1
|
Li S, Liao R, Sheng X, Luo X, Zhang X, Wen X, Zhou J, Peng K. Hydrogen Gas in Cancer Treatment. Front Oncol 2019; 9:696. [PMID: 31448225 PMCID: PMC6691140 DOI: 10.3389/fonc.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Gas signaling molecules (GSMs), composed of oxygen, carbon monoxide, nitric oxide, hydrogen sulfide, etc., play critical roles in regulating signal transduction and cellular homeostasis. Interestingly, through various administrations, these molecules also exhibit potential in cancer treatment. Recently, hydrogen gas (formula: H2) emerges as another GSM which possesses multiple bioactivities, including anti-inflammation, anti-reactive oxygen species, and anti-cancer. Growing evidence has shown that hydrogen gas can either alleviate the side effects caused by conventional chemotherapeutics, or suppress the growth of cancer cells and xenograft tumor, suggesting its broad potent application in clinical therapy. In the current review, we summarize these studies and discuss the underlying mechanisms. The application of hydrogen gas in cancer treatment is still in its nascent stage, further mechanistic study and the development of portable instruments are warranted.
Collapse
Affiliation(s)
- Sai Li
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rongrong Liao
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Sheng
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojun Luo
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Wen
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Zhou
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kang Peng
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Enosawa S, Dozen M, Tada Y, Hirasawa K. Electron Therapy Attenuated Elevated Alanine Aminotransferase and Oxidative Stress Values in Type 2 Diabetes-Induced Nonalcoholic Steatohepatitis of Rats. CELL MEDICINE 2013; 6:63-73. [PMID: 26858882 DOI: 10.3727/215517913x674225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chronic oxidative stress plays a key role in the progression of nonalcoholic steatohepatitis (NASH). We examined the efficacy of antioxidative electron treatment on type 2 diabetes-induced NASH in a rat model. We established NASH model rats, induced by neonatal administration of streptozotocin and a high-fat diet, which exhibited pathologically high values of alanine aminotransferase (ALT), glucose, and malondialdehyde (MDA). The rats were exposed to electron discharge at very low energy for 4 weeks; this dose results in the reduction of Fe(3+) and glutathione disulfide in vitro. Serum ALT values were increased from baseline (8 weeks) to 125.0 ± 13 U/L at 10 weeks in the control group. In contrast, the values in the treated group did not show any increase at 10 weeks [87 ± 10 U/L (p = 0.0391)]. Hepatic MDA levels were also significantly decreased at 12 weeks (p < 0.05), but 8-hydroxy-2'-deoxyguanosine values were not statistically significant (p = 0.076). A gradual but steadily decreasing trend from initially high glucose levels was observed, though the values were not significant in 12-week-old animals (p = 0.074). However, the serum values of MDA, ALT, and glucose were well correlated. The progression of fibrosis as measured by increased serum levels of hyaluronic acid and histological examinations were not affected by the treatment in this model. Antioxidative electron treatment at very low energy attenuated the pathogenically elevated liver inflammation and oxidative stress, together with presumably impaired glucose metabolism in NASH rat model.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Sciences, Clinical Research Center, National Center for Child Health and Development , Setagaya-ku, Tokyo , Japan
| | - Masaharu Dozen
- Division for Advanced Medical Sciences, Clinical Research Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan; †Research Unit, Cambwick Healthcare Corporation, Akishima City, Tokyo, Japan
| | - Yuki Tada
- † Research Unit, Cambwick Healthcare Corporation , Akishima City, Tokyo , Japan
| | - Keisuke Hirasawa
- † Research Unit, Cambwick Healthcare Corporation , Akishima City, Tokyo , Japan
| |
Collapse
|