1
|
Dong SS, Zhou XP, Peng T, Liu Y. Mitochondrial RNA editing sites affect the phylogenetic reconstruction of gymnosperms. PLANT DIVERSITY 2023; 45:485-489. [PMID: 37601539 PMCID: PMC10435907 DOI: 10.1016/j.pld.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 08/22/2023]
Abstract
•RNA editing sites may contain homoplasious signals that cause artifactual inferences in phylogenetic analyses.•Excluding RNA editing sites from gymnosperm mitochondrial genes restored the sister relationship of gnetophytes and Pinaceae.•Phylogenetic analysis based on mitochondrial genomic data should carefully evaluate the impact of RNA editing sites.
Collapse
Affiliation(s)
- Shan-Shan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Xu-Ping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Tao Peng
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| |
Collapse
|
2
|
Herrera F, Shi G, Mays C, Ichinnorov N, Takahashi M, Bevitt JJ, Herendeen PS, Crane PR. Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS One 2020; 15:e0226779. [PMID: 31940374 PMCID: PMC6961850 DOI: 10.1371/journal.pone.0226779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.
Collapse
Affiliation(s)
- Fabiany Herrera
- Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Chris Mays
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| | - Niiden Ichinnorov
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Masamichi Takahashi
- Department of Environmental Sciences, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | | | - Peter R. Crane
- Oak Spring Garden Foundation, Upperville, Virginia, United States of America
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Chazot N, Wahlberg N, Freitas AVL, Mitter C, Labandeira C, Sohn JC, Sahoo RK, Seraphim N, de Jong R, Heikkilä M. Priors and Posteriors in Bayesian Timing of Divergence Analyses: The Age of Butterflies Revisited. Syst Biol 2020; 68:797-813. [PMID: 30690622 PMCID: PMC6893297 DOI: 10.1093/sysbio/syz002] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/14/2022] Open
Abstract
The need for robust estimates of times of divergence is essential for downstream analyses, yet assessing this robustness is still rare. We generated a time-calibrated genus-level phylogeny of butterflies (Papilionoidea), including 994 taxa, up to 10 gene fragments and an unprecedented set of 12 fossils and 10 host-plant node calibration points. We compared marginal priors and posterior distributions to assess the relative importance of the former on the latter. This approach revealed a strong influence of the set of priors on the root age but for most calibrated nodes posterior distributions shifted from the marginal prior, indicating significant information in the molecular data set. Using a very conservative approach we estimated an origin of butterflies at 107.6 Ma, approximately equivalent to the latest Early Cretaceous, with a credibility interval ranging from 89.5 Ma (mid Late Cretaceous) to 129.5 Ma (mid Early Cretaceous). In addition, we tested the effects of changing fossil calibration priors, tree prior, different sets of calibrations and different sampling fractions but our estimate remained robust to these alternative assumptions. With 994 genera, this tree provides a comprehensive source of secondary calibrations for studies on butterflies.
Collapse
Affiliation(s)
- Nicolas Chazot
- Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62 Lund, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Niklas Wahlberg
- Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62 Lund, Sweden
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Caixa Postal 6109, Barão Geraldo 13083-970, Campinas, São Paulo, Brazil
| | - Charles Mitter
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20742, USA
| | - Conrad Labandeira
- Department of Entomology, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave., Washington, DC 20013, USA.,Department of Entomology and BEES Program, University of Maryland, 4291 Fieldhouse Dr, College Park, MD 20741, USA.,Key Lab of Insect Evolution and Environmental Change, School of Life Sciences, Capital Normal University, XinJieKouWai St., Beijing 100048, China
| | - Jae-Cheon Sohn
- Department of Science Education, Gongju National University of Education, Gongju, 27, Ungjin-ro, Gongju-si, Chungnam 32553, Republic of Korea
| | - Ranjit Kumar Sahoo
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695 551, India
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, CTI Renato Archer - Av. Comendador Aladino Selmi, s/n - Amarais, Campinas, São Paulo 13069-901, Brazil
| | - Rienk de Jong
- Department of Entomology, Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| | - Maria Heikkilä
- Finnish Museum of Natural History LUOMUS, Zoology Unit, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland
| |
Collapse
|
4
|
Deng N, Hou C, Liu C, Li M, Bartish I, Tian Y, Chen W, Du C, Jiang Z, Shi S. Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales). FRONTIERS IN PLANT SCIENCE 2019; 10:39. [PMID: 30804953 PMCID: PMC6370715 DOI: 10.3389/fpls.2019.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 05/23/2023]
Abstract
Gnetum is a genus in the Gnetales that has a unique but ambiguous placement within seed plant phylogeny. Previous studies have shown that Gnetum has lower values of photosynthetic characters than those of other seed plants, but few Gnetum species have been studied, and those that have been studied are restricted to narrow taxonomic and geographic ranges. In addition, the mechanism underlying the lower values of photosynthetic characters in Gnetum remains poorly understood. Here, we investigated the photosynthetic characters of a Chinese lianoid species, i.e., Gnetum parvifolium, and co-occurring woody angiosperms growing in the wild, as well as seedlings of five Chinese Gnetum species cultivated in a greenhouse. The five Gnetum species had considerably lower values for photosynthesis parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatal conductance) than those of other seed plant representatives. Interrelated analyses revealed that the low photosynthetic capacity may be an intrinsic property of Gnetum, and may be associated with its evolutionary history. Comparison of the chloroplast genomes (cpDNAs) of Gnetum with those of other seed plant representatives revealed that 17 coding genes are absent from the cpDNAs of all species of Gnetum. This lack of multiple functional genes from the cpDNAs probably leads to the low photosynthetic rates of Gnetum. Our results provide a new perspective on the evolutionary history of the Gnetales, and on the ecophysiological and genomic attributes of tropical biomes in general. These results could also be useful for the breeding and cultivation of Gnetum.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Chen Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Igor Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of Czech Republic, Praha, Czechia
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Forest and Ecology Protection, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Wang Y, Li N, Chen T, Gong Y. Generation and characterization of expressed sequence tags (ESTs) from coralloid root cDNA library of Cycas debaoensis. PLANT DIVERSITY 2018; 40:245-252. [PMID: 30740571 PMCID: PMC6224666 DOI: 10.1016/j.pld.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
A normalized full-length cDNA library was constructed from the coralloid roots of Cycas debaoensis by the DSN (duplex-specific nuclease) normalization method combined with the SMART (Switching Mechanism At 5' end of the RNA Transcript) technique. The titer of the original cDNA library was about 1.5 × 106 cfu·mL-1 and the average insertion size was about 1 kb with a high recombination rate (97%). The 5011 high-quality expressed sequence tags (ESTs) were obtained from 5393 randomly picked cDNA clones. Clustering and assembly of ESTs resulted in 2984 unique sequences, consisting of 618 contigs and 2366 singlets. EST sequence annotation revealed that 2333 and 1901 unigenes were functionally annotated in the NCBI non-redundant database and Swiss-Prot protein database, respectively. Functional analysis demonstrated that 1495 (50.1%) unigenes were associated with 4082 Gene Ontology (GO) terms. A total of 847 unigenes were grouped into 22 Cluster of Orthologous Groups (COG) functional categories. Based on the EST dataset, 22 ESTs that encoded putative receptor-like protein kinase (RLK) genes were screened. Furthermore, a total of 94 simple sequence repeats (SSRs) were discovered, of which 20 loci were successfully amplified in C. debaoensis. This study is the first EST analysis for the coralloid roots of C. debaoensis and provides a valuable genomic resource for novel gene discovery, gene expression and comparative genomics, conservation and management studies as well as applications in C. debaoensis and related cycad species.
