1
|
Yang X, Lai L, Qiang X, Deng M, Xie Y, Shi X, Kou Z. Towards Chinese text and DNA shift encoding scheme based on biomass plasmid storage. FRONTIERS IN BIOINFORMATICS 2023; 3:1276934. [PMID: 37900965 PMCID: PMC10602677 DOI: 10.3389/fbinf.2023.1276934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
DNA, as the storage medium in organisms, can address the shortcomings of existing electromagnetic storage media, such as low information density, high maintenance power consumption, and short storage time. Current research on DNA storage mainly focuses on designing corresponding encoders to convert binary data into DNA base data that meets biological constraints. We have created a new Chinese character code table that enables exceptionally high information storage density for storing Chinese characters (compared to traditional UTF-8 encoding). To meet biological constraints, we have devised a DNA shift coding scheme with low algorithmic complexity, which can encode any strand of DNA even has excessively long homopolymer. The designed DNA sequence will be stored in a double-stranded plasmid of 744bp, ensuring high reliability during storage. Additionally, the plasmid's resistance to environmental interference ensuring long-term stable information storage. Moreover, it can be replicated at a lower cost.
Collapse
Affiliation(s)
- Xu Yang
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Langwen Lai
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Xiaoli Qiang
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Ming Deng
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Yuhao Xie
- School of Mathematical Science, Inner Mongolia University, Hohhot, China
| | - Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Zheng Kou
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
2
|
Scaramanga J, Reiss MJ. Evolutionary stasis: creationism, evolution and climate change in the Accelerated Christian Education curriculum. CULTURAL STUDIES OF SCIENCE EDUCATION 2023; 18:1-19. [PMID: 37360053 PMCID: PMC10191816 DOI: 10.1007/s11422-023-10187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
There has been little consideration in the science education literature of schools or curricula that advocate creationism. Accelerated Christian Education (ACE) is among the world's largest providers of creationist science materials with a curriculum divided into a system of workbooks which students complete at their own speed. This article examines the ways in which ACE presents particular areas of science that it considers to be contentious, namely evolution and climate change. The ACE curriculum has recently been rewritten, and we show that, like previous editions, the current curriculum relies on rote memorisation to the exclusion of other styles of learning, and that information presented is often misleading or distorted. Religious explanations of natural phenomena are sometimes given in place of scientific ones, and creationist assumptions are inserted into lessons not directly related to evolution or the Big Bang. Those who reject creationism are depicted as making an immoral choice. ACE's recent curricula also add material denying the role of humans in climate change. It is argued that both the teaching methods and content of the ACE curriculum place students at an educational disadvantage.
Collapse
|
3
|
Zhao N, Park S, Zhang YQ, Nie ZL, Ge XJ, Kim S, Yan HF. Fingerprints of climatic changes through the late Cenozoic in southern Asian flora: Magnolia section Michelia (Magnoliaceae). ANNALS OF BOTANY 2022; 130:41-52. [PMID: 35460565 PMCID: PMC9295916 DOI: 10.1093/aob/mcac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Ongoing global warming is a challenge for humankind. A series of drastic climatic changes have been proven to have occurred throughout the Cenozoic based on a variety of geological evidence, which helps to better understand our planet's future climate. Notably, extant biomes have recorded drastic environmental shifts. The climate in southern Asia, which hosts high biodiversity, is deeply impacted by the Asian monsoon. The origins and evolutionary dynamics of biomes occurring between the tropics and sub-tropics in southern Asia have probably been deeply impacted by climatic changes; however, these aspects remain poorly studied. We tested whether the evolutionary dynamics of the above biomes have recorded the drastic, late Cenozoic environmental shifts, by focusing on Magnolia section Michelia of the family Magnoliaceae. METHODS We established a fine time-calibrated phylogeny of M. section Michelia based on complete plastid genomes and inferred its ancestral ranges. Finally, we estimated the evolutionary dynamics of this section through time, determining its diversification rate and the dispersal events that occurred between tropical and sub-tropical areas. KEY RESULTS The tropical origin of M. section Michelia was dated to the late Oligocene; however, the diversification of its core group (i.e. M. section Michelia subsection Michelia) has occurred mainly from the late Miocene onward. Two key evolutionary shifts (dated approx. 8 and approx. 3 million years ago, respectively) were identified, each of them probably in response to drastic climatic changes. CONCLUSION Here, we inferred the underlying evolutionary dynamics of biomes in southern Asia, which probably reflect late Cenozoic climatic changes. The occurrence of modern Asian monsoons was probably fundamental for the origin of M. section Michelia; moreover, the occurrence of asymmetric dispersal events between the tropics and sub-tropics hint at an adaptation strategy of M. section Michelia to global cooling, in agreement with the tropical conservatism hypothesis.
