR was expressed explicitly in BC patients. Mechanism analysis revealed that AR component targets might affect HPV_BC patients through Proteoglycans in the cancer pathway. CONCLUSION AR can target EGFR through its active component (Quercetin), and has a therapeutic effect on HPV_BC patients.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Jin-Long Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China.
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China.
| |
Collapse
|
6
|
Shan H, Lin Y, Yin F, Pan C, Hou J, Wu T, Xia W, Zuo R, Cao B, Jiang C, Zhou Z, Yu X. Effects of astragaloside IV on glucocorticoid-induced avascular necrosis of the femoral head via regulating Akt-related pathways. Cell Prolif 2023; 56:e13485. [PMID: 37186483 PMCID: PMC10623974 DOI: 10.1111/cpr.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
We investigated the role of astragaloside IV (AS-IV) in preventing glucocorticoid-induced avascular necrosis of the femoral head (ANFH) and the underlying molecular mechanisms. Network pharmacology was used to predict the molecular targets of AS-IV. Molecular dynamic simulations were performed to explore the binding mechanism and interaction mode between AS-IV and Akt. Rat models of glucocorticoid-induced ANFH with AS-IV intervention were established, and osteogenesis, angiogenesis, apoptosis and oxidative stress were evaluated before and after blocking the PI3K/Akt pathway with LY294002. The effects of glucocorticoid and AS-IV on bone marrow mesenchymal stem cells and human umbilical vein endothelial cells incubated with and without LY294002 were determined. Downregulated p-Akt expression could be detected in the femoral heads of glucocorticoid-induced ANFH patients and rats. AS-IV increased trabecular bone integrity and vessel density of the femoral head in the model rats. AS-IV increased Akt phosphorylation and upregulated osteogenesis-, angiogenesis-, apoptosis- and oxidative stress-related proteins and mRNA and downregulated Bax, cleaved caspase-3 and cytochrome c levels. AS-IV promoted human umbilical vein endothelial cell migration, proliferation and tube formation ability; bone marrow mesenchymal stem cell proliferation; and osteogenic differentiation under glucocorticoid influence. AS-IV inhibited apoptosis. LY294002 inhibited these effects. AS-IV prevented glucocorticoid-induced ANFH by promoting osteogenesis and angiogenesis via the Akt/Runx2 and Akt/HIF-1α/VEGF pathways, respectively, and suppressing apoptosis and oxidative stress via the Akt/Bad/Bcl-2 and Akt/Nrf2/HO-1 pathways, respectively.
Collapse
Affiliation(s)
- Haojie Shan
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwei Lin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuli Yin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenhao Pan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jianzhong Hou
- Department of General Surgery, Shanghai Fengxian Central HospitalShanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghaiChina
| | - Tianyi Wu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyang Xia
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rongtai Zuo
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaolai Jiang
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zubin Zhou
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaowei Yu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Liu J, Chen L, Zhang J, Luo X, Tan Y, Qian S. AS-IV enhances the antitumor effects of propofol in NSCLC cells by inhibiting autophagy. Open Med (Wars) 2023; 18:20230799. [PMID: 37771421 PMCID: PMC10523104 DOI: 10.1515/med-2023-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most lethal malignant tumors. It has been shown that the general anesthetic agents, propofol and astragaloside IV (AS-IV) both exert antitumor effects in NSCLC. However, the effects of the combination of propofol with AS-IV in NSCLC remain unclear. Cell counting kit-8, and EdU and Transwell assays were performed to evaluate NSCLC cell viability, proliferation, and migration. Cell apoptosis and autophagy were observed by flow cytometric analysis and TUNEL and LC3 staining, respectively. AS-IV notably enhanced the anti-proliferative, pro-apoptotic, and anti-migratory properties of propofol in NSCLC cells. Moreover, AS-IV remarkably facilitated the anti-autophagy effect of propofol in NSCLC cells by downregulating LC3, Beclin 1, and ATG5. Significantly, the pro-apoptotic ability of the AS-IV/propofol combination in NSCLC cells was further enhanced by the autophagy inhibitor 3-MA, suggesting that autophagy plays a tumor-promoting role in NSCLC cells. Collectively, AS-IV could facilitate the antitumor abilities of propofol in NSCLC cells by inhibiting autophagy. These findings may be beneficial for future studies on the use of AS-IV and propofol for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jintao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Long Chen
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Jialing Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yingyi Tan
- Rehabilitation Medicine Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Zhang Z, Cheng Z, Xie W, Qin H, Sheng J. Astragaloside in cancer chemoprevention and therapy. Chin Med J (Engl) 2023; 136:1144-1154. [PMID: 37075760 PMCID: PMC10278710 DOI: 10.1097/cm9.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
ABSTRACT Tumor chemoprevention and treatment are two approaches aimed at improving the survival of patients with cancers. An ideal anti-tumor drug is that which not only kills tumor cells but also alleviates tumor-causing risk factors, such as precancerous lesions, and prevents tumor recurrence. Chinese herbal monomers are considered to be ideal treatment agents due to their multi-target effects. Astragaloside has been shown to possess tumor chemoprevention, direct anti-tumor, and chemotherapeutic drug sensitization effects. In this paper, we review the effects of astragaloside on tumor prevention and treatment and provide directions for further research.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13033, China
| | - Zhaohua Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Wei Xie
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
10
|
Guo J, Zhao Y, Wu X, Li G, Zhang Y, Song Y, Du Q. Mechanism exploration and prognosis study of Astragali Radix-Spreading hedyotis herb for the treatment of lung adenocarcinoma based on bioinformatics approaches and molecular dynamics simulation. Front Chem 2023; 11:1128671. [PMID: 37065830 PMCID: PMC10090857 DOI: 10.3389/fchem.2023.1128671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH) has been frequently prescribed in clinical for the treatment of lung cancer owing to its favorable efficacy. Yet, the mechanism under the therapeutic effects remained unveiled, which has limited its clinical applications, and new drug development for lung cancer.Methods: The bioactive ingredients of AR and SH were retrieved from the Traditional Chinese Medicine System Pharmacology Database, with the targets of obtained components predicted by Swiss Target Prediction. Genes related to lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD databases, with the hub genes of LUAD screened by CTD database. The intersected targets of LUAD and AR-SH were obtained by Venn, with David Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of core proteins and active ingredients was performed by Auto-Dock Vina software, followed by molecular dynamics simulations of protein-ligand complexes with well-docked conformations.Results: 29 active ingredients were screened out with 422 corresponding targets predicted. It is revealed that AR-SH can act on various targets such as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and Isomucronulatol 7,2′-di-O-glucoside (IDOG) to alleviate the symptoms of LUAD. Biological processes involved are protein phosphorylation, negative regulation of apoptotic process, and pathways involved are endocrine resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1 pathway. Molecular docking analysis indicated that the binding energy of most of the screened active ingredients to proteins encoded by core genes was less than −5.6 kcal/mol, with some active ingredients showing even lower binding energy to EGFR than Gefitinib. Three ligand-receptor complexes including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively stable by molecular dynamics simulation, which was consistent with the results of molecule docking.Conclusion: We suggested that the herb pair of AR-SH can act on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the enhancement of prognosis of LUAD.