Collapse
Affiliation(s)
- Yunhua Wang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, Guangdong, China
| | | | | | | |
Collapse
|
6
|
Basak S, Krishnamurthy H, Rangan L. Genome size variation among 3 selected genera of Zingiberoideae. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
7
|
Sahoo RK, Warren AD, Wahlberg N, Brower AVZ, Lukhtanov VA, Kodandaramaiah U. Ten genes and two topologies: an exploration of higher relationships in skipper butterflies (Hesperiidae). PeerJ 2016; 4:e2653. [PMID: 27957386 PMCID: PMC5144725 DOI: 10.7717/peerj.2653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
Despite multiple attempts to infer the higher-level phylogenetic relationships of skipper butterflies (Family Hesperiidae), uncertainties in the deep clade relationships persist. The most recent phylogenetic analysis included fewer than 30% of known genera and data from three gene markers. Here we reconstruct the higher-level relationships with a rich sampling of ten nuclear and mitochondrial markers (7,726 bp) from 270 genera and find two distinct but equally plausible topologies among subfamilies at the base of the tree. In one set of analyses, the nuclear markers suggest two contrasting topologies, one of which is supported by the mitochondrial dataset. However, another set of analyses suggests mito-nuclear conflict as the reason for topological incongruence. Neither topology is strongly supported, and we conclude that there is insufficient phylogenetic evidence in the molecular dataset to resolve these relationships. Nevertheless, taking morphological characters into consideration, we suggest that one of the topologies is more likely.
Collapse
Affiliation(s)
- Ranjit Kumar Sahoo
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Andrew D. Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, UF Cultural Plaza, Gainesville, FL, USA
| | - Niklas Wahlberg
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - Andrew V. Z. Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Vladimir A. Lukhtanov
- Department of Insect Systematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
- Department of Entomology, St. Petersburg State University, St. Petersburg, Russia
| | - Ullasa Kodandaramaiah
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
8
|
Ruhlman TA, Chang WJ, Chen JJW, Huang YT, Chan MT, Zhang J, Liao DC, Blazier JC, Jin X, Shih MC, Jansen RK, Lin CS. NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC PLANT BIOLOGY 2015; 15:100. [PMID: 25886915 PMCID: PMC4404220 DOI: 10.1186/s12870-015-0484-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/30/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. RESULTS Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. CONCLUSION The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant evolution.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center of Academia Sinica, Agricultural Technology Building, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan.
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center of Academia Sinica, Agricultural Technology Building, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| | - Jin Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - De-Chih Liao
- Agricultural Biotechnology Research Center of Academia Sinica, Agricultural Technology Building, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| | - John C Blazier
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Xiaohua Jin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center of Academia Sinica, Agricultural Technology Building, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
- Department of Biological Science, Biotechnology Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center of Academia Sinica, Agricultural Technology Building, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Galmés J, Kapralov MV, Andralojc PJ, Conesa MÀ, Keys AJ, Parry MAJ, Flexas J. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. PLANT, CELL & ENVIRONMENT 2014; 37:1989-2001. [PMID: 24689692 DOI: 10.1111/pce.12335] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 05/18/2023]
Abstract
The present study characterizes the kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from 28 terrestrial plant species, representing different phylogenetic lineages, environmental adaptations and photosynthetic mechanisms. Our findings confirm that past atmospheric CO(2)/O(2) ratio changes and present environmental pressures have influenced Rubisco kinetics. One evolutionary adaptation to a decreasing atmospheric CO(2)/O(2) ratio has been an increase in the affinity of Rubisco for CO(2) (Kc falling), and a consequent decrease in the velocity of carboxylation (kcat (c)), which in turn has been ameliorated by an increase in the proportion of leaf protein accounted by Rubisco. The trade-off between K(c) and k(cat)(c) was not universal among the species studied and deviations from this relationship occur in extant forms of Rubisco. In species adapted to particular environments, including carnivorous plants, crassulacean acid metabolism species and C(3) plants from aquatic and arid habitats, Rubisco has evolved towards increased efficiency, as demonstrated by a higher k(cat)(c)/K(c) ratio. This variability in kinetics was related to the amino acid sequence of the Rubisco large subunit. Phylogenetic analysis identified 13 residues under positive selection during evolution towards specific Rubisco kinetic parameters. This crucial information provides candidate amino acid replacements, which could be implemented to optimize crop photosynthesis under a range of environmental conditions.
Collapse
Affiliation(s)
- Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Feng X, Wang Y, Gong X. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers. BMC PLANT BIOLOGY 2014; 14:187. [PMID: 25016306 PMCID: PMC4114127 DOI: 10.1186/1471-2229-14-187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/03/2014] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. RESULTS Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. CONCLUSIONS Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively.
Collapse
Affiliation(s)
- Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehua Wang
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 2014; 75:24-40. [DOI: 10.1016/j.ympev.2014.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
|
12
|
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 2014; 14:23. [PMID: 24533922 PMCID: PMC3933183 DOI: 10.1186/1471-2148-14-23] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/13/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. RESULTS We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. CONCLUSIONS Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.
Collapse
Affiliation(s)
- Brad R Ruhfel
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Xi Z, Rest JS, Davis CC. Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS One 2013; 8:e80870. [PMID: 24278335 PMCID: PMC3836751 DOI: 10.1371/journal.pone.0080870] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T. Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:185-97. [PMID: 23136168 PMCID: PMC3528028 DOI: 10.1093/jxb/ers319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4 × Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes.
Collapse
Affiliation(s)
- Arnaud Capron
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Xue Feng Chang
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Hardy Hall
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian Ellis
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Rodger P. Beatson
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Thomas Berleth
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
15
|
Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae). Mol Phylogenet Evol 2012; 65:915-25. [PMID: 22982434 DOI: 10.1016/j.ympev.2012.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 07/25/2012] [Accepted: 08/17/2012] [Indexed: 11/23/2022]
Abstract
Metastelmatinae is a neotropical subtribe of Asclepiadoideae (Apocynaceae), comprising 13 genera and around 260 species whose phylogenetic relationships are often unresolved or incongruent between plastid and nuclear datasets. The genus Minaria is one of the first lineages to emerge in the Metastelmatinae and is highly supported based on plastid markers. It comprises 21 species, most of which are endemic to small areas with open vegetation in the Espinhaço Range, Brazil. In the work presented here, we use plastid (rps16, trnH-psbA, trnS-trnG, and trnD-trnT) and nuclear (ITS and ETS) datasets to investigate the relationships within Minaria. We show that the three methods mostly used in phylogenetic studies, namely, maximum parsimony, maximum likelihood, and Bayesian Inference, have different performances and that a pluralistic analytical approach combining results from them can increase tree resolution and clade confidence, providing valuable phylogenetic information.
