1
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2024:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Hou J, Li Y, Xing H, Cao R, Jin X, Xu J, Guo Y. Effusanin B Inhibits Lung Cancer by Prompting Apoptosis and Inhibiting Angiogenesis. Molecules 2023; 28:7682. [PMID: 38067413 PMCID: PMC10707445 DOI: 10.3390/molecules28237682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the deadliest human diseases, causing high rates of illness and death. Lung cancer has the highest mortality rate among all malignancies worldwide. Effusanin B, a diterpenoid derived from Isodon serra, showed therapeutic potential in treating non-small-cell lung cancer (NSCLC). Further research on the mechanism indicated that effusanin B inhibited the proliferation and migration of A549 cells both in vivo and in vitro. The in vitro activity assay demonstrated that effusanin B exhibited significant anticancer activity. Effusanin B induced apoptosis, promoted cell cycle arrest, increased the production of reactive oxygen species (ROS), and altered the mitochondrial membrane potential (MMP). Based on mechanistic studies, effusanin B was found to inhibit the proliferation and migration of A549 cells by affecting the signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) pathways. Moreover, effusanin B inhibited tumor growth and spread in a zebrafish xenograft model and demonstrated anti-angiogenic effects in a transgenic zebrafish model.
Collapse
Affiliation(s)
- Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Xiaomeng Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Bian Y, Bi G, Shan G, Liang J, Yao G, Sui Q, Hu Z, Zhan C, Chen Z, Wang Q. Identification of the relationship between single-cell N6-methyladenosine regulators and the infiltrating immune cells in esophageal carcinoma. Heliyon 2023; 9:e18132. [PMID: 37529341 PMCID: PMC10388170 DOI: 10.1016/j.heliyon.2023.e18132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Background N6-methyladenosine (m6A) RNA methylation plays a crucial role in important genomic processes in a variety of malignancies. However, the characterization of m6A with infiltrating immune cells in the tumor microenvironment (TME) in esophageal squamous carcinoma (ESCC) remains unknown. Methods The single-cell transcriptome data from five ESCC patients in our hospital were analyzed, and TME clusters associated with prognosis and immune checkpoint genes were investigated. Cell isolation and qPCR were conducted to validate the gene characterization in different cells. Results According to distinct biological processes and marker genes, macrophages, T cells, and B cells clustered into three to four different subgroups. In addition, we demonstrated that m6A RNA methylation regulators were strongly related to the clinical and biological features of ESCC. Analysis of transcriptome data revealed that m6A-mediated TME cell subsets had high predictive value and showed a close relationship with immune checkpoint genes. The validation results from qPCR demonstrated the characteristics of essential genes. CellChat analysis revealed that RNA from TME cells m6A methylation-associated cell subtypes had substantial and diversified interactions with cancer cells. Further investigation revealed that MIF- (CD74+CXCR4) and MIF- (CD74+CD44) ligand-receptor pairings facilitated communication between m6A-associated subtypes of TME cells and cancer cells. Conclusion Overall, our study demonstrated for the first time the function of m6A methylation-mediated intercellular communication in the microenvironment of tumors in controlling tumor development and anti-tumor immune regulation in ESCC.
Collapse
|
6
|
AbdulHussein AH, Al-Taee MM, Radih ZA, Aljuboory DS, Mohammed ZQ, Hashesh TS, Riadi Y, Hadrawi SK, Najafi M. Mechanisms of cancer cell death induction by triptolide. Biofactors 2023; 49:718-735. [PMID: 36876465 DOI: 10.1002/biof.1944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salema K Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Chen N, Li P, Liu L, Zhang J, Cao Z, Chen Z, Xu X, Ma G, Huo X. Cucurbitacin IIb Extracted from Hemsleya penxianensis Induces Cell Cycle Arrest and Apoptosis in Bladder Cancer Cells by Regulating Cell Cycle Checkpoints and Mitochondrial Apoptotic Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01058-6. [PMID: 37086373 DOI: 10.1007/s11130-023-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 04/23/2023]
Abstract
Cucurbitacin IIb (CuIIb) extracted from Hemsleya penxianensis has been demonstrated anticancer activity in many malignancies, however, its effect against bladder cancer cells and the molecular mechanism remains unclear. Accordingly, in the present study, we evaluated the effect and further the underlying mechanism of CuIIb on bladder cancer cells. Cell viability and clonogenicity were examined to evaluate growth suppressive effect of CuIIb, alongside mechanism exploration was conducted based on RNA sequencing (RNA-seq). The results showed that CuIIb exposure inhibited the growth of T24 and UM-UC-3 bladder cancer cells as indicated by its obvious suppression on cell viability and clonogenicity. Mechanistic studies by RNA-seq and quantifying analysis of RNA-seq data by TMNP indicated cell cycle modulated by cell cycle checkpoints and apoptosis mediated by PI3K/Akt pathway might account for the anticancer activity of CuIIb. Consistently, results of flow cytometry and AO/EB staining demonstrated that the growth-suppressive effect of CuIIb was mediated by cell cycle arrest in G2/M phase and robust induction of cell apoptosis, which was further confirmed by immunoblotting and mitochondrial membrane potential (ΔΨm) analysis. Collectively, the results presented herein indicated that CuIIb exhibited anticancer activity on bladder cancer which may be a potential candidate for improving bladder cancer outcomes.