Collapse
Affiliation(s)
- Junfeng Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
11
|
Arjsri P, Mapoung S, Semmarath W, Srisawad K, Tuntiwechapikul W, Yodkeeree S, Dejkriengkraikul P. Pyrogallol from Spirogyra neglecta Inhibits Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3 β/ β-catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24076452. [PMID: 37047425 PMCID: PMC10094533 DOI: 10.3390/ijms24076452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer associated with poor survival rates. The high proliferation and metastasis rates have made CRPC one of the most challenging types of cancer for medical practitioners and researchers. In this study, the anti-cancer properties and inhibition of CRPC progression by S. neglecta extract and its active constituents were determined using two CRPC cell lines, DU145 and PC3. The ethyl acetate fraction of S. neglecta (SnEA) was obtained using a solvent-partitioned extraction technique. The active constituents of SnEA were then determined using the HPLC technique, which showed that SnEA mainly contained syringic acid, pyrogallol, and p-coumaric acid phenolic compounds. After the determination of cytotoxic properties using the SRB assay, it was found that pyrogallol, but not the other two major compounds of SnEA, displayed promising anti-cancer properties in both CRPC cell lines. SnEA and pyrogallol were then further investigated for their anti-proliferation and apoptotic induction properties using propidium iodide and Annexin V staining. The results showed that SnEA and pyrogallol inhibited both DU145 and PC3 cell proliferation by inducing cell cycle arrest in the G0/G1 phase and significantly decreased the expression of cell cycle regulator proteins (cyclin D1, cyclin E1, CDK-2, and CDK-4, p < 0.001). SnEA and pyrogallol treatments also promoted apoptosis in both types of CRPC cells through significantly downregulating anti-apoptotic proteins (survivin, Bcl-2, and Bcl-xl, p < 0.001) and upregulating apoptotic proteins (cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP-1, p < 0.001). Mechanistic study demonstrated that SnEA and pyrogallol inactivated the Akt signaling pathway leading to enhancement of the active form of GSK-3β in CRPC cell lines. Therefore, the phosphorylation of β-catenin was increased, which caused degradation of the protein, resulting in a downregulation of β-catenin (unphosphorylated form) transcriptional factor activity. The current results reflect the potential impact of S. neglecta extract and pyrogallol on the management of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Akkraratchkumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
13
|
Wei Z, Chen J, Zuo F, Guo J, Sun X, Liu D, Liu C. Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115748. [PMID: 36162545 DOI: 10.1016/j.jep.2022.115748] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. AIM OF THE REVIEW In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. MATERIALS AND METHODS We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. RESULTS Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. CONCLUSIONS TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| | - Jing Chen
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Fang Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Julie Guo
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Xiaodong Sun
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China.
| | - Conghai Liu
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| |
Collapse
|
14
|
Xia D, Li W, Tang C, Jiang J. Astragaloside IV, as a potential anticancer agent. Front Pharmacol 2023; 14:1065505. [PMID: 36874003 PMCID: PMC9981805 DOI: 10.3389/fphar.2023.1065505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is a global intractable disease, and its morbidity and mortality are increasing year by year in developing countries. Surgery and chemotherapy are often used to treat cancer, but they result in unsatisfactory outcomes, such as severe side effects and drug resistance. With the accelerated modernization of traditional Chinese medicine (TCM), an increasing body of evidence has shown that several TCM components have significant anticancer activities. Astragaloside IV (AS-IV) is considered the main active ingredient of the dried root of Astragalus membranaceus. AS-IV exhibits various pharmacological effects, such as anti-inflammatory, hypoglycemic, antifibrotic, and anticancer activities. AS-IV possesses a wide range of activities, such as the modulation of reactive oxygen species-scavenging enzyme activities, participation in cell cycle arrest, induction of apoptosis and autophagy, and suppression of cancer cell proliferation, invasiveness, and metastasis. These effects are involved in the inhibition of different malignant tumors, such as lung, liver, breast, and gastric cancers. This article reviews the bioavailability, anticancer activity, and mechanism of AS-IV and provides suggestions for further research of this TCM.