Collapse
|
16
|
Kersting AR, Bornberg-Bauer E, Moore AD, Grath S. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 2012; 4:316-29. [PMID: 22250127 PMCID: PMC3318442 DOI: 10.1093/gbe/evs004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants.
Collapse
Affiliation(s)
- Anna R Kersting
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Muenster (WWU), Germany
| | | | | | | |
Collapse
|
17
|
Chang WC, Burleigh GJ, Fernández-Baca DF, Eulenstein O. An ILP solution for the gene duplication problem. BMC Bioinformatics 2011; 12 Suppl 1:S14. [PMID: 21342543 PMCID: PMC3044268 DOI: 10.1186/1471-2105-12-s1-s14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Background The gene duplication (GD) problem seeks a species tree that implies the fewest gene duplication events across a given collection of gene trees. Solving this problem makes it possible to use large gene families with complex histories of duplication and loss to infer phylogenetic trees. However, the GD problem is NP-hard, and therefore, most analyses use heuristics that lack any performance guarantee. Results We describe the first integer linear programming (ILP) formulation to solve instances of the gene duplication problem exactly. With simulations, we demonstrate that the ILP solution can solve problem instances with up to 14 taxa. Furthermore, we apply the new ILP solution to solve the gene duplication problem for the seed plant phylogeny using a 12-taxon, 6, 084-gene data set. The unique, optimal solution, which places Gnetales sister to the conifers, represents a new, large-scale genomic perspective on one of the most puzzling questions in plant systematics. Conclusions Although the GD problem is NP-hard, our novel ILP solution for it can solve instances with data sets consisting of as many as 14 taxa and 1, 000 genes in a few hours. These are the largest instances that have been solved to optimally to date. Thus, this work can provide large-scale genomic perspectives on phylogenetic questions that previously could only be addressed by heuristic estimates.
Collapse
Affiliation(s)
- Wen-Chieh Chang
- Department of Computer Science, Iowa State University, Ames 50011, USA.
| | | | | | | |
Collapse
|
18
|
Magallón S. Using Fossils to Break Long Branches in Molecular Dating: A Comparison of Relaxed Clocks Applied to the Origin of Angiosperms. Syst Biol 2010; 59:384-99. [DOI: 10.1093/sysbio/syq027] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Del. Coyoacán, México D.F. 04510, México
| |
Collapse
|
19
|
Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y, Jamzad Z, Wilson P, Raven JA, Band SR, Basconcelo S, Bogard A, Carter G, Charles M, Castro-Díez P, Cornelissen JHC, Funes G, Jones G, Khoshnevis M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Boustani S, Dehghan M, Guerrero-Campo J, Hynd A, Kowsary E, Kazemi-Saeed F, Siavash B, Villar-Salvador P, Craigie R, Naqinezhad A, Romo-Díez A, de Torres Espuny L, Simmons E. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? ANNALS OF BOTANY 2010; 105:573-84. [PMID: 20375204 PMCID: PMC2850795 DOI: 10.1093/aob/mcq011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/04/2008] [Accepted: 12/21/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. METHODS Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. KEY RESULTS Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. CONCLUSIONS Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.
Collapse
Affiliation(s)
- J G Hodgson
- Peak Science and Environment, Station House, Leadmill, Hathersage, Hope Valley S32 1BA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mathews S, Clements MD, Beilstein MA. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans R Soc Lond B Biol Sci 2010; 365:383-95. [PMID: 20047866 PMCID: PMC2838261 DOI: 10.1098/rstb.2009.0233] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
21
|
de la Torre-Bárcena JE, Kolokotronis SO, Lee EK, Stevenson DW, Brenner ED, Katari MS, Coruzzi GM, DeSalle R. The impact of outgroup choice and missing data on major seed plant phylogenetics using genome-wide EST data. PLoS One 2009; 4:e5764. [PMID: 19503618 PMCID: PMC2685480 DOI: 10.1371/journal.pone.0005764] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 04/16/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Genome level analyses have enhanced our view of phylogenetics in many areas of the tree of life. With the production of whole genome DNA sequences of hundreds of organisms and large-scale EST databases a large number of candidate genes for inclusion into phylogenetic analysis have become available. In this work, we exploit the burgeoning genomic data being generated for plant genomes to address one of the more important plant phylogenetic questions concerning the hierarchical relationships of the several major seed plant lineages (angiosperms, Cycadales, Gingkoales, Gnetales, and Coniferales), which continues to be a work in progress, despite numerous studies using single, few or several genes and morphology datasets. Although most recent studies support the notion that gymnosperms and angiosperms are monophyletic and sister groups, they differ on the topological arrangements within each major group. METHODOLOGY We exploited the EST database to construct a supermatrix of DNA sequences (over 1,200 concatenated orthologous gene partitions for 17 taxa) to examine non-flowering seed plant relationships. This analysis employed programs that offer rapid and robust orthology determination of novel, short sequences from plant ESTs based on reference seed plant genomes. Our phylogenetic analysis retrieved an unbiased (with respect to gene choice), well-resolved and highly supported phylogenetic hypothesis that was robust to various outgroup combinations. CONCLUSIONS We evaluated character support and the relative contribution of numerous variables (e.g. gene number, missing data, partitioning schemes, taxon sampling and outgroup choice) on tree topology, stability and support metrics. Our results indicate that while missing characters and order of addition of genes to an analysis do not influence branch support, inadequate taxon sampling and limited choice of outgroup(s) can lead to spurious inference of phylogeny when dealing with phylogenomic scale data sets. As expected, support and resolution increases significantly as more informative characters are added, until reaching a threshold, beyond which support metrics stabilize, and the effect of adding conflicting characters is minimized.
Collapse
Affiliation(s)
- Jose Eduardo de la Torre-Bárcena
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Cullman Molecular Systematics Laboratory and Genomics Laboratory, The New York Botanical Garden, Bronx, New York, United States of America
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Ernest K. Lee
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Dennis Wm. Stevenson
- Cullman Molecular Systematics Laboratory and Genomics Laboratory, The New York Botanical Garden, Bronx, New York, United States of America
| | - Eric D. Brenner
- Cullman Molecular Systematics Laboratory and Genomics Laboratory, The New York Botanical Garden, Bronx, New York, United States of America
| | - Manpreet S. Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Gloria M. Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
22
|
Esteban R, Olano JM, Castresana J, Fernández-Marín B, Hernández A, Becerril JM, García-Plazaola JI. Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and tocopherols) within the plant kingdom. PHYSIOLOGIA PLANTARUM 2009; 135:379-89. [PMID: 19210752 DOI: 10.1111/j.1399-3054.2008.01196.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The earliest land photosynthesis would have increased the risk of photo-oxidations and the demand of anti-oxidative protection. In this work, we aimed to determine the evolutionary trends in photoprotection across a wide representation of the plant kingdom and to verify whether the non-ubiquitous lutein-epoxide (Lx) cycle is a polyphyletic or an ancient character. Carotenoids and alpha-tocopherol (alpha-toc) were analysed by HPLC in 266 species. Phylogenetic analyses of the presence of photoprotective compounds and zeaxanthin-epoxidase (ZE) sequences were performed. Violaxanthin-cycle pigments (VAZ) and alpha-toc were taxonomically ubiquitous. Ancient groups showed higher contents of VAZ than vascular plants, while alpha-toc showed the opposite pattern. Lutein-epoxide was present in 45% of the species. It showed a remarkable variation across groups but with a clear increasing trend from algae to basal angiosperms. Lutein-epoxide was also related to woody trait and leaf longevity. No correlation between the presence of Lx and recurrent mutations in ZE sequences, including the duplications, was found. Thus, there is an evolutionary trend to increase the content of alpha-toc and to decrease the total amount of VAZ pigments. Absence of Lx in algae discards an ancestral origin. Present results are also inconsistent with a polyphyletic origin of Lx in angiosperms.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Bilbao, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hibbett DS, Matheny PB. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 2009; 7:13. [PMID: 19284559 PMCID: PMC2660285 DOI: 10.1186/1741-7007-7-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/10/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes. RESULTS Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis. CONCLUSION The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin.