Collapse
Affiliation(s)
- Nan Chen
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Peng Li
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Litao Liu
- Department of General Surgery, Affiliated Hospital of Hebei University, Baoding, 071002, China
| | - Jun Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Zepeng Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ziwen Chen
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Xiaowei Huo
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
9
|
Cheng T, Shan G, Yang H, Gu J, Lu C, Xu F, Ge D. Development of a ferroptosis-based model to predict prognosis, tumor microenvironment, and drug response for lung adenocarcinoma with weighted genes co-expression network analysis. Front Pharmacol 2022; 13:1072589. [PMID: 36467089 PMCID: PMC9712758 DOI: 10.3389/fphar.2022.1072589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 08/17/2023] Open
Abstract
Objective: The goal of this study was to create a risk model based on the ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients' prognosis and to investigate the potential underlying mechanisms. Material and Methods: A cohort of 482 LUAD patients from the TCGA database was used to develop the prognostic model. We picked the module genes from the ferroptosis gene set using weighted genes co-expression network analysis (WGCNA). The least absolute shrinkage and selection operator (LASSO) and univariate cox regression were used to screen the hub genes. Finally, the multivariate Cox analysis constructed a risk prediction score model. Three other cohorts of LUAD patients from the GEO database were included to validate the prediction ability of our model. Furthermore, the differentially expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed. Results: An eight-gene-based prognostic model, including PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients from the TCGA database were classified into the high-RS and low-RS groups. The high-RS group was characterized by poor overall survival (OS) and less immune infiltration. Based on clinical traits, we separated the patients into various subgroups, and RS had remarkable prediction performance in each subgroup. The RS distribution analysis demonstrated that the RS was significantly associated with the stage of the LUAD patients. According to the study of immune cell infiltration in both groups, patients in the high-RS group had a lower abundance of immune cells, and less infiltration was associated with worse survival. Besides, we discovered that the high-RS group might not respond well to immune checkpoint inhibitors when we analyzed the gene expression of immune checkpoints. However, drug sensitivity analysis suggested that high-RS groups were more sensitive to common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib. Conclusion: We constructed a novel and reliable ferroptosis-related model for LUAD patients, which was associated with prognosis, immune cell infiltration, and drug sensitivity, aiming to shed new light on the cancer biology and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chen X, He Q, Zeng S, Xu Z. Upregulation of nuclear division cycle 80 contributes to therapeutic resistance via the promotion of autophagy-related protein-7-dependent autophagy in lung cancer. Front Pharmacol 2022; 13:985601. [PMID: 36105209 PMCID: PMC9465246 DOI: 10.3389/fphar.2022.985601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer remains the leading cause of malignant mortality worldwide. Hence, the discovery of novel targets that can improve therapeutic effects in lung cancer patients is an urgent need. In this study, we screened differentially expressed genes using isobaric tags for relative and absolute quantitation (iTRAQ) analysis and datasets from the cancer genome atlas database, and found that nuclear division cycle 80 (NDC80) might act as a novel prognostic indicator of lung cancer. The expression of NDC80 was significantly increased in lung cancer tissues, as compared to normal tissues, and high expression levels of NDC80 were correlated with unfavorable survival rates. Furthermore, an in vitro analysis showed that the stable knockdown of NDC80 decreased the cell viability and increased therapeutic sensitivity in two lung cancer cell lines, A549-IRR and H1246-IRR. Moreover, gene set enrichment analysis results showed that NDC80 was enriched in autophagy-related pathways. The downregulation of NDC80 inhibited the formation of autophagosomes, and reduced the expression of autophagy-related proteins such as LC3II, Beclin-1, and p62 in lung cancer cells. To further clarify the role of NDC80 as a downstream regulator of autophagy, we validated autophagic mediators through iTRAQ analysis and real-time polymerase chain reaction arrays. Autophagy-related protein7 (ATG7) was observed to be downregulated after the knockdown of NDC80 in lung cancer cells. Immunohistochemistry assay results revealed that both NDC80 and ATG7 were upregulated in an array of lung adenocarcinoma samples, compared to normal tissues, and the expression of NDC80 was identified to be positively associated with the levels of ATG7. Our findings suggest that NDC80 promotes the development of lung cancer by regulating autophagy, and might serve as a potential target for increasing the therapeutic sensitivity of lung cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| | - Zhijie Xu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuangshuang Zeng, ; Zhijie Xu,
| |
Collapse
|
11
|
Sang C, Rao D, Wu C, Xia Y, Si M, Tang Z. Role of circular RNAs in the diagnosis, regulation of drug resistance and prognosis of lung cancer (Review). Oncol Lett 2022; 24:302. [PMID: 35949591 PMCID: PMC9353231 DOI: 10.3892/ol.2022.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors in China and is the highest cause of mortality among male and female patients, both in urban and rural areas. A subset of patients with lung cancer only display chest tightness without any other obvious symptoms. This is because most symptoms do not manifest during the early stages of disease development. Consequently, most patients with lung cancer are diagnosed when the disease is in the advanced stages, when they are already unfit for surgical treatment. Furthermore, the prognosis of patients with lung cancer is poor. The 5-year survival rate of patients with stage IA lung cancer is 85%, compared with 6% in those with stage IV. This requires the development of strategies for early diagnosis, treatment and prognosis to improve the management of lung cancer. Circular RNAs (circRNAs) belong to a class of closed circular non-coding RNAs formed by reverse splicing of a precursor mRNA. These RNAs are highly stable, ubiquitously expressed, conserved, and show high specificity. CircRNAs regulate biological processes, such as the proliferation, differentiation and invasion of lung cancer cells. Therefore, they can be used as biomarkers for the early diagnosis and prognosis prediction of lung cancer, as well as novel targets for therapy design. In the present review, the biological characteristics and functions of circRNAs, as well as their application in the diagnosis, control of drug resistance and effect on the prognosis of patients with lung cancer, will be discussed.