Collapse
Affiliation(s)
| | | | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | |
Collapse
|
4
|
The evolutionary history of the Caribbean magnolias (Magnoliaceae): Testing species delimitations and biogeographical hypotheses using molecular data. Mol Phylogenet Evol 2021; 167:107359. [PMID: 34793981 DOI: 10.1016/j.ympev.2021.107359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
The Caribbean islands provide an ideal setting for studying biodiversity, given their complex geological and environmental history, and their historical and current geographical proximity to the American mainland. Magnolia, a flagship tree genus that has 15 endemic and threatened taxa (12 species and 3 subspecies) on the Caribbean islands, offers an excellent case study to empirically test Caribbean biogeographical hypotheses. We constructed phylogenetic hypotheses to: (1) reveal their evolutionary history, (2) test the current largely morphology-based classification and assess species limits, and (3) investigate major biogeographic hypotheses proposed for the region. Nuclear and chloroplast DNA sequence data of all 15 Caribbean Magnolia taxa are included, supplemented by a selection of American mainland species, and species representing most major clades of the Magnoliaceae family. We constructed phylogenetic hypotheses in a time-calibrated Bayesian framework, supplemented with haplotype network analyses and ancestral range estimations. Genetic synapomorphies in the studied markers confirm the species limits of 14 out of 15 morphologically recognizable Caribbean Magnolia taxa. There is evidence for four colonization events of Magnolia into the Caribbean from the American mainland, which most likely occurred by overwater dispersal, given age estimates of maximum 16 mya for their presence on the Caribbean islands.
Collapse
|
5
|
Chávez-Cortázar A, Oyama K, Ochoa-Zavala M, Mata-Rosas M, Veltjen E, Samain MS, Quesada M. Conservation genetics of relict tropical species of Magnolia (section Macrophylla). CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractSpecial conservation efforts should be made for relict species, as they usually have small population sizes and restricted distributions, placing them in critical extinction risk. To achieve conservation, information about genetic diversity distribution is needed. Here, using nine nuclear microsatellites, we analyzed 23 populations of five recently described species of Magnolia distributed in Mexico, which were previously assigned to Magnolia dealbata. We aimed to determine the level of genetic diversity and the distribution of genetic variation and proposed conservation measures. Compared to other endemic and relict species, we found a moderate level of genetic diversity in most populations; however, we identified two populations with no genetic variation. Additionally, we found evidence of positive values of inbreeding likely due to geitonogamy. We found a strong population structure, low effective population size, and no evidence of bottlenecks. Patterns of genetic differentiation did not support the morphological distinction of five species, so we hypothesized that the gene pools may instead represent well-differentiated populations of a single species. We argue that the pattern of genetic differentiation is explained by the natural fragmentation of the cloud forests after glaciation events, and the effects of genetic drift in small populations poorly connected by gene flow. Despite the moderate levels of genetic diversity, special attention is needed to guarantee conservation, with emphasis on the populations in the central region of the country as well as the valuable populations identified in the southwestern region.