Collapse
Affiliation(s)
- David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts 01610, USA
| | - P Brandon Matheny
- Biology Department, Clark University, Worcester, Massachusetts 01610, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
24
|
Friis EM, Pedersen KR, Crane PR. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. AMERICAN JOURNAL OF BOTANY 2009; 96:252-83. [PMID: 21628188 DOI: 10.3732/ajb.0800113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four new genera and six new species of fossil seed (Buarcospermum tetragonium, Lignierispermum maroneae, Lobospermum glabrum, L. rugosum, L. stampanonii, Rugonella trigonospermum) are described from five Early Cretaceous mesofossil floras from Portugal and eastern North America. The four genera are distinguished by differences in size, shape, and details of seed anatomy, but all are unusual in having an outer seed envelope with a distinctive anatomical structure that surrounds the nucellus and the integument. The integument is extended apically into a long, narrow micropylar tube. The four new genera are part of a diverse, but previously unrecognized, complex of extinct plants that was widespread in Early Cretaceous vegetation and that coexisted in similar habitats with early angiosperms. The distinctive structure of these seeds, and the strong similarities to other fossil seeds (Ephedra, Ephedripites, Erdtmanispermum, Raunsgaardispermum, and some Bennettitales) already known from the Early Cretaceous, suggests that this newly recognized complex of extinct plants, together with Bennettitales, Erdtmanithecales, and Gnetales (the BEG group), is phylogenetically closely related.
Collapse
Affiliation(s)
- Else Marie Friis
- Department of Palaeobotany, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Mathews S. Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data. AMERICAN JOURNAL OF BOTANY 2009; 96:228-236. [PMID: 21628186 DOI: 10.3732/ajb.0800178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Trees inferred from DNA sequence data provide only limited insight into the phylogeny of seed plants because the living lineages (cycads, Ginkgo, conifers, gnetophytes, and angiosperms) represent fewer than half of the major lineages that have been detected in the fossil record. Nevertheless, phylogenetic trees of living seed plants inferred from sequence data can provide a test of relationships inferred in analyses that include fossils. So far, however, significant uncertainty persists because nucleotide data support several conflicting hypotheses. It is likely that improved sampling of gymnosperm diversity in nucleotide data sets will help alleviate some of the analytical issues encountered in the estimation of seed plant phylogeny, providing a more definitive test of morphological trees. Still, rigorous morphological analyses will be required to answer certain fundamental questions, such as the identity of the angiosperm sister group and the rooting of crown seed plants. Moreover, it will be important to identify approaches for incorporating insights from data that may be accurate but less likely than sequence data to generate results supported by high bootstrap values. How best to weigh evidence and distinguish among hypotheses when some types of data give high support values and others do not remains an important problem.
Collapse
Affiliation(s)
- Sarah Mathews
- The Arnold Arboretum of Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
26
|
Yamada T, Hirayama Y, Imaichi R, Kato M. AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants. Evol Dev 2008; 10:280-7. [PMID: 18460090 DOI: 10.1111/j.1525-142x.2008.00237.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.
Collapse
Affiliation(s)
- Toshihiro Yamada
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | | | | | | |
Collapse
|
27
|
McCoy SR, Kuehl JV, Boore JL, Raubeson LA. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 2008; 8:130. [PMID: 18452621 PMCID: PMC2386820 DOI: 10.1186/1471-2148-8-130] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 05/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant relationships. However, both phylogenetic analyses and shared genome features identified here are consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the anthophyte hypothesis.
Collapse
Affiliation(s)
- Skip R McCoy
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA.
| | | | | | | |
Collapse
|
28
|
Phylogenomics, Protein Family Evolution, and the Tree of Life: An Integrated Approach between Molecular Evolution and Computational Intelligence. APPLICATIONS OF COMPUTATIONAL INTELLIGENCE IN BIOLOGY 2008. [DOI: 10.1007/978-3-540-78534-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Magallóan SA, Sanderson MJ. ANGIOSPERM DIVERGENCE TIMES: THE EFFECT OF GENES, CODON POSITIONS, AND TIME CONSTRAINTS. Evolution 2007. [DOI: 10.1111/j.0014-3820.2005.tb01816.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susana A. Magallóan
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, A.P. 70–233, México D.F. 04510, Mexico
| | - Michael J. Sanderson
- Section of Evolution and Ecology, One Shields Avenue, University of California, Davis, California 95616
| |
Collapse
|
30
|
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. Correlated evolution of genome size and seed mass. THE NEW PHYTOLOGIST 2007; 173:422-37. [PMID: 17204088 DOI: 10.1111/j.1469-8137.2006.01919.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Previous investigators have identified strong positive relationships between genome size and seed mass within species, and across species from the same genus and family. Here, we make the first broad-scale quantification of this relationship, using data for 1222 species, from 139 families and 48 orders. We analyzed the relationship between genome size and seed mass using a statistical framework that included four different tests. A quadratic relationship between genome size and seed mass appeared to be driven by the large genome/seed mass gymnosperms and the many small genome size/large seed mass angiosperms. Very small seeds were never associated with very large genomes, possibly indicating a developmental constraint. Independent contrast results showed that divergences in genome size were positively correlated with divergences in seed mass. Divergences in seed mass have been more closely correlated with divergences in genome size than with divergences in other morphological and ecological variables. Plant growth form is the only variable examined thus far that explains a greater proportion of variation in seed mass than does genome size.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Won H, Renner SS. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)--clock calibration when outgroup relationships are uncertain. Syst Biol 2006; 55:610-22. [PMID: 16969937 DOI: 10.1080/10635150600812619] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Most implementations of molecular clocks require resolved topologies. However, one of the Bayesian relaxed clock approaches accepts input topologies that include polytomies. We explored the effects of resolved and polytomous input topologies in a rate-heterogeneous sequence data set for Gnetum, a member of the seed plant lineage Gnetales. Gnetum has 10 species in South America, 1 in tropical West Africa, and 20 to 25 in tropical Asia, and explanations for the ages of these disjunctions involve long-distance dispersal and/or the breakup of Gondwana. To resolve relationships within Gnetum, we sequenced most of its species for six loci from the chloroplast (rbcL, matK, and the trnT-trnF region), the nucleus (rITS/5.8S and the LEAFY gene second intron), and the mitochondrion (nad1 gene second intron). Because Gnetum has no fossil record, we relied on fossils from other Gnetales and from the seed plant lineages conifers, Ginkgo, cycads, and angiosperms to constrain a molecular clock and obtain absolute times for within-Gnetum divergence events. Relationships among Gnetales and the other seed plant lineages are still unresolved, and we therefore used differently resolved topologies, including one that contained a basal polytomy among gymnosperms. For a small set of Gnetales exemplars (n = 13) in which rbcL and matK satisfied the clock assumption, we also obtained time estimates from a strict clock, calibrated with one outgroup fossil. The changing hierarchical relationships among seed plants (and accordingly changing placements of distant fossils) resulted in small changes of within-Gnetum estimates because topologically closest constraints overrode more distant constraints. Regardless of the seed plant topology assumed, relaxed clock estimates suggest that the extant clades of Gnetum began diverging from each other during the Upper Oligocene. Strict clock estimates imply a mid-Miocene divergence. These estimates, together with the phylogeny for Gnetum from the six combined data sets, imply that the single African species of Gnetum is not a remnant of a once Gondwanan distribution. Miocene and Pliocene range expansions are inferred for the Asian subclades of Gnetum, which stem from an ancestor that arrived from Africa. These findings fit with seed dispersal by water in several species of Gnetum, morphological similarities among apparently young species, and incomplete concerted evolution in the nuclear ITS region.