Collapse
Affiliation(s)
- Dongqin Xia
- Chongqing University Cancer Hospital, Chongqing, China
| | - Wenjie Li
- Affiliated Hospital of Northwest Minzu University, Lanzhou, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Jiang
- Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
15
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2022; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
16
|
Wang S, Jiang K, Muthusamy R, Kalaimani S, Selvababu AP, Balupillai A, Narenkumar J, Jeevakaruniyam SJ. Protosappanin-B suppresses human melanoma cancer cell growth through impeding cell survival, inflammation and proliferative signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Anticancer Secondary Metabolites: From Ethnopharmacology and Identification in Native Complexes to Biotechnological Studies in Species of Genus Astragalus L. and Gloriosa L. Curr Issues Mol Biol 2022; 44:3884-3904. [PMID: 36135179 PMCID: PMC9498292 DOI: 10.3390/cimb44090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Some of the most effective anticancer compounds are still derived from plants since the chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead compounds with pronounced biological activity is essential for the successful development of novel drug candidates. This work aims to present the chemical diversity of antitumor bioactive compounds and biotechnological approaches as alternative production and sustainable plant biodiversity conservation. Astragalus spp., (Fabaceae) and Gloriosa spp. (Liliaceae) are selected as research objects within this review because they are known for their anticancer activity, because they represent two of the largest families respectively in dicots and monocots, and also because many of the medicinally important plants are rare and endangered. We summarized the ethnobotanical data concerning their anticancer application, highlighted the diversity of their secondary metabolites possessing anticancer properties such as saponins, flavonoids, and alkaloids, and revealed the potential of the in vitro cultures as an alternative way of their production. Since the natural supply is limited, it is important to explore the possibility of employing plant cell or organ in vitro cultures for the biotechnological production of these compounds as an alternative.
Collapse
|
18
|
Wei M, Ye C, Huang H, Yang C, Zhang L, Huang Y, Wang Y, Luo X, Luo J. Acacetin inhibits the tumor growth of human osteosarcoma cells through regulating Wnt/β-catenin and JNK signaling pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Min L, Wang H, Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res 2022; 14:1551-1566. [PMID: 35422920 PMCID: PMC8991133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
AIM The purpose of the present research was to investigate the effect and mechanism of Astragaloside IV (AS-IV) on liver cancer progression in vivo and in vitro. Since M1 macrophages play an essential role in suppressing tumors, while M2 macrophages can accelerate the incidence and progression of tumors by promoting angiogenesis, increasing tumor cell invasion and inhibiting tumor immune response, the effect and mechanism of AS-IV on macrophage polarization and their role in the development of HCC was explored. METHODS The effects of different concentrations of AS-IV (0, 50, 80, 100, 120, and 150 μM) on the capacity of hepatocellular carcinoma (HCC) cells to proliferate, migrate, and invade were detected. THP-1 cells were subjected to incubation in PMA for the purpose of stimulating differentiation into M0 macrophages. These macrophages were treated using LPS, IFN-γ, and PMA to produce M1 macrophages or treated using PMA, IL-13, and IL-4 to produce M2 macrophages. HCC cells and M1 or M2 macrophages were co-cultured for 48 hours, then the cell proliferation and migration were measured. The MTT assay was employed to determine cell viability. The capability of the cells to migrate and invade was investigated utilizing the Transwell assay and the wound healing assay. The expression of the M2 macrophage CD206 in macrophages treated with AS-IV was evaluated by flow cytometry. The expression of p-signal transducer and activator of transcription 3 (STAT3), phosphorylated (p)-NF-κB, and toll-like receptor 4 (TLR4) in macrophages was measured after treatment with AS-IV and M2 induction. To verify the function of the TLR4/NF-κB/STAT3 signaling pathway, TLR4 expression was knocked down in M2 macrophages, then the proliferation and migration and the M2 macrophage markers of HCC cells were measured. The effect of AS-IV on HCC in vivo was confirmed by a subcutaneous tumor mouse model. AS-IV was 2 was administered by gavage (0, 40, 80, and 100 mg/kg) for every 3 days. The tumor volume and weight were recorded. RESULTS AS-IV suppressed the capacities of HCC cells to proliferate, migrate, and invade in a dose-dependent way. M2 macrophages could promote the proliferative, migratory, and invasive ability of Huh-7 cells, which were suppressed by AS-IV. AS-IV directly attenuated the expression of M2 macrophage markers, indicating that AS-IV can inhibit macrophage M2 polarization. M2 macrophages stimulated the expression of p-STAT3, p-NF-κB, and TLR4, while AS-IV decreased the expression compared to the M2 group, indicating that AS-IV can regulate the TLR4/NF-κB/STAT3 signaling pathway. TLR4 small interfering RNA (siRNA/si) inhibited the proliferation of Huh-7 cells. The tumor volume, as well as weight of mice, was significantly reduced by AS-IV, indicating the antitumor impact of AS-IV in vivo. CONCLUSION AS-IV can inhibit the proliferative, invasive, and migratory ability of liver cancer through the suppression of the M2 polarization of macrophages, and the mechanism may involve the TLR4/NF-κB/STAT3 signaling pathway. The present study indicates that AS-IV could be an alternative drug to treat liver cancer, and the polarization of macrophages may be a novel treatment target for HCC.
