1
|
Romanov MS, Bobrov AVFC, Iovlev PS, Roslov MS, Zdravchev NS, Sorokin AN, Romanova ES, Kandidov MV. Fruit and seed structure in the ANA-grade angiosperms: Ancestral traits and specializations. AMERICAN JOURNAL OF BOTANY 2024; 111:e16264. [PMID: 38031509 DOI: 10.1002/ajb2.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
PREMISE The representatives of the ANA-grade angiosperms demonstrate a diverse pattern of morphological characters, but their apocarpous gynoecium (except in Nymphaeaceae), composed of at least partly ascidiate carpels, the four-nucleate and four-celled female gametophyte, and the diploid endosperm (except in Amborella) are inferred to be plesiomorphies. Since the structure of fruits in Austrobaileyales is under-investigated, this research aims to fill this gap in these data, describing the carpological characters of ANA-grade taxa, and potentially illuminating the ancestral fruit and seed types of angiosperms. METHODS The pericarp and seed coat anatomy was studied with light microscopy. The character optimization was carried out using WinClada software. RESULTS The fruits of Austrobaileya, Trimenia, Kadsura, and Schisandra are determined to be apocarpous berries of the Schisandra type, with a parenchymatous pericarp and mesotestal (Austrobaileya) or exomesotestal seeds (other genera). Most inferred scenarios of fruit evolution indicate that the apocarpous berry is either the most probable plesiomorphic fruit type of all angiosperms, or that of all angiosperms except Amborellaceae. This inference suggests the early origin of the berry in fruit evolution. The plesiomorphic seed type of angiosperms according to reconstructed scenarios of seed type evolution was either a seed lacking a sclerenchymatous layer or an exotestal seed. CONCLUSIONS The current research indicates that an apocarpous berry, and not a follicle, is a probable plesiomorphic character of the ANA-grade taxa and of angiosperms as a whole.
Collapse
Affiliation(s)
- Mikhail S Romanov
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey V F Ch Bobrov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Peter S Iovlev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Maxim S Roslov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Nikita S Zdravchev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey N Sorokin
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Ekaterina S Romanova
- Botanical Garden, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Maxim V Kandidov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
2
|
Hernandez-Rocha JV, Vásquez-Morales SG. The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances. Molecules 2023; 28:4681. [PMID: 37375236 PMCID: PMC10303668 DOI: 10.3390/molecules28124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosystems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides. The potential of extracts, essential oils, and secondary metabolites of these structures for pest control is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of Magnolia species to ensure their sustainable use and conservation is stressed.
Collapse
Affiliation(s)
| | - Suria Gisela Vásquez-Morales
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
3
|
Zhou L, Hou F, Wang L, Zhang L, Wang Y, Yin Y, Pei J, Peng C, Qin X, Gao J. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. FRONTIERS IN PLANT SCIENCE 2023; 14:1108701. [PMID: 36844093 PMCID: PMC9950645 DOI: 10.3389/fpls.2023.1108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.
Collapse
Affiliation(s)
- Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu, China
| | - Lingyu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yalan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Qin
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
The evolutionary history of the Caribbean magnolias (Magnoliaceae): Testing species delimitations and biogeographical hypotheses using molecular data. Mol Phylogenet Evol 2021; 167:107359. [PMID: 34793981 DOI: 10.1016/j.ympev.2021.107359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
The Caribbean islands provide an ideal setting for studying biodiversity, given their complex geological and environmental history, and their historical and current geographical proximity to the American mainland. Magnolia, a flagship tree genus that has 15 endemic and threatened taxa (12 species and 3 subspecies) on the Caribbean islands, offers an excellent case study to empirically test Caribbean biogeographical hypotheses. We constructed phylogenetic hypotheses to: (1) reveal their evolutionary history, (2) test the current largely morphology-based classification and assess species limits, and (3) investigate major biogeographic hypotheses proposed for the region. Nuclear and chloroplast DNA sequence data of all 15 Caribbean Magnolia taxa are included, supplemented by a selection of American mainland species, and species representing most major clades of the Magnoliaceae family. We constructed phylogenetic hypotheses in a time-calibrated Bayesian framework, supplemented with haplotype network analyses and ancestral range estimations. Genetic synapomorphies in the studied markers confirm the species limits of 14 out of 15 morphologically recognizable Caribbean Magnolia taxa. There is evidence for four colonization events of Magnolia into the Caribbean from the American mainland, which most likely occurred by overwater dispersal, given age estimates of maximum 16 mya for their presence on the Caribbean islands.