Collapse
Affiliation(s)
- Hyosig Won
- Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, Missouri 63121, USA.
| | | |
Collapse
|
32
|
de la Torre JEB, Egan MG, Katari MS, Brenner ED, Stevenson DW, Coruzzi GM, DeSalle R. ESTimating plant phylogeny: lessons from partitioning. BMC Evol Biol 2006; 6:48. [PMID: 16776834 PMCID: PMC1564041 DOI: 10.1186/1471-2148-6-48] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/15/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND While Expressed Sequence Tags (ESTs) have proven a viable and efficient way to sample genomes, particularly those for which whole-genome sequencing is impractical, phylogenetic analysis using ESTs remains difficult. Sequencing errors and orthology determination are the major problems when using ESTs as a source of characters for systematics. Here we develop methods to incorporate EST sequence information in a simultaneous analysis framework to address controversial phylogenetic questions regarding the relationships among the major groups of seed plants. We use an automated, phylogenetically derived approach to orthology determination called OrthologID generate a phylogeny based on 43 process partitions, many of which are derived from ESTs, and examine several measures of support to assess the utility of EST data for phylogenies. RESULTS A maximum parsimony (MP) analysis resulted in a single tree with relatively high support at all nodes in the tree despite rampant conflict among trees generated from the separate analysis of individual partitions. In a comparison of broader-scale groupings based on cellular compartment (ie: chloroplast, mitochondrial or nuclear) or function, only the nuclear partition tree (based largely on EST data) was found to be topologically identical to the tree based on the simultaneous analysis of all data. Despite topological conflict among the broader-scale groupings examined, only the tree based on morphological data showed statistically significant differences. CONCLUSION Based on the amount of character support contributed by EST data which make up a majority of the nuclear data set, and the lack of conflict of the nuclear data set with the simultaneous analysis tree, we conclude that the inclusion of EST data does provide a viable and efficient approach to address phylogenetic questions within a parsimony framework on a genomic scale, if problems of orthology determination and potential sequencing errors can be overcome. In addition, approaches that examine conflict and support in a simultaneous analysis framework allow for a more precise understanding of the evolutionary history of individual process partitions and may be a novel way to understand functional aspects of different kinds of cellular classes of gene products.
Collapse
Affiliation(s)
- Jose EB de la Torre
- Department of Biology, New York University, 100 Washington Sq East, New York NY 10003, USA
| | - Mary G Egan
- American Museum of Natural History, Central Park West @79St., New York, NY 10024, USA
| | - Manpreet S Katari
- Department of Biology, New York University, 100 Washington Sq East, New York NY 10003, USA
| | - Eric D Brenner
- Department of Biology, New York University, 100 Washington Sq East, New York NY 10003, USA
- New York Botanical Garden Bronx, 200th Street and Kazimiroff Boulevard, Bronx, NY 10458, USA
| | - Dennis W Stevenson
- New York Botanical Garden Bronx, 200th Street and Kazimiroff Boulevard, Bronx, NY 10458, USA
| | - Gloria M Coruzzi
- Department of Biology, New York University, 100 Washington Sq East, New York NY 10003, USA
| | - Rob DeSalle
- American Museum of Natural History, Central Park West @79St., New York, NY 10024, USA
| |
Collapse
|
33
|
Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW. Widespread genome duplications throughout the history of flowering plants. Genome Res 2006; 16:738-49. [PMID: 16702410 PMCID: PMC1479859 DOI: 10.1101/gr.4825606] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic comparisons provide evidence for ancient genome-wide duplications in a diverse array of animals and plants. We developed a birth-death model to identify evidence for genome duplication in EST data, and applied a mixture model to estimate the age distribution of paralogous pairs identified in EST sets for species representing the basal-most extant flowering plant lineages. We found evidence for episodes of ancient genome-wide duplications in the basal angiosperm lineages including Nuphar advena (yellow water lily: Nymphaeaceae) and the magnoliids Persea americana (avocado: Lauraceae), Liriodendron tulipifera (tulip poplar: Magnoliaceae), and Saruma henryi (Aristolochiaceae). In addition, we detected independent genome duplications in the basal eudicot Eschscholzia californica (California poppy: Papaveraceae) and the basal monocot Acorus americanus (Acoraceae), both of which were distinct from duplications documented for ancestral grass (Poaceae) and core eudicot lineages. Among gymnosperms, we found equivocal evidence for ancient polyploidy in Welwitschia mirabilis (Gnetales) and no evidence for polyploidy in pine, although gymnosperms generally have much larger genomes than the angiosperms investigated. Cross-species sequence divergence estimates suggest that synonymous substitution rates in the basal angiosperms are less than half those previously reported for core eudicots and members of Poaceae. These lower substitution rates permit inference of older duplication events. We hypothesize that evidence of an ancient duplication observed in the Nuphar data may represent a genome duplication in the common ancestor of all or most extant angiosperms, except Amborella.