Collapse
Affiliation(s)
- Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Haiqiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Hong Qi
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| |
Collapse
|
20
|
Zhang C, Guo W, Yao X, Xia J, Zhang Z, Li J, Chen H, Lin L. Database mining and animal experiment-based validation of the efficacy and mechanism of Radix Astragali (Huangqi) and Rhizoma Atractylodis Macrocephalae (Baizhu) as core drugs of Traditional Chinese medicine in cancer-related fatigue. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114892. [PMID: 34883219 DOI: 10.1016/j.jep.2021.114892] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, Traditional Chinese medicine (TCM) is often used as the main therapy for cancer-related fatigue (CRF). However, there is limited evidence to prove its therapeutic effect and mechanism. AIM OF THE STUDY We aimed to provide a basis for the therapeutic effect of TCM for CRF. MATERIALS AND METHODS We performed a meta-analysis to investigate the efficacy of TCM treatment for CRF. Through frequency statistics and association rule mining, we screened the core Chinese medicine components, Astragalus mongholicus Bunge., root (Radix astragali, Huangqi) and Atractylodes macrocephala Koidz., rhizome (Rhizoma atractylodis macrocephalae, Baizhu). We then used animal experiments to verify the effectiveness of these two TCMs and changes in related indicators in mice. Relevant molecular mechanisms were explored through network pharmacological analysis. RESULTS Twenty-four randomised control trials (RCTs) involving 1865 patients were included in the meta-analysis. TCM produced more positive effects on CRF than standard therapy alone. Radix astragali and Rhizoma atractylodis macrocephalae, as the core drug pair for the treatment of CRF, enhanced the physical fitness of mice; reduced abdominal circumference, level of inflammatory factors, and tumour weight; and increased body weight and blood sugar. Network pharmacology analysis showed that the mechanism of action of Radix astragali and Rhizoma atractylodis macrocephalae on CRF mainly involved compounds, such as quercetin, kaempferol and luteolin, acting through multiple targets, such as Protein kinase B α (AKT1), Tumour necrosis factor (TNF), and Interleukin-6 (IL-6). These molecules regulate cytokines, cancer signalling, and metabolic pathways and confer an anti-CRF effect. CONCLUSIONS TCM may be a promising therapy to relieve CRF in cancer patients. Our research may provide a reference for the clinical application of TCM for treating CRF.
Collapse
Affiliation(s)
- Chi Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Wei Guo
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaohui Yao
- The School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jiangnan Xia
- The School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zexin Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hanrui Chen
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lizhu Lin
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Gu J, Sun R, Wang Q, Liu F, Tang D, Chang X. Standardized Astragalus Mongholicus Bunge- Curcuma Aromatica Salisb. Extract Efficiently Suppresses Colon Cancer Progression Through Gut Microbiota Modification in CT26-Bearing Mice. Front Pharmacol 2021; 12:714322. [PMID: 34531745 PMCID: PMC8438123 DOI: 10.3389/fphar.2021.714322] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Altered gut microbiota and a damaged colon mucosal barrier have been implicated in the development of colon cancer. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ACE) is a common herbal drug pair that widely used clinically to treat cancer. However, whether the anti-cancer effect of ACE is related to gut microbiota remains unclear yet. We standardized ACE and investigated the effects of ACE on tumour suppression and analyze the related mechanisms on gut microbiota in CT26 colon cancer-bearing mice in the present study. Firstly, four flavonoids (calycosin-7-glucoside, ononin, calycosin, formononetin) and three astragalosides (astragaloside A, astragaloside II, astragaloside I) riched in Astragalus mongholicus Bunge, three curcumins (bisdemethoxycurcumin, demethoxycurcumin, curcumin) and four essential oils (curdione, curzerene, germacrone and β-elemene) from Curcuma aromatica Salisb., in concentrations from 0.08 to 2.07 mg/g, were examined in ACE. Then the results in vivo studies indicated that ACE inhibited solid tumours, liver and spleen metastases of colon cancer while simultaneously reducing pathological tissue damage. Additionally, ACE regulated gut microbiota dysbiosis and the short chain fatty acid content in the gut, repaired intestinal barrier damage. ACE treatment suppressed the overgrowth of conditional pathogenic gut bacteria, including Escherichia-Shigella, Streptococcus and Enterococcus, while the probiotic gut microbiota like Lactobacillus, Roseburia, Prevotellaceae_UCG-001 and Mucispirillum were increased. More interestingly, the content level of SCFAs such as propionic acid and butyric acid was increased after ACE administration, which further mediates intestinal SDF-1/CXCR4 signalling pathway to repair the integrity of the intestinal barrier, decrease Cyclin D1 and C-myc expressions, eventually suppress the tumor the growth and metastasis of colon cancer. To sum up, the present study demonstrated that ACE could efficiently suppress colon cancer progression through gut microbiota modification, which may provide a new explanation of the mechanism of ACE against colon cancer.
Collapse
Affiliation(s)
- Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiaohan Wang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangwei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
22
|
Deng C, Liu X, Zhang C, Li L, Wen S, Gao X, Liu L. ANXA1-GSK3β interaction and its involvement in NSCLC metastasis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:912-924. [PMID: 34002210 DOI: 10.1093/abbs/gmab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/09/2022] Open
Abstract
Although initially discovered and extensively studied for its role in inflammation, Annexin A1 (ANXA1) has been reported to be closely related to cancer in recent years, and its role in cancer is specific to tumor types and tissues. In the present study, we identified ANXA1 as an interaction partner of glycogen synthase kinase 3 beta (GSK3β), a multi-functional serine/threonine kinase tightly associated with cell fate determination and cancer, and assessed the functional significance of GSK3β-ANXA1 interaction in the metastasis of non-small cell lung cancer (NSCLC). We confirmed the interaction between GSK3β and ANXA1 in vitro and in H1299 and A549 cells by Glutathione-S-transferase (GST) pull-down assay and co-immunoprecipitation. We found that ANXA1 negatively regulated the phosphorylation of GSK3β and inhibited the epithelial-mesenchymal transformation (EMT) process and migration and invasion of NSCLC cells. By functional rescue assay, we confirmed that ANXA1 inhibited EMT through the regulation of GSK3β activity and thereby inhibited the migration and invasion of NSCLC cells. Our study sheds light on the function of ANXA1 and GSK3β and provides new elements for the understanding of NSCLC pathogenesis.