Collapse
|
6
|
Calede JJM, Orcutt JD, Kehl WA, Richards BD. The first tetrapod from the mid-Miocene Clarkia lagerstätte (Idaho, USA). PeerJ 2018; 6:e4880. [PMID: 29900070 PMCID: PMC5995101 DOI: 10.7717/peerj.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/10/2018] [Indexed: 11/24/2022] Open
Abstract
The Clarkia lagerstätte (Latah Formation) of Idaho is well known for its beautifully preserved plant fossils as well as a fauna of insects and fish. Here we present the first known tetrapod fossil from these deposits. This specimen, recovered from the lower anoxic zone of the beds, is preserved as a carbonaceous film of a partial skeleton associated with a partial lower incisor and some tooth fragments. The morphology of the teeth indicates that the first tetrapod reported from Clarkia is a rodent. Its skeletal morphology as well as its bunodont and brachydont dentition suggests that it is a member of the squirrel family (Sciuridae). It is a large specimen that cannot be assigned to a known genus. Instead, it appears to represent the first occurrence of a new taxon with particularly gracile postcranial morphology likely indicative of an arboreal ecology. This new specimen is a rare glimpse into the poorly known arboreal mammal fossil record of the Neogene. It supports a greater taxonomic and ecological diversity of Miocene Sciuridae than previously recognized and offers new lines of inquiry in the paleoecological research enabled by the unique preservation conditions of the Clarkia biota.
Collapse
Affiliation(s)
- Jonathan J M Calede
- Department of Evolution, Ecology & Organismal Biology, Ohio State University, Marion, OH, USA
| | - John D Orcutt
- Department of Biology, Gonzaga University, Spokane, WA, USA
| | | | - Bill D Richards
- Department of Geology & Geography, North Idaho College, Coeur d'Alene, ID, USA
| |
Collapse
|
7
|
Panda D, Molla KA, Baig MJ, Swain A, Behera D, Dash M. DNA as a digital information storage device: hope or hype? 3 Biotech 2018; 8:239. [PMID: 29744271 DOI: 10.1007/s13205-018-1246-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/11/2018] [Indexed: 12/01/2022] Open
Abstract
The total digital information today amounts to 3.52 × 1022 bits globally, and at its consistent exponential rate of growth is expected to reach 3 × 1024 bits by 2040. Data storage density of silicon chips is limited, and magnetic tapes used to maintain large-scale permanent archives begin to deteriorate within 20 years. Since silicon has limited data storage ability and serious limitations, such as human health hazards and environmental pollution, researchers across the world are intently searching for an appropriate alternative. Deoxyribonucleic acid (DNA) is an appealing option for such a purpose due to its endurance, a higher degree of compaction, and similarity to the sequential code of 0's and 1's as found in a computer. This emerging field of DNA as means of data storage has the potential to transform science fiction into reality, wherein a device that can fit in our palms can accommodate the information of the entire world, as latest research has revealed that just four grams of DNA could store the annual global digital information. DNA has all the properties to supersede the conventional hard disk, as it is capable of retaining ten times more data, has a thousandfold storage density, and consumes 108 times less power to store a similar amount of data. Although DNA has an enormous potential as a data storage device of the future, multiple bottlenecks such as exorbitant costs, excruciatingly slow writing and reading mechanisms, and vulnerability to mutations or errors need to be resolved. In this review, we have critically analyzed the emergence of DNA as a molecular storage device for the future, its ability to address the future digital data crunch, potential challenges in achieving this objective, various current industrial initiatives, and major breakthroughs.