Collapse
Affiliation(s)
- Liying Cui
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
| | - P. Kerr Wall
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
| | - James H. Leebens-Mack
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
| | - Bruce G. Lindsay
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - Jeff J. Doyle
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA
| | - John E. Carlson
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
- School of Forest Resources
| | | | - Abdelali Barakat
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
| | - Victor A. Albert
- Natural History Museum, University of Oslo, NO-0318 Oslo, Norway
| | - Hong Ma
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
| | - Claude W. dePamphilis
- Department of Biology
- Institute of Molecular Evolutionary Genetics
- Huck Institutes of the Life Sciences
- Corresponding author.E-mail ; fax (814) 865-9131
| |
Collapse
|
34
|
Hajibabaei M, Xia J, Drouin G. Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. Mol Phylogenet Evol 2006; 40:208-17. [PMID: 16621615 DOI: 10.1016/j.ympev.2006.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 02/27/2006] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
The phylogenetic position of gnetophytes has long been controversial. We sequenced parts of the genes coding for the largest subunit of nuclear RNA polymerase I, II, and III and combined these sequences with those of four chloroplast genes, two mitochondrial genes, and 18S rRNA genes to address this issue. Both maximum likelihood and maximum parsimony analyses of the sites not affected by high substitution levels strongly support a phylogeny where gymnosperms and angiosperms are monophyletic, where cycads are at the base of gymnosperm tree and are followed by ginkgos, and where gnetophytes are grouped within conifers as the sister group of pines. The evolution of several morphological and molecular characters of gnetophytes and conifers will therefore need to be reinterpreted.
Collapse
Affiliation(s)
- Mehrdad Hajibabaei
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, Ont., Canada, K1N 6N5
| | | | | |
Collapse
|
35
|
Philippe H, Delsuc F, Brinkmann H, Lartillot N. Phylogenomics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.35.112202.130205] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Frédéric Delsuc
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Henner Brinkmann
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada; , ,
| | - Nicolas Lartillot
- Laboratoire d'Informatique, de Robotique et de Mathématiques de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, 34392 Montpellier Cedex 5, France;
| |
Collapse
|
36
|
Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O'Brien HE, Hall JC, Kress WJ, Sytsma KJ. Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc Biol Sci 2005; 272:1481-90. [PMID: 16011923 PMCID: PMC1559828 DOI: 10.1098/rspb.2005.3067] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a well-resolved, highly inclusive phylogeny for monocots, based on ndhF sequence variation, and use it to test a priori hypotheses that net venation and vertebrate-dispersed fleshy fruits should undergo concerted convergence, representing independent but often concurrent adaptations to shaded conditions. Our data demonstrate that net venation arose at least 26 times and was lost eight times over the past 90 million years; fleshy fruits arose at least 21 times and disappeared 11 times. Both traits show a highly significant pattern of concerted convergence (p<10(-9)), arising 16 times and disappearing four times in tandem. This phenomenon appears driven by even stronger tendencies for both traits to evolve in shade and be lost in open habitats (p<10(-13)-10(-29)). These patterns are among the strongest ever demonstrated for evolutionary convergence in individual traits and the predictability of evolution, and the strongest evidence yet uncovered for concerted convergence. The rate of adaptive shifts per taxon has declined exponentially over the past 90 million years, as expected when large-scale radiations fill adaptive zones.
Collapse
Affiliation(s)
- Thomas J Givnish
- Department of Agronomy, University of Wisconsin, Madison WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Huang J, Giannasi DE, Price RA. Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 2005; 35:48-59. [PMID: 15737581 DOI: 10.1016/j.ympev.2004.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 11/19/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Sequences of the nuclear ribosomal DNA internal transcribed spacer region 1 and the chloroplast-encoded genes maturase K and ribulose-1,5 biphosphate carboxylase large subunit were obtained from species of Ephedra (Ephedraceae) representing the geographic range and morphological diversity of the genus. Phylogenetic analyses of the DNA data indicate that relationships within the genus are better predicted by geographic region of origin than by ovulate cone characters. The sampled species with dry, winged (versus fleshy) ovulate cone bracts or single-seeded cones do not form monophyletic groups and therefore the previous classification systems of Ephedra based on these aspects of bract morphology appear to be largely unnatural. Three groups were identified among the Old World species studied, one comprising European and Mediterranean species and two including only Asian species. The sequence data suggest a possible early divergence of a New World clade of Ephedra from among the Old World groups. The South American species form a distinct clade apparently related to one of two groups of North American species, which accords with a frequent floristic pattern of close relationships between species groups in western South America and southwestern North America.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
38
|
Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005; 6:361-75. [PMID: 15861208 DOI: 10.1038/nrg1603] [Citation(s) in RCA: 748] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As more complete genomes are sequenced, phylogenetic analysis is entering a new era - that of phylogenomics. One branch of this expanding field aims to reconstruct the evolutionary history of organisms on the basis of the analysis of their genomes. Recent studies have demonstrated the power of this approach, which has the potential to provide answers to several fundamental evolutionary questions. However, challenges for the future have also been revealed. The very nature of the evolutionary history of organisms and the limitations of current phylogenetic reconstruction methods mean that part of the tree of life might prove difficult, if not impossible, to resolve with confidence.
Collapse
Affiliation(s)
- Frédéric Delsuc
- Canadian Institute for Advanced Research, Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | | | | |
Collapse
|
39
|
Abstract
Improved phylogenies and the accumulation of broad comparative data sets have opened the way for phylogenetic analyses to trace trait evolution in major groups of organisms. We arrayed seed mass data for 12,987 species on the seed plant phylogeny and show the history of seed size from the emergence of the angiosperms through to the present day. The largest single contributor to the present-day spread of seed mass was the divergence between angiosperms and gymnosperms, whereas the widest divergence was between Celastraceae and Parnassiaceae. Wide divergences in seed size were more often associated with divergences in growth form than with divergences in dispersal syndrome or latitude. Cross-species studies and evolutionary theory are consistent with this evidence that growth form and seed size evolve in a coordinated manner.
Collapse
Affiliation(s)
- Angela T Moles
- National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101-5304, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Friis EM, Pedersen KR, Crane PR. When Earth started blooming: insights from the fossil record. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:5-12. [PMID: 15653393 DOI: 10.1016/j.pbi.2004.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent palaeobotanical studies have greatly increased the quantity and quality of information available about the structure and relationships of Cretaceous angiosperms. Discoveries of extremely well preserved Cretaceous flowers have been especially informative and, combined with results from phylogenetic analyses of extant angiosperms (based mainly on molecular sequence data), have greatly clarified important aspects of early angiosperm diversification. Nevertheless, many questions still persist. The phylogenetic origin of the group itself remains as enigmatic as ever and, in some cases, newly introduced techniques from molecular biology have given confusing results. In particular, relationships between the five groups of extant seed plants remain uncertain, and it has sometimes proved difficult to reconcile estimates of the time of divergence between extant lineages made using a 'molecular clock' with the fossil record. One result, however, is becoming increasingly clear: a great deal of angiosperm diversity is extinct. Some groups of angiosperms were evidently more diverse in the past than they are today. In other cases, fossils defy assignment to extant groups at the family level or below. This raises the possibility that evolutionary conclusions based solely upon extant taxa that are merely relics of groups that were once much more diverse might be misled by the effects of extinction. It also introduces the possibility that some early enigmatic fossils might represent lineages that diverged from the main line of angiosperm evolution below the most recent common ancestor of all extant taxa. These, and other questions, are among those that need to be addressed by future palaeobotanical research.
