1
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
2
|
Wang B, Zhong JL, Jiang N, Shang J, Wu B, Chen YF, Lu HD. Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue. Comb Chem High Throughput Screen 2022; 25:53-63. [PMID: 33292128 DOI: 10.2174/1386207323666201207100905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA. METHODS The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA. RESULTS We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA. CONCLUSION In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| |
Collapse
|
3
|
Han J, Yu X, Wang S, Wang Y, Liu Q, Xu H, Wang X. IGF2BP2 Induces U251 Glioblastoma Cell Chemoresistance by Inhibiting FOXO1-Mediated PID1 Expression Through Stabilizing lncRNA DANCR. Front Cell Dev Biol 2022; 9:659228. [PMID: 35141227 PMCID: PMC8819069 DOI: 10.3389/fcell.2021.659228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma is the most common type of malignant tumor of the nervous system and is characterized by high mortality and poor outcome. This study aims to investigate the mechanism underlying IGF2 mRNA-binding protein 2 (IGF2BP2) and long noncoding RNA DANCR in etoposide resistance of glioblastoma (GBM) cells. Bioinformatics analysis identified the IGF2BP2-related regulators and DANCR target genes, which were subsequently evaluated by RNA pull-down and RIP assays. We exposed GBM cells to etoposide and thus established etoposide-resistant cells. Through functional experiments, we evaluated the interrelationship among IGF2BP2, DANCR, phosphotyrosine interaction domain containing 1 (PID1), and forkhead box protein O1 (FOXO1) and further assessed their impact on the sensitivity of GBM cells to etoposide. IGF2BP2 and DANCR were highly expressed in glioma cells and tissues, whereas PID1 and FOXO1 were poorly expressed. Mechanistically, overexpression of IGF2BP2 promoted DANCR stability and reduced DANCR methylation, whereas silencing of IGF2BP2 reduced survival of GBM cells and etoposide-resistant cells. Besides, DANCR interacted with FOXO1 to promote the ubiquitination of FOXO1. FOXO1 promoted the transcriptional expression of PID1, enhancing the chemotherapy sensitivity of GBM cells, but overexpression of PID1 reversed the impact of IGF2BP2. Collectively, IGF2BP2 inhibits PID1 expression through the DANCR/FOXO1 axis, inducing drug resistance in GBM cells, and promoting glioma progression.
Collapse
Affiliation(s)
- Junfei Han
- Department of Neurosurgery, Huizhou Third People’s Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qikun Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Wang
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, China
- Department of Neurosurgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
- *Correspondence: Xiaosong Wang,
| |
Collapse
|
4
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Anti-tumor Activity of Propofol: A Focus on MicroRNAs. Curr Cancer Drug Targets 2021; 20:104-114. [PMID: 31657687 DOI: 10.2174/1568009619666191023100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are endogenous, short, non-coding RNAs with the length as low as 20 to 25 nucleotides. These RNAs are able to negatively affect the gene expression at the post-transcriptional level. It has been demonstrated that microRNAs play a significant role in cell proliferation, cell migration, cell death, cell differentiation, infection, immune response, and metabolism. Besides, the dysfunction of microRNAs has been observed in a variety of cancers. So, modulation of microRNAs is of interest in the treatment of disorders. OBJECTIVE The aim of the current review is to investigate the modulatory effect of propofol on microRNAs in cancer therapy. METHODS This review was performed at PubMed, SCOPUS and Web of Science data-bases using keywords "propofol', "microRNA", "cancer therapy", "propofol + microRNA" and "propofol + miR". RESULTS It was found that propofol dually down-regulates/upregulates microRNAs to exert its antitumor activity. In terms of oncogenesis microRNAs, propofol exert an inhibitory effect, while propofol significantly enhances the expression of oncosuppressor microRNAs. CONCLUSION It seems that propofol is a potential modulator of microRNAs and this capability can be used in the treatment of various cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Wang Z, Zhang X, Wang Y, Xiao D. Dysregulation of miR-374a is involved in the progression of diabetic retinopathy and regulates the proliferation and migration of retinal microvascular endothelial cells. Clin Exp Optom 2021; 105:287-292. [PMID: 33941051 DOI: 10.1080/08164622.2021.1913043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clinical relevance: microRNAs (miRNAs) have been reported to be involved in the progression of various diseases.Background: This study evaluated the expression and clinical value of miR-374a in diabetic retinopathy (DR) patients and analysed the effects of miR-374a on the progression of DR.Methods: Subjects were divided into four groups: healthy control, type 2 diabetes mellitus without DR (NDR), proliferation DR (PDR) and non-proliferation DR (NPDR). Real-time polymerase chain reaction (qRT-PCR) was detected in the serum miR-374a levels of the subjects. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of miR-374a in DR patients. Pearson correlation was used to analyse the correlation between miRNA and clinical indicators of patients. High glucose (HG) in treatment of human retinal microvascular endothelial cells (HRMECs). The effects of miR-374a on cell proliferation and migration induced by HG were detected.Results: Serum miR-374a was progressively accelerated in patients with NDR, NPDR and PDR than in healthy controls. Moreover, miR-374a can significantly distinguish between NDR and DR patients. Among DR patients, miR-374a can differentiate PDR patients from NPDR patients. Serum miR-374a was positively correlated with diabetes duration, fasting plasma glucose (FPG), glycosylated haemoglobin (HbA1c), and homoeostasis model assessment of insulin resistance (HOMA-IR) in DR patients. HG-induced proliferation and migration of HRMECs was inhibited by reduction of miR-374a.Conclusion: Dysregulation of miR-374a is involved in the progression of DR and serves a regulatory role in retinal, which can be used as a promising diagnostic biomarker for DR.