Collapse
Affiliation(s)
- Chengpeng Sang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Dingyu Rao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Caixia Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yao Xia
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Maoyan Si
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
12
|
Yang Q, Zhai X, Lv Y. A Bibliometric Analysis of Triptolide and the Recent Advances in Treating Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:878726. [PMID: 35721205 PMCID: PMC9198653 DOI: 10.3389/fphar.2022.878726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, natural products derived from plants and their derivatives have attracted great interest in the field of disease treatment. Triptolide is a tricyclic diterpene extracted from Tripterygium wilfordii, a traditional Chinese medicine, which has shown excellent therapeutic potential in the fields of immune inflammation and cancer treatment. In this study, 1,106 Web-of-Science-indexed manuscripts and 1,160 Chinese-National-Knowledge-Infrastructure-indexed manuscripts regarding triptolide published between 2011 and 2021 were analyzed, mapping the co-occurrence networks of keywords and clusters using CiteSpace software. The research frontier and development trend were determined by keyword frequency and cluster analysis, which can be used to predict the future research development of triptolide. Non-small cell lung cancer (NSCLC) is most common in lung cancer patients, accounting for about 80% of all lung cancer patients. New evidence suggests that triptolide effectively inhibits the development and metastasis of NSCLC by the induction of apoptosis, reversion of EMT, and regulation of gene expression. Specifically, it acts on NF-κB, MAPKs, P53, Wnt/β-catenin, and microRNAs (miRNAs), signaling pathways and molecular mechanisms. Consequently, this article reviews the research progress of the anti-NSCLC effect of triptolide. In addition, attenuated studies on triptolide and the potential of tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
| | | | - Yi Lv
- *Correspondence: Xuejia Zhai, ; Yi Lv,
| |
Collapse
|
13
|
Li L, He D, Guo Q, Zhang Z, Ru D, Wang L, Gong K, Liu F, Duan Y, Li H. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology 2022; 20:50. [PMID: 35078498 PMCID: PMC8787930 DOI: 10.1186/s12951-022-01264-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Background Although cisplatin-based chemotherapy has been used as the first-line treatment for ovarian cancer (OC), tumor cells develop resistance to cisplatin during treatment, causing poor prognosis in OC patients. Studies have demonstrated that overactivation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is involved in tumor chemoresistance and that overexpression of microRNA-497 (miR497) may overcome OC chemotherapy resistance by inhibiting the mTOR pathway. However, the low transcriptional efficiency and unstable chemical properties of miR497 limit its clinical application. Additionally, triptolide (TP) was confirmed to possess a superior killing effect on cisplatin-resistant cell lines, partially through inhibiting the mTOR pathway. Even so, the clinical applications of TP are restricted by serious systemic toxicity and weak water solubility. Results Herein, whether the combined application of miR497 and TP could further overcome OC chemoresistance by synergically suppressing the mTOR signaling pathway was investigated. Bioinspired hybrid nanoparticles formed by the fusion of CD47-expressing tumor exosomes and cRGD-modified liposomes (miR497/TP-HENPs) were prepared to codeliver miR497 and TP. In vitro results indicated that the nanoparticles were efficiently taken up by tumor cells, thus significantly enhancing tumor cell apoptosis. Similarly, the hybrid nanoparticles were effectively enriched in the tumor areas and exerted significant anticancer activity without any negative effects in vivo. Mechanistically, they promoted dephosphorylation of the overactivated PI3K/AKT/mTOR signaling pathway, boosted reactive oxygen species (ROS) generation and upregulated the polarization of macrophages from M2 to M1 macrophages. Conclusion Overall, our findings may provide a translational strategy to overcome cisplatin-resistant OC and offer a potential solution for the treatment of other cisplatin-resistant tumors. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01264-5.
Collapse
|
14
|
Zhou S, Cai Y, Xu Z, Peng B, Liang Q, Peng J, Yan Y. Identification of a pyroptosis-related lncRNA signature in the regulation of prognosis, metabolism signals and immune infiltration in lung adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:964362. [PMID: 36034461 PMCID: PMC9401518 DOI: 10.3389/fendo.2022.964362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a cell death pathway that plays a significant role in lung adenocarcinoma (LUAD). Also, studies regarding the correlation between the expression of long non-coding RNAs (lncRNAs) and the mechanism of LUAD has aroused concern around the world. The purpose of this paper is to explore the underlying relationship of differentially expressed lncRNAs and pyroptosis-related genes. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression were applied to construct a prognostic risk score model from the TCGA database. A pyroptosis-related five-lncRNA signature (CRNDE, HHLA3, MIR193BHG, LINC00941, LINC01843) was considered to be correlated to the prognosis and immune response of LUAD patients. In addition, the cytological experiments revealed that aberrantly expressed HHLA3 displayed a proliferation promotion role in LUAD cells A549 and H460. Next, the forest and nomogram plots have shown this lncRNA signature could be served as an independent prognostic factor for LUAD. The ROC curves further identified the prognostic value of the five-lncRNA signature. The infiltration of immune cells, such as T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated and M0 macrophages were greatly different between the high-risk group and the low-risk group. It implicated that the signature is significantly effective in immunotherapy of LUAD patients. This study has supplied a novel pyroptosis-related lncRNA signature and provided a predictive model for prognosis and immune response of LUAD patients.