Collapse
Affiliation(s)
- Else Marie Friis
- Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
| | | | | |
Collapse
|
41
|
Magallón SA, Sanderson MJ. ANGIOSPERM DIVERGENCE TIMES: THE EFFECT OF GENES, CODON POSITIONS, AND TIME CONSTRAINTS. Evolution 2005; 59:1653-70. [PMID: 16329238 DOI: 10.1554/04-565.1] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An understanding of the evolution of modern terrestrial ecosystems requires an understanding of the dynamics associated with angiosperm evolution, including the timing of their origin and diversification into their extraordinary present-day diversity. Molecular estimates of angiosperm age have varied widely, and many substantially predate the Early Cretaceous fossil appearance of the group. In this study, the effect of different genes, codon positions, and chronological constraints on node ages are examined on divergence time estimates across seed plants, with a special focus on angiosperms. Penalized likelihood was used to estimate divergence times on a phylogenetic hypothesis for seed plants derived from Bayesian analysis, with branch lengths estimated with maximum likelihood. The plastid genes atpB, psaA, psbB, and rbcL were used individually and in combination, using first and second, third, and the three codon positions, including and excluding age constraints on 20 nodes derived from a critical examination of the land-plant fossil record. The optimal level of rate smoothing according to each unconstrained and constrained dataset was obtained with penalized likelihood. Tests for a molecular clock revealed significantly unclocklike rates in all datasets. Addition of fossil constraints resulted in even greater departures from constancy. Consistently with significant deviations from a clock, estimated optimal smoothing values were low, but a strict correlation between rate heterogeneity and optimal smoothing value was not found. Age estimates for nodes across the phylogeny varied, sometimes substantially, with gene and codon position. Nevertheless, estimates based on the four concatenated genes are very similar to the mean of the four individual gene estimates. For any given node, unconstrained age estimates are more variable than constrained estimates and are frequently younger than well-substantiated fossil members of the clade. Constrained estimates of ages of clades are older than unconstrained estimates and oldest fossil representatives, sometimes substantially so. Angiosperm age estimates decreased as rate smoothing increased. Whereas the range of unconstrained angiosperm age estimates spans the fossil age of the clade, the range of constrained estimates is narrower (and older) than the earliest angiosperm fossils. Results unambiguously indicate the relevance of constraints in reducing the variability of ages derived from different partitions of the data and diminishing the effect of the smoothing parameter. Constrained optimizations of divergence times and substitution rates across the phylogeny suggest appreciably different evolutionary dynamics for angiosperms and for gymnosperms. Whereas the gymnosperm crown group originated shortly after the origin of seed plants, a long time elapsed before the origin of crown group angiosperms. Although absolute age estimates of angiosperms and angiosperm clades are older than their earliest fossils, the estimated pace of phylogenetic diversification largely agrees with the rapid appearance of angiosperm lineages in stratigraphic sequences.
Collapse
Affiliation(s)
- Susana A Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México.
| | | |
Collapse
|
42
|
Geuten K, Smets E, Schols P, Yuan YM, Janssens S, Küpfer P, Pyck N. Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Mol Phylogenet Evol 2004; 31:711-29. [PMID: 15062805 DOI: 10.1016/j.ympev.2003.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Revised: 09/17/2003] [Indexed: 11/29/2022]
Abstract
The balsaminoid Ericales, namely Balsaminaceae, Marcgraviaceae, Tetrameristaceae, and Pellicieraceae have been confidently placed at the base of Ericales, but the relations among these families have been resolved differently in recent analyses. Sister to this basal group is a large polytomy comprising all other families of Ericales, which is associated with short internodes. Because there are more than 13 kb of sequences for a large sampling of representatives, a thorough examination of the available data with novel methods seemed in place. Because of its computational speed, Bayesian phylogenetics allows for the use of parameter-rich models that can accommodate differences in the evolutionary process between partitions in a simultaneous analysis. In addition, there are recently proposed Bayesian strategies of assessing incongruence between partitions. We have applied these methods to the current problems in Ericales phylogeny, taking into account reported pitfalls in Bayesian analysis such as model selection uncertainty. Based on our results we infer several, previously unresolved relationships in the order Ericales. In balsaminoid families, we find that the closest relatives of Balsaminaceae are Marcgraviaceae. In the Ericales polytomy, we find strong support for Pentaphylacaceae sensu APG II as the sister group of Maesaceae. In addition, Symplocaceae receive a position as sister to Theaceae and these families form a monophyletic group together with Styracaceae-Diapensiaceae. At the base of this clade are Actinidiaceae and Clethraceae. The positions of Ebenaceae and Lecythidaceae remain uncertain.
Collapse
Affiliation(s)
- K Geuten
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, K.U.Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. AMERICAN JOURNAL OF BOTANY 2004; 91:1582-98. [PMID: 21652310 DOI: 10.3732/ajb.91.10.1582] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The phylogenetic structure of ferns (= monilophytes) is explored here, with a special focus on the early divergences among leptosporangiate lineages. Despite considerable progress in our understanding of fern relationships, a rigorous and comprehensive analysis of the early leptosporangiate divergences was lacking. Therefore, a data set was designed here to include critical taxa that were not included in earlier studies. More than 5000 bp from the plastid (rbcL, atpB, rps4) and the nuclear (18S rDNA) genomes were sequenced for 62 taxa. Phylogenetic analyses of these data (1) confirm that Osmundaceae are sister to the rest of the leptosporangiates, (2) resolve a diverse set of ferns formerly thought to be a subsequent grade as possibly monophyletic (((Dipteridaceae, Matoniaceae), Gleicheniaceae), Hymenophyllaceae), and (3) place schizaeoid ferns as sister to a large clade of "core leptosporangiates" that includes heterosporous ferns, tree ferns, and polypods. Divergence time estimates for ferns are reported from penalized likelihood analyses of our molecular data, with constraints from a reassessment of the fossil record.
Collapse
Affiliation(s)
- Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | | | | | | | | | | |
Collapse
|
44
|
Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, Chase MW, Farris JS, Stefanović S, Rice DW, Palmer JD, Soltis PS. Genome-scale data, angiosperm relationships, and "ending incongruence": a cautionary tale in phylogenetics. TRENDS IN PLANT SCIENCE 2004; 9:477-83. [PMID: 15465682 DOI: 10.1016/j.tplants.2004.08.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As systematists grapple with assembling the Tree of Life, recent studies have encouraged a genomic-scale approach, obtaining DNA sequence data for entire nuclear, plastid or mitochondrial genomes for a few exemplar taxa. Some have proclaimed that this comparative genomic strategy heralds the end of incongruence in phylogeny reconstruction. Although we applaud the use of many genes to resolve phylogenetic patterns, there is a significant caveat. In spite of, or even because of, the abundant data per taxon, whole-genome sequencing for a few exemplars can provide completely resolved and strongly supported, but incorrect, evolutionary reconstructions. We provide a conspicuous example that includes Amborella, the putative sister of all other extant angiosperms, highlighting the limits of phylogenetics when whole genomes are used but taxon sampling is poor.