Collapse
Affiliation(s)
- Chunmiao Deng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Cuiqiong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyuan Wen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Liu W, Chen H, Wang D. Protective role of astragaloside IV in gastric cancer through regulation of microRNA-195-5p-mediated PD-L1. Immunopharmacol Immunotoxicol 2021; 43:443-451. [PMID: 34124983 DOI: 10.1080/08923973.2021.1936013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM Astragaloside IV (AS-IV) was reported to exert anti-cancer function in many cancers, but its actions in gastric cancer (GC) remain unclear. In the present study, we tried to elaborate the underlying mechanism by which AS-IV regulated the epithelial-mesenchymal transition (EMT) and angiogenesis of GC cells. METHODS The expressions of hsa-miR-15b-5p, hsa-miR-15a-5p, hsa-miR-195-5p, hsa-miR-424-5p and hsa-miR-497-5p in GC tissues and adjacent normal tissues were predicted by TCGA database. SGC7901 or MGC803 cells were treated with AS-IV, or transfected with miR-195-5p inhibitor/mimic or pcDNA3.1-PD-L1 followed by detection of cell proliferation, EMT and angiogenesis. The target relation between miR-195-5p and PD-L1 was confirmed by dual luciferase reporter gene assay. RESULTS Elevated hsa-miR-15b-5p, hsa-miR-15a-5p and hsa-miR-424-5p expressions were found in GC tissues, while decreased hsa-miR-195-5p and hsa-miR-497-5p expressions were observed in GC tissues. AS-IV inhibits EMT and angiogenesis in GC. PD-L1 was a potential target of miR-195-5p. Down-regulation of miR-195-5p or elevated PD-L1 expression reverses the inhibitory effect of AS-IV on EMT and angiogenesis of GC cells. CONCLUSION The present study demonstrated that AS-IV inhibited EMT and angiogenesis in GC through upregulation of miR-195-5p, highlighting the potential therapeutic effect of AS-IV on GC via miR-195-5p-regulated PD-L1.
Collapse
Affiliation(s)
- Wei Liu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| | - Han Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| |
Collapse
|
24
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
25
|
Anelli L, Di Nardo A, Bonucci M. Integrative Treatment of Lung Cancer Patients: Observational Study of 57 Cases. ASIAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.1055/s-0040-1722380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Introduction A retrospective clinical study was performed to identify the characteristics of patients with lung cancer treated with integrative cancer treatment in addition to conventional medicine.
Materials and Methods We reviewed medical records for lung cancer patients who visited a single integrative setting in Rome, Italy. A total of 57 patients were included, and the majority had advanced-stage cancer. All of them underwent integrative therapy with nutrition and phytotherapy indications. The diet was designed to reduce most of possible factors promoting cancer proliferation, inflammation, and obesity. Foods with anti-inflammatory, prebiotic, antioxidant, and anticancer properties had been chosen. Herbal supplements with known effects on lung cancer were prescribed. In particular, astragal, apigenine, fucosterol, polydatin, epigallocatechin gallate, cannabis, curcumin, and inositol were used. Furthermore, medical mushrooms and other substances were used to improve the immune system and to reduce chemotherapy side effects. Five key parameters have been evaluated for 2 years starting at the first surgery: nutritional status, immune status, discontinuation of therapy, quality of life, and prognosis of the disease.
Results A relevant improvement in parameters relative to nutritional status, immune status, and quality of life has been observed after integrative therapy compared with the same parameters at the first medical visit before starting such approach.
Conclusion The results suggest that integrative therapy may have benefits in patients with lung cancer. Even though there are limitations, the study suggests that integrative therapy could improve nutritional status and quality of life, with possible positive effect on overall survival.
Collapse
Affiliation(s)
- Lorenzo Anelli
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| | | | - Massimo Bonucci
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| |
Collapse
|
26
|
Zi Shen Decoction Inhibits Growth and Metastasis of Lung Cancer via Regulating the AKT/GSK-3 β/ β-Catenin Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685282. [PMID: 33777320 PMCID: PMC7969097 DOI: 10.1155/2021/6685282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become the leading cause of cancer-related death worldwide. Oxidative stress plays important roles in the pathogenesis of lung cancer. Many natural products show antioxidative activities in cancer treatment. Zi Shen decoction (ZSD) is a classic prescription for the treatment of lung disease. However, its effect on lung cancer lacks evidence-based efficacy. In this study, we investigated the anticancer effects of ZSD on lung cancer in vivo and in vitro. Our results showed that oral administration of ZSD suppressed the Lewis lung cancer (LLC) growth in a subcutaneous allograft model and promoted necrosis and inflammatory cell infiltration in the tumor tissues. Furthermore, ZSD not only inhibited tumor cell proliferation and migration but also induced cell apoptosis in lung cancer cells. PI3K/AKT signaling is well characterized in response to oxidative stress. The bioinformatics analysis and western blot assays suggested that ZSD decreased the enzyme activity of PI3K and AKT in vivo and in vitro. We also found that the AKT/GSK-3β/β-catenin pathway medicated anticancer effect of ZSD in lung cancer cells. In conclusion, we demonstrate for the first time that ZSD possesses antitumor properties, highlighting its potential use as an alternative strategy or adjuvant treatment for lung cancer therapy.
