1
|
Vasquez A, Alaniz A, Dearth R, Kariyat R. Continuous mowing differentially affects floral defenses in the noxious and invasive weed Solanum elaeagnifolium in its native range. Sci Rep 2024; 14:8133. [PMID: 38584186 PMCID: PMC10999409 DOI: 10.1038/s41598-024-58672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
In weeds, disturbance has been found to affect life history traits and mediate trophic interactions. In urban landscapes, mowing is an important disturbance, and we previously showed that continuous mowing leads to enhanced fitness and defense traits in Solanum elaeagnifolium, Silverleaf Nightshade (SLN). However, most studies have been focused on foliar defenses, ignoring floral defenses. In this study we examined whether continuous mowing affected floral defenses in SLN using mowed and unmowed populations in South Texas, their native range. We found flowers of mowed SLN plants larger but lighter than unmowed plants. Additionally, flowers on plants that were mowed frequently were both heavier and larger. Mowed plants had higher spine density and consequently unmowed flowers had higher herbivore damage. Additionally, early instar Manduca sexta fed on mowed flower-based artificial diets showed no difference in mass than the control and unmowed; however, later instars caterpillars on unmowed diets gained significantly more mass than the mowed treatment and control. Mowed plants had higher spine density which may shed light on why unmowed flowers experienced higher herbivore damage. We found caterpillars fed on high mowing frequency diets were heavier than those on low mowing frequency diets. Collectively, we show that mowing compromises floral traits and enhances plant defenses against herbivores and should be accounted for in management.
Collapse
Affiliation(s)
- Alejandro Vasquez
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Alexa Alaniz
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78504, USA
| | - Robert Dearth
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78504, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78504, USA.
| |
Collapse
|
2
|
Kariyat RR, Bentley TG, Nihranz CT, Stephenson AG, De Moraes CM, Mescher MC. Inbreeding in Solanum carolinense alters floral attractants and rewards and adversely affects pollinator visitation. AMERICAN JOURNAL OF BOTANY 2021; 108:74-82. [PMID: 33450062 DOI: 10.1002/ajb2.1594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Inbreeding depression is well documented in flowering plants and adversely affects a wide range of fitness-related traits. Recent work has begun to explore the effects of inbreeding on ecological interactions among plants and other organisms, including insect herbivores and pathogens. However, the effects of inbreeding on floral traits, floral scents, and pollinator visitation are less well studied. METHODS Using inbred and outbred maternal families of horsenettle (Solanum carolinense, Solanaceae), we examined the effects of inbreeding on traits associated with pollinator attraction and floral rewards. Specifically, we measured corolla size, counted pollen grains per flower, and analyzed floral volatile emissions via gas chromatography and mass spectrometry. We also examined pollinator visitation to experimental arrays of flowering inbred and outbred plants under field conditions. RESULTS Compared to those of outbred plants, flowers of inbred plants exhibited reduced corolla size and pollen production, as well as significantly reduced emission of the two most abundant volatile compounds in the floral blend. Furthermore, bumblebees-the main pollinators of horsenettle-discriminated against inbred flowers in the field: bees were more likely to make initial visits to flowers on outbred plants, visited outbred flowers more often overall, and spent more time on outbred flowers. CONCLUSIONS These results show that inbreeding can (1) alter floral traits that are known to mediate pollinator attraction; (2) reduce the production of floral rewards (pollen is the sole reward in horsenettle); and (3) adversely affect pollinator visitation under field conditions.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Thomas G Bentley
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Chad T Nihranz
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
3
|
Tayal M, Chavana J, Kariyat RR. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol 2020; 20:8. [PMID: 32039719 PMCID: PMC7008546 DOI: 10.1186/s12898-020-00278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.
| |
Collapse
|
4
|
Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY. Mating system shifts a species' range. Evolution 2018; 73:158-174. [PMID: 30592527 DOI: 10.1111/evo.13663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
Understanding the ecological and evolutionary mechanisms that shape a species' range is an important goal in evolutionary biology. Evidence indicates that mating system is an effective predictor of the global range of native species or naturalized alien plants, but the mechanisms underlying this predictability are not elaborated. Here, we develop a theoretical model to account for the ranges of plants under different mating systems based on migration-selection processes (an idea proposed by Haldane). The model includes alternation of gametophyte and sporophyte generations in one life cycle and the dispersal of haploid pollen and diploid seeds as vectors for gene flow. We show that the interaction between selfing rates and gametophytic selection determines the role of mating system in shaping a species' range. Selfing restricts the species' range under gametophytic selection in nonrandom mating systems, but expands the species' range under the absence of gametophytic selection in any mating system. Gametophytic selection slightly restricts the species' range in random mating. Both logarithmic and logistic models of population demography yield similar conclusions in the case of fixed or evolving genetic variance. The theory also helps to explain a broader relationship between mating system and range size following biological invasion or plant naturalization.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xin-Xin Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Ying Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xi Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| |
Collapse
|
5
|
Goodwillie C, Ness JM. Interactions of hybridization and mating systems: a case study in Leptosiphon (Polemoniaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:1002-1013. [PMID: 23507735 DOI: 10.3732/ajb.1200616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY The roles of hybridization and mating systems in the evolution of angiosperms have been well studied, but less work has focused on their interactions. Self-incompatible and self-compatible species often show asymmetry in heterospecific pollen rejection. Self-fertilization can preempt ovules before opportunities for hybridization. In turn, hybridization might affect mating system evolution through selection for selfing to avoid production of low fitness hybrids. • METHODS AFLP and morphological analyses were used to test for hybrids in a contact zone between species with contrasting breeding systems. Crossing experiments examined the relative contributions to reproductive isolation of pollen-pistil interactions, timing of self-fertilization, and F1 viability and fertility. A diallel cross of siblings tested for an association between heterospecific incompatibility and S-genotype in the self-incompatible species. • KEY RESULTS A low frequency of hybrids was detected in the contact zone. Pollen-pistil interactions were partially consistent with the SI × SC rule; some individuals of the self-incompatible species rejected heterospecific pollen, whereas the self-compatible species was fully receptive to it. In the selfing species, individuals with early selfing produced fewer hybrid progeny than did those with delayed self-compatibility when heterospecific pollen was applied after self-pollen. Viability of F1s was high but fertility was low. Variability in heterospecific pollen rejection was not related to S-genotype. • CONCLUSIONS Both self-fertilization and self-incompatibility are associated with limits to hybridization at this site. The strong effect of timing of selfing on production of low fitness F1s suggests that hybridization might select for early selfing in this population.
Collapse
Affiliation(s)
- Carol Goodwillie
- Department of Biology, East Carolina University, Mailstop 551, Greenville, NC 27858, USA.
| | | |
Collapse
|