1
|
Dougan KE, Bellantuono AJ, Kahlke T, Abbriano RM, Chen Y, Shah S, Granados-Cifuentes C, van Oppen MJH, Bhattacharya D, Suggett DJ, Rodriguez-Lanetty M, Chan CX. Whole-genome duplication in an algal symbiont bolsters coral heat tolerance. SCIENCE ADVANCES 2024; 10:eadn2218. [PMID: 39028812 PMCID: PMC11259175 DOI: 10.1126/sciadv.adn2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.
Collapse
Affiliation(s)
- Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Camila Granados-Cifuentes
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Yuan J, Song Q. Polyploidy and diploidization in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:51. [PMID: 37313224 PMCID: PMC10244302 DOI: 10.1007/s11032-023-01396-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.
Collapse
Affiliation(s)
- Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
3
|
Gutierrez A, Grillo MA. Effects of Domestication on Plant-Microbiome Interactions. PLANT & CELL PHYSIOLOGY 2022; 63:1654-1666. [PMID: 35876043 DOI: 10.1093/pcp/pcac108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Through the process of domestication, selection is targeted on a limited number of plant traits that are typically associated with yield. As an unintended consequence, domesticated plants often perform poorly compared to their wild progenitors for a multitude of traits that were not under selection during domestication, including abiotic and biotic stress tolerance. Over the past decade, advances in sequencing technology have allowed for the rigorous characterization of host-associated microbial communities, termed the microbiome. It is now clear that nearly every conceivable plant interaction with the environment is mediated by interactions with the microbiome. For this reason, plant-microbiome interactions are an area of great promise for plant breeding and crop improvement. Here, we review the literature to assess the potential impact that domestication has had on plant-microbiome interactions and the current understanding of the genetic basis of microbiome variation to inform plant breeding efforts. Overall, we find limited evidence that domestication impacts the diversity of microbiomes, but domestication is often associated with shifts in the abundance and composition of microbial communities, including taxa of known functional significance. Moreover, genome-wide association studies and mutant analysis have not revealed a consistent set of core candidate genes or genetic pathways that confer variation in microbiomes across systems. However, such studies do implicate a consistent role for plant immunity, root traits, root and leaf exudates and cell wall integrity as key traits that control microbiome colonization and assembly. Therefore, selection on these key traits may pose the most immediate promise for enhancing plant-microbiome interactions through breeding.
Collapse
Affiliation(s)
- Andres Gutierrez
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
4
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
5
|
Wipf HML, Coleman-Derr D. Evaluating domestication and ploidy effects on the assembly of the wheat bacterial microbiome. PLoS One 2021; 16:e0248030. [PMID: 33735198 PMCID: PMC7971525 DOI: 10.1371/journal.pone.0248030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
While numerous studies implicate the microbiome in host fitness, contributions of host evolution to microbial recruitment remain largely uncharacterized. Past work has shown that plant polyploidy and domestication can influence plant biotic and abiotic interactions, yet impacts on broader microbiome assembly are still unknown for many crop species. In this study, we utilized three approaches-two field studies and one greenhouse-based experiment-to determine the degree to which patterns in bacterial community assembly in wheat (Triticum sp.) roots and rhizospheres are attributable to the host factors of ploidy level (2n, 4n, 6n) and domestication status (cultivated vs. wild). Profiling belowground bacterial communities with 16S rRNA gene amplicon sequencing, we analyzed patterns in diversity and composition. From our initial analyses of a subsetted dataset, we observed that host ploidy level was statistically significant in explaining variation in alpha and beta diversity for rhizosphere microbiomes, as well as correlated with distinct phylum-level shifts in composition, in the field. Using a reduced complexity field soil inoculum and controlled greenhouse conditions, we found some evidence suggesting that genomic lineage and ploidy level influence root alpha and beta diversity (p-value<0.05). However, in a follow-up field experiment using an expanded set of Triticum genomes that included both wild and domesticated varieties, we did not find a strong signal for either diploid genome lineages, domestication status, or ploidy level in shaping rhizosphere bacterial communities. Taken together, these results suggest that while host ploidy and domestication may have some minor influence on microbial assembly, these impacts are subtle and difficult to assess in belowground compartments for wheat varieties. By improving our understanding of the degree to which host ploidy and cultivation factors shape the plant microbiome, this research informs perspectives on what key driving forces may underlie microbiome structuring, as well as where future efforts may be best directed towards fortifying plant growth by microbial means. The greatest influence of the host on the wheat microbiome appeared to occur in the rhizosphere compartment, and we suggest that future work focuses on this environment to further characterize how host genomic and phenotypic changes influence plant-microbe communications.