Collapse
Affiliation(s)
- Douglas E Soltis
- Department of Botany and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burleigh JG, Mathews S. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. AMERICAN JOURNAL OF BOTANY 2004; 91:1599-613. [PMID: 21652311 DOI: 10.3732/ajb.91.10.1599] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Effects of taxonomic sampling and conflicting signal on the inference of seed plant trees supported in previous molecular analyses were explored using 13 single-locus data sets. Changing the number of taxa in single-locus analyses had limited effects on log likelihood differences between the gnepine (Gnetales plus Pinaceae) and gnetifer (Gnetales plus conifers) trees. Distinguishing among these trees also was little affected by the use of different substitution parameters. The 13-locus combined data set was partitioned into nine classes based on substitution rates. Sites evolving at intermediate rates had the best likelihood and parsimony scores on gnepine trees, and those evolving at the fastest rates had the best parsimony scores on Gnetales-sister trees (Gnetales plus other seed plants). When the fastest evolving sites were excluded from parsimony analyses, well-supported gnepine trees were inferred from the combined data and from each genomic partition. When all sites were included, Gnetales-sister trees were inferred from the combined data, whereas a different tree was inferred from each genomic partition. Maximum likelihood trees from the combined data and from each genomic partition were well-supported gnepine trees. A preliminary stratigraphic test highlights the poor fit of Gnetales-sister trees to the fossil data.
Collapse
Affiliation(s)
- J Gordon Burleigh
- Section of Evolution and Ecology, University of California, Davis, California 95616 USA
| | | |
Collapse
|
46
|
Friedman WE, Moore RC, Purugganan MD. The evolution of plant development. AMERICAN JOURNAL OF BOTANY 2004; 91:1726-1741. [PMID: 21652320 DOI: 10.3732/ajb.91.10.1726] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.
Collapse
Affiliation(s)
- William E Friedman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | | | |
Collapse
|
47
|
Crane PR, Herendeen P, Friis EM. Fossils and plant phylogeny. AMERICAN JOURNAL OF BOTANY 2004; 91:1683-99. [PMID: 21652317 DOI: 10.3732/ajb.91.10.1683] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Developing a detailed estimate of plant phylogeny is the key first step toward a more sophisticated and particularized understanding of plant evolution. At many levels in the hierarchy of plant life, it will be impossible to develop an adequate understanding of plant phylogeny without taking into account the additional diversity provided by fossil plants. This is especially the case for relatively deep divergences among extant lineages that have a long evolutionary history and in which much of the relevant diversity has been lost by extinction. In such circumstances, attempts to integrate data and interpretations from extant and fossil plants stand the best chance of success. For this to be possible, what will be required is meticulous and thorough descriptions of fossil material, thoughtful and rigorous analysis of characters, and careful comparison of extant and fossil taxa, as a basis for determining their systematic relationships.
Collapse
Affiliation(s)
- Peter R Crane
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | | | | |
Collapse
|
48
|
Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol Biol 2004; 4:35. [PMID: 15453916 PMCID: PMC543456 DOI: 10.1186/1471-2148-4-35] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 09/28/2004] [Indexed: 11/24/2022] Open
Abstract
Background Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505), whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots. Results We used two main approaches to test this hypothesis. First, we sequenced a large number of chloroplast genes from the monocot Acorus and added these plus previously sequenced Acorus genes to the Goremykin et al. (2003) dataset in order to explore the effects of altered monocot sampling under the same analytical conditions used in their study. With Acorus alone representing monocots, strongly supported Amborella-sister trees were obtained in all maximum likelihood and parsimony analyses, and in some distance-based analyses. Trees with both Acorus and grasses gave either a well-supported Amborella-sister topology or else a highly unlikely topology with 100% support for grasses-sister and paraphyly of monocots (i.e., Acorus sister to "dicots" rather than to grasses). Second, we reanalyzed the Goremykin et al. (2003) dataset focusing on methods designed to account for rate heterogeneity. These analyses supported an Amborella-sister hypothesis, with bootstrap support values often conflicting strongly with cognate analyses performed without allowing for rate heterogeneity. In addition, we carried out a limited set of analyses that included the chloroplast genome of Nymphaea, whose position as a basal angiosperm was also, and very recently, challenged. Conclusions These analyses show that Amborella (or Amborella plus Nymphaea), but not monocots, is the sister group of all other angiosperms among this limited set of taxa and that the grasses-sister topology is a long-branch-attraction artifact leading to incorrect rooting of angiosperms. These results highlight the danger of having lots of characters but too few and, especially, molecularly divergent taxa, a situation long recognized as potentially producing strongly misleading molecular trees. They also emphasize the importance in phylogenetic analysis of using appropriate evolutionary models.
Collapse
|
49
|
Miller RE, McDonald JA, Manos PS. Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. AMERICAN JOURNAL OF BOTANY 2004; 91:1208-18. [PMID: 21653478 DOI: 10.3732/ajb.91.8.1208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A Bayesian phylogenetic analysis of 36 Ipomoea species using sequence data from the internal transcribed spacer region was compared with classification schemes based on traditional methods and a previously published cpDNA restriction fragment length polymorphism (RFLP) study. These molecular studies support a diversity of groups that were circumscribed on the basis of phenetic principles and agree generally with the results from cpDNA RFLP analyses. The congruence between the phylogenetic hypotheses based on new molecular data and the understanding of relationships developed in earlier studies indicate that these classifications may reflect evolutionary history. Two large clades of species, with one including sections Tricolores, Calonyction, and Pharbitis and the other including sections Mina and Leptocallis, were identified. Furthermore, morphologically distinct groups of Ipomoea species received support from the DNA sequence data. Indices of convergence for the Markov chain Monte Carlo (MCMC) in the Bayesian phylogenetic analysis were evaluated. A limited range of posterior probabilities for each node in the trees from a set of five MCMC samples provides a useful index of convergence. Bayesian node support values were generally higher than bootstrap values from a maximum parsimony analysis. This is consistent with the notion that these measures of support estimate different qualities of the data.
Collapse
Affiliation(s)
- Richard E Miller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402 USA
| | | | | |
Collapse
|
50
|
Cameron KM. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 2004; 31:1157-80. [PMID: 15120407 DOI: 10.1016/j.ympev.2003.10.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/17/2003] [Indexed: 10/26/2022]
Abstract
DNA sequences of the plastid gene psaB were completed for 182 species of Orchidaceae (representing 150 different genera) and outgroup families in Asparagales. These data were analyzed using parsimony, and resulting trees were compared to a rbcL phylogeny of Orchidaceae for the same set of taxa after an additional 30 new rbcL sequences were added to a previously published matrix. The psaB tree topology is similar to the rbcL tree, although the psaB data contain less homoplasy and provide greater bootstrap support than rbcL alone. In combination, the two-gene tree recovers the five monophyletic subfamilial clades currently recognized in Orchidaceae, but fails to resolve the positions of Cypripedioideae and Vanilloideae. These new topologies help to clarify some of the anomalous results recovered when rbcL is analyzed alone. Both genes appear to be absent from the plastid genome of several achlorophyllous orchids, but are present in the form of presumably non-functional pseudogenes in Cyrtosia. This study is the first to document the utility of psaB sequences for phylogenetic studies of plants below the family level.
Collapse
Affiliation(s)
- Kenneth M Cameron
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, NY 10458-5126, USA.
| |
Collapse
|