Collapse
Affiliation(s)
- Shuyi Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital Xingsha Branch (People’s Hospital of Changsha County), Hunan Normal University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Jinwu Peng,
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Jinwu Peng,
| |
Collapse
|
15
|
Pan-Cancer Analysis Reveals FH as a Potential Prognostic and Immunological Biomarker in Lung Adenocarcinoma. DISEASE MARKERS 2021; 2021:8554844. [PMID: 34737838 PMCID: PMC8563123 DOI: 10.1155/2021/8554844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Fumarate hydratase (FH) is an important enzymatic component in the tricarboxylic acid cycle. Studies have reported that FH plays an important role in hereditary leiomyomatosis and renal cell cancer (HLRCC). However, the role of FH in human different cancers remains unknown. This study is aimed at analyzing the prognostic value of FH and demonstrating the correlation between FH expression and tumor immunity. Results showed that FH was mutated or copy number varied in 27 types of cancer. FH mRNA was abnormally upregulated across various cancers. Survival analysis suggested high expression of FH was associated with poor prognosis in many cancer types, including lung adenocarcinoma (LUAD). Additionally, FH expression was associated with immune infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, especially in liver hepatocellular carcinoma (LIHC), LUAD, and lung squamous cell carcinoma (LUSC). Moreover, FH expression showed a strong correlation with immune checkpoint markers in LUAD and testicular germ cell tumors (TGCT). These results indicate that FH is an immunotherapeutic target and a potential prognostic biomarker in LUAD.
Collapse
|
16
|
Bian Y, Sui Q, Bi G, Zheng Y, Zhao M, Yao G, Xue L, Zhang Y, Fan H. Identification and Validation of a Proliferation-Associated Score Model Predicting Survival in Lung Adenocarcinomas. DISEASE MARKERS 2021; 2021:3219594. [PMID: 34721732 PMCID: PMC8554523 DOI: 10.1155/2021/3219594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023]
Abstract
AIM This study is aimed at building a risk model based on the genes that significantly altered the proliferation of lung adenocarcinoma cells and exploring the underlying mechanisms. METHODS The data of 60 lung adenocarcinoma cell lines in the Cancer Dependency Map (Depmap) were used to identify the genes whose knockout led to dramatical acceleration or deacceleration of cell proliferation. Then, univariate Cox regression was performed using the survival data of 497 patients with lung adenocarcinoma in The Cancer Genome Atlas (TCGA). The least absolute shrinkage and selection operator (LASSO) model was used to construct a risk prediction score model. Patients with lung adenocarcinoma from TCGA were classified into high- or low-risk groups based on the scores. The differences in clinicopathologic, genomic, and immune characteristics between the two groups were analyzed. The prognosis of the genes in the model was verified with immunohistochemical staining in 100 samples from the Department of Thoracic Surgery, Zhongshan Hospital, and the alteration in the proliferation rate was checked after these genes were knocked down in lung adenocarcinoma cells (A549 and H358). RESULTS A total of 55 genes were found to be significantly related to survival by combined methods, which were crucial to tumor progression in functional enrichment analysis. A six-gene-based risk prediction score, including the proteasome subunit beta type-6 (PSMB6), the heat shock protein family A member 9 (HSPA9), the deoxyuridine triphosphatase (DUT), the cyclin-dependent kinase 7 (CDK7), the polo-like kinases 1 (PLK1), and the folate receptor beta 2 (FOLR2), was built using the LASSO method. The high-risk group classified with the score model was characterized by poor overall survival (OS), immune infiltration, and relatively higher mutation load. A total of 9864 differentially expressed genes and 138 differentially expressed miRNAs were found between the two groups. Also, a nomogram comparing score model, age, and the stage was built to predict OS for patients with lung adenocarcinoma. Using immunohistochemistry, the expression levels of PSMB6, HSPA9, DUT, CDK7, and PLK1 were found to be higher in lung adenocarcinoma tissues of patients, while the expression of FOLR2 was low, which was consistent with survival prediction. The knockdown of PSMB6 and HSPA9 by siRNA significantly downregulated the proliferation of A549 and H358 cells. CONCLUSION The proposed score model may function as a promising risk prediction tool for patients with lung adenocarcinoma and provide insights into the molecular regulation mechanism of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Xue
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Qiu H, Zhang X, Yu H, Gao R, Shi J, Shen T. Identification of potential targets of triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics. Bioengineered 2021; 12:4304-4319. [PMID: 34348580 PMCID: PMC8806726 DOI: 10.1080/21655979.2021.1945522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify potential pharmacological targets of triptolide regulating the tumor microenvironment (TME) of stomach adenocarcinoma (STAD) patients. A total of 343 STAD cases from The Cancer Genome Atlas (TCGA) were assigned into high- or low-score groups applying Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE). Hub genes were identified from differentially expressed genes (DEGs) shared by stromal- and immune-related components in the TME of STAD patients using R software. Cox regression analysis was used to identify genes significantly correlated with STAD patient survival. Triptolide target genes were predicted from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Top 30 genes filtered by Cytohubba from 734 DEGs were screened as hub genes. Forty-two genes were found to be at high risk for STAD prognosis. Thirty-four targets of triptolide were predicted using the TCMSP database. Importantly, C-X-C chemokine receptor type 4 (CXCR4) was identified as a potential target of triptolide associated with the TME in STAD. Analysis of survival highlighted the association between CXCR4 upregulation with STAD progression and poor prognosis. Gene Set Enrichment Analysis (GSEA) confirmed that genes in the CXCR4- upregulated group had significant enrichment in immune-linked pathways. Additionally, triptolide targets were found to be significantly enriched in CXCR4-related chemokine and cancer-related p53 signaling pathways. Molecular docking demonstrated a high affinity between triptolide and CXCR4. In conclusion, CXCR4 may be a therapeutic target of triptolide in the treatment of STAD patients by modulating the TME.