Collapse
|
27
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside‑IV in cancer therapy (Review). Int J Mol Med 2021; 47:13. [PMID: 33448320 PMCID: PMC7834967 DOI: 10.3892/ijmm.2021.4846] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Radix Astragali (RA) is widely used in traditional Chinese medicine (TCM), and astragaloside IV (AS-IV) is the most critical component of RA. Previous studies have demonstrated that AS-IV exerts effects on the myocardium, nervous system and endocrine system, among others. In the present review article, data from studies conducted over the past 20 years were collated, which have evaluated the effects of AS-IV on tumors. The mechanisms of action of AS-IV on malignant cells both in vivo and in vitro were summarized and it was demonstrated that AS-IV plays a vital role, particularly in inhibiting tumor growth and metastasis, promoting the apoptosis of tumor cells, enhancing immune function and preventing drug resistance. Moreover, AS-IV controls several epithelial-mesenchymal transformation (EMT)-related and autophagy-related pathways, such as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin, mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK) and transforming growth factor-β (TGF-β)/SMAD signaling pathways, which are commonly affected in the majority of tumors. The present review provides new perspectives on the functions of AS-IV and its role as an adjuvant treatment in cancer chemotherapy.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| |
Collapse
|
29
|
Astragaloside IV Enhances Melanogenesis via the AhR-Dependent AKT/GSK-3 β/ β-Catenin Pathway in Normal Human Epidermal Melanocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8838656. [PMID: 33381211 PMCID: PMC7755484 DOI: 10.1155/2020/8838656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
Astragalus membranaceus root has been widely used for repigmentation treatment in vitiligo, but its mechanism is poorly understood. We sought to investigate the effect of astragaloside IV (AS-IV), a main active extract of the Astragalus membranaceus root, on melanin synthesis in normal human epidermal melanocytes (NHEMs) and to elucidate its underlying mechanisms. Melanin content, tyrosinase activity, qPCR, western blot, and immunofluorescence were employed. Specific inhibitors and small interfering RNA were used to investigate the possible pathway. AS-IV stimulated melanin synthesis and upregulated the expression of melanogenesis-related genes in a concentration-dependent manner in NHEMs. AS-IV could activate the aryl hydrocarbon receptor (AhR), and AS-IV-induced melanogenesis was inhibited in si-AhR-transfected NHEMs. In addition, we showed that AS-IV enhanced the phosphorylation of AKT and GSK-3β and nuclear translocation of β-catenin. AS-IV-induced MITF expression upregulation and melanin synthesis were decreased in the presence of β-catenin inhibitor FH353. Furthermore, AhR antagonist CH223191 inhibited the activation of AKT/GSK-3β/β-catenin signaling, whereas the expression of CYP1A1 (marker of AhR activation) was not affected by the AKT inhibitor in AS-IV-exposed NHEMs. Our findings show that AS-IV induces melanogenesis through AhR-dependent AKT/GSK-3β/β-catenin pathway activation and could be beneficial in the therapy for depigmented skin disorders.
Collapse
|
30
|
Chen L, Xu M, Zhong W, Hu Y, Wang G. Knockdown of DDX46 suppresses the proliferation and invasion of gastric cancer through inactivating Akt/GSK-3β/β-catenin pathway. Exp Cell Res 2020; 399:112448. [PMID: 33347858 DOI: 10.1016/j.yexcr.2020.112448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicase 46 (DDX46) has recently been identified as a candidate oncogene in several types of human malignancies. To date, the role of DDX46 in gastric cancer has not been determined. The purpose of the current study was to explore the role of DDX46 in gastric cancer and the potential mechanism. DDX46-silecing or overexpressing gastric cancer cell lines were established to validate the role of DDX46. Our results showed that the expression of DDX46 was significantly increased in gastric cancer tissues and cell lines. Knockdown of DDX46 suppressed the proliferation and invasion of gastric cancer cells. Whereas, DDX46 overexpression enhanced the cell proliferation and invasion of gastric cancer cells. Furthermore, knockdown of DDX46 markedly suppressed the tumor growth of xenografts. Research into the mechanism revealed that DDX46 depletion inhibited the Akt/GSK-3β/β-catenin signaling pathway in gastric cancer cells. Notably, activation of Akt or β-catenin overexpression reversed the DDX46 depletion-mediated anti-cancer effect. In conclusion, these findings indicated that DDX46 exerted an oncogenic role in gastric cancer via regulating the Akt/GSK-3β/β-catenin signaling pathway. Thus, DDX46 might be utilized as a therapeutic anti-cancer target.