Collapse
|
5
|
Liu ZJ, Wang X. Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. HISTORICAL BIOLOGY 2017; 29:431-441. [PMID: 28392623 PMCID: PMC5359780 DOI: 10.1080/08912963.2016.1178740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 05/10/2023]
Abstract
Despite increasing claims of pre-Cretaceous angiosperms, whether there really are angiosperms in the Jurassic is apparently still an open question for many people before further evidence is available. This question can only be answered by studying more Jurassic plant fossils. Here we report a fossil angiosperm, Yuhania daohugouensis gen. et sp. nov, from the Middle Jurassic of Inner Mongolia, China. The plant includes connected stem, leaves, flowers, aggregate fruits, fruitlets, and seeds within fruitlets. The leaves are helically arranged along the curving stem, linear in shape, with 5-6 parallel veins. The aggregate fruit is pedicellate, composed of over 20 carpels/fruitlets helically arranged. Each fruitlet encloses a seed. The reproductive organs in various stages are found in the same plant, allowing us to understand the development of Yuhania. The occurrence of Yuhania in the Middle Jurassic re-confirms the Jurassic history for angiosperms that has been suggested by other independent research and adds to the on-going study on the early evolution of angiosperms.
Collapse
Affiliation(s)
- Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation & Research Center of Shenzhen, Shenzhen518114, China
| | - Xin Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing210008, China
| |
Collapse
|
6
|
Fourcade F, Pouteau R, Jaffré T, Marmey P. In situ observations of the basal angiosperm Amborella trichopoda reveal a long fruiting cycle overlapping two annual flowering periods. JOURNAL OF PLANT RESEARCH 2015; 128:821-828. [PMID: 26178522 DOI: 10.1007/s10265-015-0744-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Amborella trichopoda is the sole living angiosperm species belonging to the sister lineage of all other extant flowering plants. In the last decade, the species has been the focus of many phylogenetic, genomic and reproductive biology studies, bringing new highlights regarding the evolution of flowering plants. However, little attention has been paid to in situ A. trichopoda populations, particularly to their fruiting cycle. In this study, an A. trichopoda population was observed during three annual flowering cycles. Individuals and branches were labeled in order to monitor the fruiting cycle precisely, from the flowering stage until the abscission of the fruit. Fruit exocarp was green during the first 9 months following flowering, turned red when the next flowering started a year later then remained on the branch during another year, between fruit ripping and abscission. Presence of fruits with two stages of maturity on shrubs was always noticed. Germination tests showed that seeds acquired their germination capacity 1 year after flowering, when fruits changed color. A. trichopoda's fruiting cycle is a long process overlapping two annual flowering periods. These results introduce a new model for flowering and fruiting cycles. The availability of mature seeds on shrubs for more than 1 year is likely to maximize opportunities to be dispersed, thus promoting the survival of this basal angiosperm.
Collapse
Affiliation(s)
- Fanny Fourcade
- Institut de Recherche pour le Développement (IRD), UMR DIADE, 101 Promenade Roger Laroque Anse Vata, BPA5, 98848, Nouméa, New Caledonia
| | | | | | | |
Collapse
|
7
|
Doyle JA, Upchurch GR. Angiosperm Clades in the Potomac Group: What Have We Learned since 1977? BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2014. [DOI: 10.3374/014.055.0203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Horbens M, Gao J, Neinhuis C. Cell differentiation and tissue formation in the unique fruits of devil's claws (Martyniaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:914-924. [PMID: 24907252 DOI: 10.3732/ajb.1400006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
• Premise of the study: Martyniaceae are characterized by capsules with two upwardly curved, horn-shaped extensions representing morphologically specialized epizoochorous fruits. Because the capsules are assumed to cling to hooves and ankles of large mammals, fiber arrangement and tissue combinations within the endocarp ensuring proper attachment to the vector's feet during transport are of particular interest. In this first detailed anatomical investigation, the functional adaptation of the fruits and their implications for the specific dispersal mode are provided. The peculiar fiber arrangement may also be of interest for future biomimetic composite materials.• Methods: Endocarp anatomy and details of tissue differentiation were examined in fruits of Ibicella lutea and Proboscidea louisianica subsp. fragrans combining light microscopy, SEM, and x-ray microtomography analysis.• Key results: While tips of the extensions are predominantly reinforced by longitudinally oriented fibers, in the middle segment these fibers are densely packed in individual bundles entwined and separated by transversely elongated cells. Within the capsule wall, the fiber bundles are embedded in a dense mesh of transversely oriented fibers that circularly reinforce and protect the loculus. This fibrous pericarp tissue develops within few days by localized cell divisions and intrusive growth of primarily isodiametric parenchyma cells in the pistil.• Conclusions: The study allows insight into a unique and complex example of functionally driven cell growth and tissue formation. Long-horned fruits of Martyniaceae obviously are highly specialized to epizoochorous dispersal, pointing to primary vector-related seed dispersal. The highly ordered arrangement of fibers results in a great mechanical firmness.
Collapse
Affiliation(s)
- Melanie Horbens
- Institut für Botanik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Jie Gao
- Institut für Botanik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|