Collapse
Affiliation(s)
- Hairong Qiu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianglong Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Antiproliferative effect of cryptotanshinone against human non-small cell lung cancer cells through inactivation of lncRNA HOTAIR /p-Akt signaling pathway. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Yang H, Qian H, Liu B, Wu Y, Cheng Y, Zheng X, Li X, Yang G, He T, Li S, Shen F. Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice. Biomed Pharmacother 2021; 139:111569. [PMID: 34243622 DOI: 10.1016/j.biopha.2021.111569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Alveolar hypercoagulation and fibrinolysis inhibition were associated with the refractory hypoxemia and the high mortality in patient with acute respiratory distress syndrome (ARDS), and NF-κB pathway was confirmed to contribute to the process. Triptolide (TP) significantly inhibited NF-κB pathway and thus depressed accessive inflammatory response in ARDS. We speculate that TP could improve alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS via NF-κB inactivation. PURPOSE The aim of this experiment was to explore the efficacy and potential mechanism of TP on alveolar hypercoagulation and fibrinolysis inhibition in LPS-induced ARDS in mice. METHODS 50 μl of LPS (5 mg/ml) was inhalationally given to C57BL/6 mice to set up ARDS model. Male mice were randomly accepted with LPS, LPS + TP (1 μg/kg, 10 μg/kg, 50 μg/kg respectively), or with NEMO Binding domain peptide (NBD), an inhibitor of NF-κB. TP (1 μg/kg, 10 μg/kg, 50 μg/kg) were intraperitoneally injected or 10 μg/50 μl of NBD solution were inhaled 30 min before LPS inhalation. A same volume of normal saline (NS) substituted for TP in mice in control. The endpoint of experiment was at 8 hours after LPS stimulation. Pulmonary tissues were taken for hematoxylin-eosin (HE) staining, wet / dry ratio and for lung injury scores (LIS). Tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 in lung tissue were detected by Western-blotting and by quantitative Real-time PCR(qPCR) respectively. Concentrations of TF, PAI-1, thrombin-antithrombin complex (TAT), procollagen peptide type Ⅲ (PⅢP) and activated protein C (APC) in bronchoalveolar lavage fluid (BALF) were measured by ELISA. NF-κB activation and p65-DNA binding activity in pulmonary tissue were simultaneously determined. RESULTS LPS stimulation resulted in pulmonary edema, neutrophils infiltration, obvious alveolar collapse, interstitial congestion, with high LIS, which were all dose-dependently ameliorated by Triptolide. LPS also dramatically promoted the expressions of TF and PAI-1 either in mRNA or in protein in lung tissue, and significantly stimulated the secretions of TF, PAI-1, TAT, PⅢP but inhibited APC production in BALF, which were all reversed by triptolide treatment in dose-dependent manner. TP dose-dependently inhibited the activation of NF-κB pathway induced by LPS, indicated by the changes of phosphorylations of p65 (p-p65), p-IKKα/β and p-IκBα, and weakened p65-DNA binding activity. TP and NBD had same efficacies either on alveolar hypercoagulation and fibrinolysis inhibition or on NF-κB signalling pathway in ARDS mice. CONCLUSIONS TP dose-dependently improves alveolar hypercoagulation and fibrinolysis inhibition in ARDS mice through inhibiting NF-κB signaling pathway. Our data demonstrate that TP is expected to be an effective selection in ARDS.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Hong Qian
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Bo Liu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yanqi Wu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yumei Cheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xinghao Zheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xiang Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Guixia Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Tianhui He
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Shuwen Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Feng Shen
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| |
Collapse
|
20
|
Yu H, Zhang Z. ALKBH5-mediated m6A demethylation of lncRNA RMRP plays an oncogenic role in lung adenocarcinoma. Mamm Genome 2021; 32:195-203. [PMID: 33934179 DOI: 10.1007/s00335-021-09872-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Lung adenocarcinomas are more common in non-smoking males and females. In this study, we investigated the function of long non-coding RNA RMRP in lung adenocarcinoma and further explore the regulatory role of ALKBH5 in lncRNA methylation. The results showed lncRNA RMRP expression was significantly enhanced in lung adenocarcinoma tissues, and is positively correlated with poor prognosis. RMRP knockdown in lung adenocarcinoma cell lines suppressed cell proliferation, migration and invasion, and promoted cell apoptosis. In addition, ALKBH5 upregulated RMRP expression via demethylation, and ALKBH5 knockdown inhibited the tumorigenesis of lung adenocarcinoma in vitro and vivo. Given these clear patterns, suppressing RMRP through ALKBH5 manipulation may represent a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 138 Yi xue yuan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yi xue yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 138 Yi xue yuan Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yi xue yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
21
|
Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother Pharmacol 2021; 88:1-14. [PMID: 33825035 DOI: 10.1007/s00280-021-04265-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.