Collapse
Affiliation(s)
- Lihong Chen
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Xu
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenting Zhong
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yinghui Hu
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
31
|
Li X, Lin D, Chen Y, Jin H, Ni Z, Huang H. Nano-biological mesh constructed by astragaloside-IV-induced bone marrow mesenchymal stem cells on PLGA-NPs-SIS can be used for abdominal wall reconstruction. Am J Transl Res 2020; 12:7079-7095. [PMID: 33312352 PMCID: PMC7724334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
A combination of stem cells, scaffold materials, nanoparticles (NPs), and physiological factors can be used to engineer a tissue that can replace or improve the function of the damaged tissue. This study was designed to assess whether astragaloside (aS)-IV-activated rat bonemarrow-derived mesenchymal stem cells (BMSCs), seeded on a nano-biological mesh composed of small intestinal submucosa (SIS) modified with poly (D,L-lactide-co-glycolide) NPs (PLGA-NPs-SIS), can promote cell engraftment, proliferation, and mesh incorporation into the tissue upon implantation. aS-IV-induced BMSCs cultured with PLGA-NPs-SIS showed enhanced viability and proliferation as well as reduced apoptosis. Vascular endothelial growth factor, type I and II collagen, and monocyte chemoattractant protein-1 were upregulated, whereas matrix metalloproteinase and interleukin-6 were downregulated in these BMSCs. Pre-seeded BMSCs induced with aS-IV engrafted in a rat abdominal wall defect model showed migratory and proliferative capacities while enhancing vascularity at the musculofascial/graft interface. These findings imply that the nano-biological mesh composed of aS-IV-induced BMSCs seeded on PLGA-NPs-SIS can be used for abdominal wall reconstruction.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| | - Da Lin
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| | - Yaqian Chen
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| | - Haimin Jin
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| | - Zhongkai Ni
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| | - Hai Huang
- Department of General Surgery, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310007, Zhejiang Provincial, China
| |
Collapse
|
32
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X, Gao C. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 2020; 6:74. [PMID: 32818074 PMCID: PMC7417740 DOI: 10.1038/s41420-020-00298-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the exact effect of IL-17 on regulating neural stem cells (NSCs) stemness and adult neurogenesis in ischemic cortex after stroke, how Astragaloside IV(As-IV) regulated IL-17 expression and the underlying mechanism. Photochemical brain ischemia model was established and IL-17 protein expression was observed at different time after stroke in WT mice. At 3 days after stroke, when IL-17 expression peaked, IL-17 knock out (KO) mice were used to observe cell proliferation and neurogenesis in ischemic cortex. Then, As-IV was administered intravenously to assess cell apoptosis, proliferation, neurogenesis, and cognitive deficits by immunochemistry staining, western blots, and animal behavior tests in WT mice. Furthermore, IL-17 KO mice and As-IV were used simultaneously to evaluate the mechanism of cell apoptosis and proliferation after stroke in vivo. Besides, in vitro, As-IV and recombinant mouse IL-17A was administered, respectively, into NSCs culture, and then their diameters, viable cell proliferation and pathway relevant protein was assessed. The results showed knocking out IL-17 contributed to regulating PI3K/Akt pathway, promoting NSCs proliferation, and neurogenesis after ischemic stroke. Moreover, As-IV treatment helped inhibit neural apoptosis, promote the neurogenesis and eventually relieve mice anxiety after stroke. Unsurprisingly, IL-17 protein expression could be downregulated by As-IV in vivo and in vitro and they exerted antagonistic effect on neurogenesis by regulating Akt/GSK-3β pathway, with significant regulation for apoptosis. In conclusion, IL-17 exerts negative effect on promoting NSCs proliferation, neurogenesis and cognitive deficits after ischemic stroke, which could be reversed by As-IV.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Hai Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, 710032 Xi’an, Shaanxi Province China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wei Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| |
Collapse
|
33
|
Zong S, Tang Y, Li W, Han S, Shi Q, Ruan X, Hou F. A Chinese Herbal Formula Suppresses Colorectal Cancer Migration and Vasculogenic Mimicry Through ROS/HIF-1 α/MMP2 Pathway in Hypoxic Microenvironment. Front Pharmacol 2020; 11:705. [PMID: 32499699 PMCID: PMC7242742 DOI: 10.3389/fphar.2020.00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Various malignant tumors, including colorectal cancer, have the ability to form functional blood vessels for tumor growth and metastasis. Vasculogenic mimicry (VM) refers to the ability of highly invasive tumor cells to link each other to form vessels, which is associated with poor cancer prognosis. However, the antitumor VM agents are still lacking in the clinic. Astragalus Atractylodes mixture (AAM), a traditional Chinese medicine, has shown to inhibit VM formation; however the exact mechanism is not completely clarified. In this study, we found that HCT-116 and LoVo could form a VM network. Additionally, hypoxia increases the intracellular reactive oxygen species (ROS) level and accelerates migration, VM formation in colorectal cancer cells, while N-Acetylcysteine (NAC) could reverse these phenomena. Notably, further mechanical exploration confirmed that the matrix metalloprotease 2 (MMP2) induction is ROS dependent under hypoxic condition. On the basis, we found that AAM could effectively inhibit hypoxia-induced ROS generation, migration, VM formation as well as HIF-1α and MMP2 expression. In vivo, AAM significantly inhibits metastasis of colorectal cancer in murine lung-metastasis model. Taken together, these results verified that AAM effectively inhibits migration and VM formation by suppressing ROS/HIF-1α/MMP2 pathway in colorectal cancer under hypoxic condition, suggesting AAM could serve as a therapeutic agent to inhibit VM formation in human colorectal cancer.