Collapse
Affiliation(s)
- Heidi M. L. Wipf
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Plant Gene Expression Center, USDA-ARS, Albany, California, United States of America
| |
Collapse
|
6
|
Peng Z, Chen H, Tan L, Shu H, Varshney RK, Zhou Z, Zhao Z, Luo Z, Chitikineni A, Wang L, Maku J, López Y, Gallo M, Zhou H, Wang J. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1104-1118. [PMID: 33130897 DOI: 10.1093/jxb/eraa505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Microbial symbiosis in legumes is achieved through nitrogen-fixing root nodules, and these are important for sustainable agriculture. The molecular mechanisms underlying development of root nodules in polyploid legume crops are largely understudied. Through map-based cloning and QTL-seq approaches, we identified a pair of homoeologous GRAS transcription factor genes, Nodulation Signaling Pathway 2 (AhNSP2-B07 or Nb) and AhNSP2-A08 (Na), controlling nodulation in cultivated peanut (Arachis hypogaea L.), an allotetraploid legume crop, which exhibited non-Mendelian and Mendelian inheritance, respectively. The segregation of nodulation in the progeny of Nananbnb genotypes followed a 3:1 Mendelian ratio, in contrast to the 5:3~1:1 non-Mendelian ratio for nanaNbnb genotypes. Additionally, a much higher frequency of the nb allele (13%) than the na allele (4%) exists in the peanut germplasm collection, suggesting that Nb is less essential than Na in nodule organogenesis. Our findings reveal the genetic basis of naturally occurred non-nodulating peanut plants, which can be potentially used for nitrogen fixation improvement in peanut. Furthermore, the results have implications for and provide insights into the evolution of homoeologous genes in allopolyploid species.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lubin Tan
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongmei Shu
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Zhekai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - James Maku
- Sciences and Mathematics Department, Glenville State College, Glenville, WV, USA
| | - Yolanda López
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Maria Gallo
- Delaware Valley University, Doylestown, PA, USA
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL, USA
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Forrester NJ, Ashman TL. Autopolyploidy alters nodule-level interactions in the legume-rhizobium mutualism. AMERICAN JOURNAL OF BOTANY 2020; 107:179-185. [PMID: 31721161 DOI: 10.1002/ajb2.1375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Polyploidy is a major genetic driver of ecological and evolutionary processes in plants, yet its effects on plant interactions with mutualistic microbes remain unresolved. The legume-rhizobium symbiosis regulates global nutrient cycles and plays a role in the diversification of legume species. In this mutualism, rhizobia bacteria fix nitrogen in exchange for carbon provided by legume hosts. This exchange occurs inside root nodules, which house bacterial cells and represent the interface of legume-rhizobium interactions. Although polyploidy may directly impact the legume-rhizobium mutualism, no studies have explored how it alters the internal structure of nodules. METHODS We created synthetic autotetraploids using Medicago sativa subsp. caerulea. Neotetraploid plants and their diploid progenitors were singly inoculated with two strains of rhizobia, Sinorhizobium meliloti and S. medicae. Confocal microscopy was used to quantify internal traits of nodules produced by diploid and neotetraploid plants. RESULTS Autotetraploid plants produced larger nodules with larger nitrogen fixation zones than diploids for both strains of rhizobia, although the significance of these differences was limited by power. Neotetraploid M. sativa subsp. caerulea plants also produced symbiosomes that were significantly larger, nearly twice the size, than those present in diploids. CONCLUSIONS This study sheds light on how polyploidy directly affects a plant-bacterium mutualism and uncovers novel mechanisms. Changes in plant-microbe interactions that directly result from polyploidy likely contribute to the increased ability of polyploid legumes to establish in diverse environments.