Collapse
|
22
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
23
|
Chen D, Chen T, Guo Y, Wang C, Dong L, Lu C. Suppressive effect of platycodin D on bladder cancer through microRNA-129-5p-mediated PABPC1/PI3K/AKT axis inactivation. ACTA ACUST UNITED AC 2021; 54:e10222. [PMID: 33470388 PMCID: PMC7814303 DOI: 10.1590/1414-431x202010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Platycodin D (PD) is a major constituent of Platycodon grandiflorum and has multiple functions in disease control. This study focused on the function of PD in bladder cancer cell behaviors and the molecules involved. First, we administered PD to the bladder cancer cell lines T24 and 5637 and the human uroepithelial cell line SV-HUC-1. Cell viability and growth were evaluated using MTT, EdU, and colony formation assays, and cell apoptosis was determined using Hoechst 33342 staining and flow cytometry. The microRNAs (miRNAs) showing differential expression in cells before and after PD treatment were screened. Moreover, we altered the expression of miR-129-5p and PABPC1 to identify their functions in bladder cancer progression. We found that PD specifically inhibited the proliferation and promoted the apoptosis of bladder cancer cells; miR-129-5p was found to be partially responsible for the cancer-inhibiting properties of PD. PABPC1, a direct target of miR-129-5p, was abundantly expressed in T24 and 5637 cell lines and promoted cell proliferation and suppressed cell apoptosis. In addition, PABPC1 promoted the phosphorylation of PI3K and AKT in bladder cancer cells. Altogether, PD had a concentration-dependent suppressive effect on bladder cancer cell growth and was involved in the upregulation of miR-129-5p and the subsequent inhibition of PABPC1 and inactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Dayin Chen
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,Department of Urology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tingyu Chen
- School of Medicine, Huzhou University, Huzhou, Zhejiang, China
| | - Yingxue Guo
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chennan Wang
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Longxin Dong
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,School of Medicine, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
24
|
Chen SC, Diao YZ, Zhao ZH, Li XL. Inhibition of lncRNA PART1 Chemosensitizes Wild Type but Not KRAS Mutant NSCLC Cells. Cancer Manag Res 2020; 12:4453-4460. [PMID: 32606939 PMCID: PMC7293907 DOI: 10.2147/cmar.s245257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer has the highest incidence among solid tumors in men and is the third most common cancer in women. Despite improved understanding of genomic and mutational landscape in non-small cell lung cancer (NSCLC), the five-year survival in these patients has remained stagnant at a dismal 15%. The first line of treatment commonly adapted for NSCLC patients with somatic mutation in EGFR is tyrosine kinase inhibitor gefitinib or erlotinib. EGFR mutant cells seem to be intrinsically sensitive to tyrosine kinase inhibitors; however, the remaining 20-30% patients are resistant to tyrosine kinase inhibitor. Materials and Methods Here we show, using in vitro normal and NSCLS cell lines, that the lncRNA Prostate androgen-regulated transcript 1 (PART1) is expressed at higher levels in NSCLC cells compared to normal lung epithelial cell line, corroborating two earlier studies. Results We additionally show that these cells are resistant to erlotinib which is reversed in some, but not all, cell lines following suppression of PART1 expression. The differential response to erlotinib following siRNA-mediated knockdown of PART1 was found to be related to the mutational status of KRAS. Only in cells with wild-type KRAS suppression of PART1 sensitized them to erlotinib. Knockdown of mutant KRAS did not sensitize those cell lines to erlotinib. But knockdown of mutant KRAS along with suppression of PART1 sensitized the cells to treatment with erlotinib. The results from the study reveal a yet undefined and important role of lncRNA PART1 in defining sensitivity to erlotinib. This action is mediated by mutation status of KRAS. Conclusion Even though preliminary, our results indicate PART1 might be a potential candidate for targeted therapy or used as a predictor of chemosensitivity in patients with NSCLC.
Collapse
Affiliation(s)
- Shu-Chen Chen
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, People's Republic of China
| | - Yu-Zhu Diao
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, People's Republic of China
| | - Zi-Han Zhao
- The Second Clinical College of Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Xiao-Ling Li
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, People's Republic of China
| |
Collapse
|
25
|
Li JX, Huang JM, Jiang ZB, Li RZ, Sun A, Lai-Han Leung E, Yan PY. Current Clinical Progress of PD-1/PD-L1 Immunotherapy and Potential Combination Treatment in Non-Small Cell Lung Cancer. Integr Cancer Ther 2020; 18:1534735419890020. [PMID: 31838881 PMCID: PMC7242804 DOI: 10.1177/1534735419890020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conventional methods in treating non–small cell lung cancer contain surgery,
chemotherapy, radiotherapy, and targeted therapy, which have various defects.
Recently, with the deeper research on tumor immunity, immunotherapy has made the
breakthrough in the treatment of cancers. Especially developments of programmed
cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors bring the
therapy into a new stage. This review mainly focuses on introducing existing
monoclonal antibodies containing nivolumab, pembrolizumab, atezolizumab,
avelumab, and durvalumab, along with 3 ordinary biomarkers such as PD-L1
expression, tumor mutation burden, and microsatellite instability. By
understanding the resistance mechanism of anti-PD-1/L1 blockade, research is
further improving the survival benefit and expanding the benefit population. So,
PD-1/PD-L1 inhibitors begin to be combined with various therapeutic strategies
clinically. Discussion and comparison of their effectiveness and safety are also
comprehensively reviewed. Meanwhile, we explore the potential, the impact, and
mechanisms of combining traditional Chinese medicine with immunotherapy.