Collapse
Affiliation(s)
- Zhanhong Wang
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, Shandong, China
| | - Xiao Zhang
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, Shandong, China
| | | | - Dailing Xiao
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, Shandong, China
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
7
|
Chen YQ, Yang X, Xu W, Yan Y, Chen XM, Huang ZQ. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis. IUBMB Life 2020; 73:273-285. [PMID: 33296140 DOI: 10.1002/iub.2428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury greatly contributes to myocardial tissue damage in patients with coronary disease, which eventually leads to heart failure. Long noncoding RNAs (lncRNAs) have an emerging role in the process of myocardial I/R injury. Our previous work revealed the protective role of miR-374a-5p against myocardial I/R injury. In this study, we explored the role of lncRNA TTTY15 and its potential interaction mechanisms with miR-374a-5p in myocardial I/R injury. The expression of TTTY15 was increased both in vitro and in vivo after myocardial I/R injury models according to quantitative real-time polymerase chain reaction. Various assays were conducted to evaluate the regulatory relationship among TTTY15, miR-374a-5p, FOXO1, and autophagy in H9c2 and HL-1 cells. The results showed that TTTY15 suppresses autophagy and myocardial I/R injury by targeting miR-374a-5p. We found that TTTY15 regulates miR-374a-5p, thus affecting FOXO1 expression and autophagy in myocytes during I/R. Furthermore, in an in vivo mouse model of myocardial I/R injury, suppression of TTTY15 successfully alleviated myocardial I/R injury. Our results reveal a novel feedback mechanism in which TTTY15 regulates miRNA processing and a potential target in myocardial I/R injury. TTTY15 is a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Yong-Quan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xin Yang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wei Xu
- Department of Cardiology, Huadu District People's Hospital of Guangzhou, Guangzhou, PR China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xi-Ming Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Zhao-Qi Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
8
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
9
|
Wang C, Qiu J, Chen S, Li Y, Hu H, Cai Y, Hou L. Prognostic model and nomogram construction based on autophagy signatures in lower grade glioma. J Cell Physiol 2020; 236:235-248. [PMID: 32519365 DOI: 10.1002/jcp.29837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
The median survival time of lower grade glioma (LGG) tumors spans a wide range of 2-10 years and is highly dependent on the molecular characteristics and tumor location. Currently, there is no prognostic predictor for these tumors based on autophagy-related (ATG) genes. A prognostic risk score model based on the most significant seven ATG genes was established for LGG. These seven genes, including GRID2, FOXO1, MYC, PTK6, IKBKE, BIRC5, and TP73, have been screened as potentially therapeutic targets. The Kaplan-Meier survival curve analyses validated that patients with high or low risk scores had significantly different overall survival. Following the multivariate Cox regression and area under the ROC curve (AUC) analysis, a final prognostic model based on age, World Health Organization grade, 1p19q-codeletion status, and ATG risk score was performed as an independent prognostic indicator (training set: p = 4.09E-05, AUC = 0.901; validation set-1: p = .00069, AUC = 0.808; validation set-2: p = .0376, AUC = 0.830). Subsequently, a prognostic nomogram was constructed for individualized survival prediction. The calibration plots showed excellent predict efficiency between probability and actual overall survival. In this study, we provided several potential biomarkers for further developing potentially therapeutic targets of LGG. We also established a prognostic model and nomogram to improve the clinical glioma management and assist individualized survival prediction.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiting Qiu
- Department of Neurosurgery, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sarah Chen
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ying Li
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|