Collapse
Affiliation(s)
- Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
8
|
Forrester NJ, Ashman TL. The direct effects of plant polyploidy on the legume-rhizobia mutualism. ANNALS OF BOTANY 2018; 121:209-220. [PMID: 29182713 PMCID: PMC5808787 DOI: 10.1093/aob/mcx121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Polyploidy is known to significantly alter plant genomes, phenotypes and interactions with the abiotic environment, yet the impacts of polyploidy on plant-biotic interactions are less well known. A particularly important plant-biotic interaction is the legume-rhizobia mutualism, in which rhizobia fix atmospheric nitrogen in exchange for carbon provided by legume hosts. This mutualism regulates nutrient cycles in natural ecosystems and provides nitrogen to agricultural environments. Despite the ecological, evolutionary and agricultural importance of plant polyploidy and the legume-rhizobia mutualism, it is not yet fully understood whether plant polyploidy directly alters mutualism traits or the consequences on plant growth. SCOPE The aim was to propose a conceptual framework to understand how polyploidy might directly enhance the quantity and quality of rhizobial symbionts hosted by legume plants, resulting in increased host access to fixed nitrogen (N). Mechanistic hypotheses have been devised to examine how polyploidy can directly alter traits that impact the quantity (e.g. nodule number, nodule size, terminal bacteroid differentiation) and quality of symbionts (e.g. nodule environment, partner choice, host sanctions). To evaluate these hypotheses, an exhaustive review of studies testing the effects of plant polyploidy on the mutualism was conducted. In doing so, overall trends were synthesized, highlighting the limited understanding of the mechanisms that underlie variation in results achieved thus far, revealing striking gaps in knowledge and uncovering areas ripe for future research. CONCLUSIONS Plant polyploidy can immediately alter nodule size, N fixation rate and the identity of rhizobial symbionts hosted by polyploid legumes, but many of the mechanistic hypotheses proposed here, such as bacteroid number and enhancements of the nodule environment, remain unexplored. Although current evidence supports a role of plant polyploidy in enhancing key aspects of the legume-rhizobia mutualism, the underlying mechanisms and effects on host benefit from the mutualism remain unresolved.
Collapse
Affiliation(s)
- Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- For correspondence. E-mail
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Powell AF, Doyle JJ. Non-Additive Transcriptomic Responses to Inoculation with Rhizobia in a Young Allopolyploid Compared with Its Diploid Progenitors. Genes (Basel) 2017; 8:E357. [PMID: 29189710 PMCID: PMC5748675 DOI: 10.3390/genes8120357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Root nodule symbioses (nodulation) and whole genome duplication (WGD, polyploidy) are both important phenomena in the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the origin or refinement of nodulation. However, while nodulation and polyploidy have been studied independently, there have been no direct studies of mechanisms affecting the interactions between these phenomena in symbiotic, nodule-forming species. Here, we examined the transcriptome-level responses to inoculation in the young allopolyploid Glycine dolichocarpa (T2) and its diploid progenitor species to identify underlying processes leading to the enhanced nodulation responses previously identified in T2. We assessed the differential expression of genes and, using weighted gene co-expression network analysis (WGCNA), identified modules associated with nodulation and compared their expression between species. These transcriptomic analyses revealed patterns of non-additive expression in T2, with evidence of transcriptional responses to inoculation that were distinct from one or both progenitors. These differential responses elucidate mechanisms underlying the nodulation-related differences observed between T2 and the diploid progenitors. Our results indicate that T2 has reduced stress-related transcription, coupled with enhanced transcription of modules and genes implicated in hormonal signaling, both of which are important for nodulation.
Collapse
Affiliation(s)
- Adrian F Powell
- Section of Plant Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
| | - Jeff J Doyle
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Yoder JB, Tiffin P. Sanctions, Partner Recognition, and Variation in Mutualism. Am Nat 2017; 190:491-505. [DOI: 10.1086/693472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Yoder JB, Leebens-Mack J. The evolutionary ecology of "mutual services" in the 21st century. AMERICAN JOURNAL OF BOTANY 2016; 103:1712-1716. [PMID: 27793857 DOI: 10.3732/ajb.1600367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Jeremy B Yoder
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271 USA
| |
Collapse
|