Collapse
Affiliation(s)
- Jia-Xin Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ju-Min Huang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ze-Bo Jiang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Run-Ze Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ao Sun
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Elaine Lai-Han Leung
- Macau University of Science and Technology, Macau, People's Republic of China.,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| | - Pei-Yu Yan
- Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
26
|
Shi Y, Chen W, Li C, Qi S, Zhou X, Zhang Y, Li Y, Li G. Clinicopathological characteristics and prediction of cancer-specific survival in large cell lung cancer: a population-based study. J Thorac Dis 2020; 12:2261-2269. [PMID: 32642131 PMCID: PMC7330367 DOI: 10.21037/jtd.2020.04.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background To describe the demographic and clinical characteristics of large cell lung cancer (LCLC) with a population-based database and to find the prognosis factors of cancer-specific survival (CSS) for these patients; also, to develop a nomogram to independently validate and predict the CSS for LCLC based on the identified prognosis factors. Methods We extracted the LCLC patient’s information from the Surveillance, Epidemiology, and End Results (SEER) database [2005–2014] and summarized the characteristics of the extracted factors. We used Cox proportional hazards regression to find the prognosis factors for LCLC patients and to develop the nomogram based on these in a split train cohort from the extracted data. The validation of the developed nomograms was performed in an independent validation cohort from the extracted data, in which the C-index and the average of the time-dependent area under the receiver operating characteristic curve (time-dependent AUC) for CSS in 1-year, 3-year, and 5-year CSS was calculated. The calibration curves were drawn to visualize the performance of the established nomogram. Results As a result, 4,936 patients with LCLC were identified from the SEER database. Nearly half of LCLC patients were diagnosed with stage IV; only approximately 20% of patients underwent surgery. The prognosis factors that influenced the LCLC patients included age, sex, American Joint Committee on Cancer (AJCC) stage, race, surgery, tumor size, and marital status. The calculated C-index was 0.701±0.01, and the mean time-dependent AUC for in 1-year, 3-year, and 5-year CSS was 0.88. The calibrated curve showed that the gap between the predicted and observed values for 1-year, 3-year, and 5-year CSS was small. Conclusions Sex, age, race, marital status, AJCC stage, surgery, and tumor size were shown to all be the independent prognostic factors of CSS in LCLC. The established nomogram can provide more precise evaluation for the survival of LCLC patients and help the clinicians in the individual management of patients.
Collapse
Affiliation(s)
- Yafei Shi
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Chen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunyu Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuya Qi
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yujun Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
27
|
Wu G, Zhao Z, Yan Y, Zhou Y, Wei J, Chen X, Lin W, Ou C, Li J, Wang X, Xiong K, Zhou J, Xu Z. CPS1 expression and its prognostic significance in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:341. [PMID: 32355785 PMCID: PMC7186668 DOI: 10.21037/atm.2020.02.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Studies have increasingly shown that carbamoyl phosphate synthetase 1 (CPS1) plays a vital role in the occurrence and development of human malignant disease. Unfortunately, the detailed function of CPS1 in the development and prognosis of lung cancer, especially lung adenocarcinoma (LADC), is still not fully understood. In this research, we performed a comprehensive bioinformatics analysis with respect to the function of CPS1 in human LADC. Methods Several biological databases including UALCAN, GEPIA and Oncomine were used to analyze the expression of CPS1 in LADC. Meanwhile, TCGA and GEO databases were utilized to analyze relevant clinical data. In addition, databases including Methsurv, etc., were used to analyze CPS1 methylation levels in LADC. Results The Oncomine platform, UALCAN and gene expression profiling interactive analysis (GEPIA) were used and revealed that the expression levels of CPS1 were significantly increased in LADC tissues. Furthermore, we analyzed the methylation level of CPS1 in LADC and found that cases with high levels of CPS1 showed hypomethylated CPS1. The clinical data from the Wanderer database, which is linked to The Cancer Genome Atlas (TCGA) database, demonstrated that the expression and methylation values of CPS1 were both significantly related to the clinical characteristics and prognosis of LADC. Through analysis of the dataset from the Gene Expression Omnibus (GEO) database, we found that the expression level of CPS1 was markedly downregulated in human A549 lung cancer cells treated with the chemotherapeutic drug motexafin gadolinium (MGd) in a time-dependent manner. Conclusions Our work indicated that CPS1 is upregulated in LADC samples and that CPS1 might be used as a potential biomarker for the diagnostic and prognostic evaluation of LADC. Determining the detailed biological function of CPS1 in LADC tissues will provide promising and insightful information for our further study.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
28
|
Wu G, Yan Y, Zhou Y, Duan Y, Zeng S, Wang X, Lin W, Ou C, Zhou J, Xu Z. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncol Res 2020; 28:439-446. [PMID: 32111265 PMCID: PMC7851526 DOI: 10.3727/096504020x15828892654385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural products are becoming increasingly popular in a variety of traditional, complementary, and alternative systems due to their potency and slight side effects. Natural compounds have been shown to be effective against many human diseases, especially cancers. Sulforaphane (SFE) is a traditional Chinese herbal medicine. In recent years, an increasing number of studies have been conducted to evaluate the antitumor effect of SFE. The roles of SFE in cancers are mainly through the regulation of potential biomarkers to activate or inhibit related signaling pathways. SFE has exhibited promising inhibitory effects on breast cancer, lung cancer, liver cancer, and other malignant tumors. In this review, we summarized the reports on the activity and functional mechanisms of SFE in cancer treatment and explored the efficacy and toxicity of SFE.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South UniversityChangshaP.R. China