Collapse
Affiliation(s)
- Shaoqi Zong
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Tang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Susu Han
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Ruan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Xia C, He Z, Cai Y. Quantitative proteomics analysis of differentially expressed proteins induced by astragaloside IV in cervical cancer cell invasion. Cell Mol Biol Lett 2020; 25:25. [PMID: 32265995 PMCID: PMC7110762 DOI: 10.1186/s11658-020-00218-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cervical cancer remains the second leading cause of mortality in women in developing countries. While surgery, chemotherapy, radiotherapy, and vaccine therapy are being applied for its treatment, individually or in combination, the survival rate in advanced cervical cancer patients is still very low. Traditional Chinese medicine has been found to be effective in the treatment of cervical cancer. Astragaloside IV (AS-IV), a compound belonging to Astragalus polysaccharides, shows anticancer activity through several cell signaling pathways. However, the detailed molecular mechanism governing the anticancer activity of AS-IV remains unknown. Material and methods In our study, we performed tumor xenograft analysis, transwell cell migration and invasion assay, Western blot analysis, and iTRAQ combination by parallel reaction monitoring (PRM) analysis to study the molecular mechanism of AS-IV in the suppression of cervical cancer cell invasion. Results Our results showed that AS-IV suppressed cervical cancer cell invasion and induced autophagy in them, with the tumor growth curve increasing slowly. We also identified 32 proteins that were differentially expressed in the SiHa cells when treated with AS-IV, with 16 of them involved in the upregulation and 16 in the downregulation of these cells. These differentially expressed proteins, which were predominantly actin–myosin complexes, controlled cell proliferation and cell development by steroid binding and altering the composition of the cell cytoskeleton. DCP1A and TMSB4X, the two proteins regulating autophagy, increased in cervical cancer cells when treated with AS-IV. Conclusions We conclude that AS-IV could inhibit cervical cancer invasion by inducing autophagy in cervical cancer cells. Since iTRAQ combination by PRM has been observed to be useful in identifying macromolecular target compounds, it may be considered as a novel strategy in the screening of anticancer compounds used in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- 1Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renmin Xi Street, Foshan, 528000 China
| | - Zhihong He
- 1Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renmin Xi Street, Foshan, 528000 China
| | - Yantao Cai
- 2Department of Dermatology and Pheumatology, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renmin Xi Street, Foshan, 528000 China
| |
Collapse
|
35
|
Zeng B, Ge C, Li R, Zhang Z, Fu Q, Li Z, Lin Z, Liu L, Xue Y, Xu Y, He J, Guo H, Li C, Huang W, Song X, Huang Y. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed Pharmacother 2020; 121:109562. [DOI: 10.1016/j.biopha.2019.109562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
|
36
|
Chemical Discrimination of Astragalus mongholicus and Astragalus membranaceus Based on Metabolomics Using UHPLC-ESI-Q-TOF-MS/MS Approach. Molecules 2019; 24:molecules24224064. [PMID: 31717584 PMCID: PMC6891664 DOI: 10.3390/molecules24224064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.
Collapse
|
37
|
Jiang Z, Mao Z. Astragaloside IV (AS-IV) alleviates the malignant biological behavior of hepatocellular carcinoma via Wnt/β-catenin signaling pathway. RSC Adv 2019; 9:35473-35482. [PMID: 35528074 PMCID: PMC9074712 DOI: 10.1039/c9ra05933d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Astragaloside IV (AS-IV) is an active substance isolated from Astragalus membranaceus (Fisch.) Bungede, which has been shown to have pharmacological effects in a variety of cancers. However, the effects of AS-IV in hepatocellular carcinoma (HCC) and its related mechanisms have been poorly understood. In this study, we explored the roles of AS-IV on HCC and the underlying signaling pathway. We reported that the appropriate concentrations of AS-IV (25, 50, 100 nmol l-1) significantly suppressed the proliferation and cell cycle of HepG2 and Hep3B cell lines whilst promoting apoptosis. Besides, a trans-well and wound healing assay showed that AS-IV could markedly inhibit the migration and invasion of HepG2 and Hep3B cells, the expression of E-cadherin was up-regulation but the expression of N-cadherin and vimentin was down-regulation, and the protein levels of cleaved-caspase-3, 9 were increased markedly compared with the corresponding control. Furthermore, animal model treatment revealed that AS-IV could effectively reduce tumor formation. Moreover, AS-IV also significantly weakened the expression of Wnt, β-catenin and TCF-4 in vitro and in vivo. Taken together, these results suggested that AS-IV inhibited the biological processes of HCC via regulating of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- ZhongYu Jiang
- Department of Cancer Center, Zhejiang Quhua Hospital Quzhou City Zhejiang Province 324004 China
| | - Zhen Mao
- Department of Traditional Chinese Medicine, Gansu Provincial Hospital No. 204, Donggang West Road, Chengguan District Lanzhou City Gansu Province 730000 China
| |
Collapse
|
38
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
39
|
Park HJ, Park SH. Induction of Apoptosis by Ethyl Acetate Fraction of Astragalus membranaceus in Human Non-small Cell Lung Cancer Cells: - Apoptosis Induction by Astragalus membranaceus. J Pharmacopuncture 2018; 21:268-276. [PMID: 30652053 PMCID: PMC6333190 DOI: 10.3831/kpi.2018.21.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Objectives The purpose of this study is to investigate the anti-cancer effects of different fractions of Astragalus membranaceus (AM) in human non-small cell lung cancer (NSCLC) cells. Methods We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AM. The cell death was examined by MTT assay and trypan blue exclusion assay. Apoptosis was detected by DAPI staining, annexin V-PI double staining and cell cycle analysis. The expression of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) was examined by western blot. Results Among various fractions of AM, the ethyl acetate fraction of AM (EAM) showed the strongest cytotoxic effect in NSCLC cells. EAM reduced the cell proliferation in a time- and dose-dependent manner in NSCLC cells. In addition, EAM induced the chromatin condensation, and increased the population of sub-G1 phase and annexin V-positive cells in a time-dependent manner, indicating that EAM induced apoptosis in NSCLC cells. Consistently, EAM enhanced the expression of cleaved caspase-8 and -9, and induced the accumulation of cleaved- poly (ADP-ribose) polymerase (PARP). Among MAPK proteins, only ERK was dephosphorylated by EAM, suggesting that ERK might be related with EAM-induced apoptosis. Conclusion Our results clearly demonstrate that EAM exhibited anti-cancer effects in NSCLC cells by induction of apoptosis. We provide a valuable evidence which suggests that AM could be a desirable therapeutic option for treatment of NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Departments of Pathology, College of Korean Medicine, Dong-eui University, Busan, Korea
| | - Shin-Hyung Park
- Departments of Pathology, College of Korean Medicine, Dong-eui University, Busan, Korea
| |
Collapse
|