| |
Collapse
|
29
|
Feng F, Huang J, Wang Z, Zhang J, Han D, Wu Q, He H, Zhou X. Xiao-ai-ping injection adjunct with platinum-based chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. BMC Complement Med Ther 2020; 20:3. [PMID: 32020869 PMCID: PMC7076846 DOI: 10.1186/s12906-019-2795-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Xiao-ai-ping injection (XAPI), as patented Chinese medicine, has shown promising outcomes in non-small-cell lung cancer (NSCLC) patients. This meta-analysis investigated the efficacy and safety of XAPI in combination with platinum-based chemotherapy. METHODS A comprehensive literature search was conducted to identify relevant studies in Pubmed, EMBASE, the Cochrane Library, Chinese National Knowledge Infrastructure, Wangfang Database, VIP Database, and Chinese Biology Medical Database from the date of their inception to September 2018. The RevMan 5.3 software was applied to calculate the risk ratio (RR) and mean difference (MD) with 95% confidence interval (CI). RESULTS We included and analyzed 24 randomized controlled trials. The meta-analysis showed that XAPI adjunctive to platinum-based chemotherapy had better outcomes in objective tumor response rate (ORR) (RR: 1.27, 95% CI, 1.14-1.40); improved Karnofsky performance scores (KPS) (RR: 1.70, 95% CI, 1.48-1.95); reduction in occurrence of grade 3/4 leukopenia (RR: 0.49, 95% CI, 0.38-0.64), anemia (RR: 0.63, 95% CI, 0.46-0.87) and thrombocytopenia (RR: 0.53, 95% CI, 0.38-0.73), nausea and vomiting (RR: 0.57, 95% CI, 0.36-0.90); and enhanced immune function (CD8+ [MD: 4.96, 95% CI, 1.16-8.76] and CD4+/CD8+ [MD: 2.58, 95% CI, 1.69-3.47]). However, it did not increase dysregulated liver and kidney function, diarrhea, constipation, and fatigue. Subgroup analysis of ORR and KPS revealed that dosage, treatment duration, and methodological quality did not affect the outcome significantly. CONCLUSIONS Our meta-analyses demonstrated that XAPI in combination with platinum-based chemotherapy had a better tumor response, improved the quality of life, attenuated adverse side effects, and enhanced immune function, which suggests that it might be used for advanced NSCLC. Moreover, low dosage (< 60 ml/d) and long-term treatment of XAPI might be a choice for advanced NSCLC patients.
Collapse
Affiliation(s)
- Fanchao Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Jingyi Huang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Zhichao Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Jiarui Zhang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Di Han
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Qi Wu
- Department of Physiology, Xu Zhou Medical University, Xu Zhou, 221009, People's Republic of China
| | - Hailang He
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China. .,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China. .,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
30
|
Wu G, Yan Y, Wang X, Ren X, Chen X, Zeng S, Wei J, Qian L, Yang X, Ou C, Lin W, Gong Z, Zhou J, Xu Z. CFHR1 is a potentially downregulated gene in lung adenocarcinoma. Mol Med Rep 2019; 20:3642-3648. [PMID: 31485643 PMCID: PMC6755197 DOI: 10.3892/mmr.2019.10644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
There is increasing evidence that human complement factor H‑related protein 1 (CFHR1) plays a crucial role in the development of malignant diseases. However, few studies have identified the roles of CFHR1 in the occurrence and prognosis of lung adenocarcinoma (LADC). In the present study, comprehensive bioinformatic analyses of data obtained from the Oncomine platform, UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) demonstrated that CFHR1 expression is significantly reduced in both LADC tissues and cancer cells. The patients presenting with downregulation of CFHR1 had significantly lower overall survival (OS) and post progression survival (PPS) times. Through analysis of the datasets from Gene Expression Omnibus database, we found that the compound actinomycin D promoted CFHR1 expression, further displaying the cytotoxic effect in the LADC cell line A549. In addition, the expression level of CFHR1 in the cisplatin‑resistant LADC cell line CDDP‑R (derived from H460) was also significantly reduced. Our research demonstrated that low levels of CFHR1 are specifically found in LADC samples, and CFHR1 could serve as a potential therapeutic target for this subset of lung cancers. Determination of the detailed roles of CFHR1 in LADC biology could provide insightful information for further investigations.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
31
|
Xu Z, Wang X, Chen X, Zeng S, Qian L, Wei J, Gong Z, Yan Y. Identification of Aloperine as an anti-apoptotic Bcl2 protein inhibitor in glioma cells. PeerJ 2019; 7:e7652. [PMID: 31534865 PMCID: PMC6730530 DOI: 10.7717/peerj.7652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 02/05/2023] Open
Abstract
Objective Aloperine (ALO), an alkaloid isolated from the leaves of Sophora alopecuroides, has been suggested to exhibit anti-inflammatory and anti-tumor properties and is traditionally used to treat various human diseases, including cancer. However, limited information is available about the mechanisms that determine the anti-tumor activities of ALO. Methods Herein, through comprehensive bioinformatics methods and in vitro functional analyses, we evaluated the detailed anti-tumor mechanisms of ALO. Results Using the databases Bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine and PubChem Project, we identified the potential targets of ALO. A protein–protein interaction network was constructed to determine the relationship among these probable targets. Functional enrichment analysis revealed that ALO is potentially involved in the induction of apoptosis. In addition, molecular docking demonstrated that ALO expectedly docks into the active pocket of the Bcl2 protein, suggesting Bcl2 as a direct target of ALO. Moreover, western blot and qPCR analysis showed that ALO downregulated Bcl2 expression in human glioma cell lines, SK-N-AS and U118. Using flow cytometry methods, we further confirmed that ALO significantly promotes apoptosis in SK-N-AS and U118 cell lines, similar to the effect induced by ABT-737, a well-known Bcl2 inhibitor. In addition, Bcl-2 overexpression could rescue ALO-induced Bcl-2 inhibition and suppress pro-apoptotic effects in glioma cells. Conclusion Taken together, these findings suggest that the natural agent ALO effectively enhances apoptosis by acting as a potential Bcl2 inhibitor in human glioma cells.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|