Collapse
Affiliation(s)
- Darshan Panda
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | | | - Alaka Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | - Manaswini Dash
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| |
Collapse
|
8
|
Punyasena SW, Smith SY. Bioinformatic and biometric methods in plant morphology 1. APPLICATIONS IN PLANT SCIENCES 2014; 2:apps.1400071. [PMCID: PMC4141717 DOI: 10.3732/apps.1400071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 06/05/2023]
Abstract
Recent advances in microscopy, imaging, and data analyses have permitted both the greater application of quantitative methods and the collection of large data sets that can be used to investigate plant morphology. This special issue, the first for Applications in Plant Sciences, presents a collection of papers highlighting recent methods in the quantitative study of plant form. These emerging biometric and bioinformatic approaches to plant sciences are critical for better understanding how morphology relates to ecology, physiology, genotype, and evolutionary and phylogenetic history. From microscopic pollen grains and charcoal particles, to macroscopic leaves and whole root systems, the methods presented include automated classification and identification, geometric morphometrics, and skeleton networks, as well as tests of the limits of human assessment. All demonstrate a clear need for these computational and morphometric approaches in order to increase the consistency, objectivity, and throughput of plant morphological studies.
Collapse
Affiliation(s)
- Surangi W. Punyasena
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave., Urbana, Illinois 61801 USA
| | - Selena Y. Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, 1100 N. University Ave., University of Michigan, Ann Arbor, Michigan 48109 USA
| |
Collapse
|
9
|
Rosselló JA. The never-ending story of geologically ancient DNA: was the model plantArabidopsisthe source of Miocene Dominican amber? Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Josep A. Rosselló
- Jardín Botánico; Universidad de Valencia; c/Quart 80 E-46008 Valencia Spain
- Marimurtra Bot. Garden; Carl Faust Fdn. PO Box 112 Blanes E-17300 Catalonia Spain
| |
Collapse
|
10
|
Kvist S, Siddall ME. Phylogenomics of Annelida revisited: a cladistic approach using genome-wide expressed sequence tag data mining and examining the effects of missing data. Cladistics 2013; 29:435-448. [DOI: 10.1111/cla.12015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2012] [Indexed: 11/28/2022] Open
|
11
|
Rizzi E, Lari M, Gigli E, De Bellis G, Caramelli D. Ancient DNA studies: new perspectives on old samples. Genet Sel Evol 2012; 44:21. [PMID: 22697611 PMCID: PMC3390907 DOI: 10.1186/1297-9686-44-21] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 06/14/2012] [Indexed: 11/24/2022] Open
Abstract
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field.
Collapse
Affiliation(s)
- Ermanno Rizzi
- Institute for Biomedical Technologies, National Research Council, Via F.lli Cervi 93, Segrate, Milan 20090, Italy
| | | | | | | | | |
Collapse
|
12
|
The blossoming of plant archaeogenetics. Ann Anat 2012; 194:146-56. [DOI: 10.1016/j.aanat.2011.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/19/2022]
|
13
|
Wang X, Liu W, Du K. Palaeontological evidence of membrane relationship in step-by-step membrane fusion. Mol Membr Biol 2011; 28:115-22. [PMID: 21190428 PMCID: PMC3038465 DOI: 10.3109/09687688.2010.536169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/18/2010] [Indexed: 11/13/2022]
Abstract
Studies on membrane fusion in living cells indicate that initiation of membrane fusion is a transient and hard to capture process. Despite previous research, membrane behaviour at this point is still poorly understood. Recent palaeobotanical research has revealed snapshots of membrane fusion in a 15-million-year-old fossil pinaceous cone. To reveal the membrane behaviour during the fusion, we conducted more observations on the same fossil material. Several discernible steps of membrane fusion have been fixed naturally and observed in the fossil material. This observation provides transmission electron microscope (TEM) images of the transient intermediate stage and clearly shows the relationship between membranes. Observing such a transient phenomenon in fossil material implies that the fixing was most likely accomplished quickly by a natural process. The mechanism behind this phenomenon is clearly worthy of further enquiry.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing, P R China.
| | | | | |
Collapse
|
14
|
Ho SYW, Gilbert MTP. Ancient mitogenomics. Mitochondrion 2009; 10:1-11. [PMID: 19788938 DOI: 10.1016/j.mito.2009.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
The mitochondrial genome has been the traditional focus of most research into ancient DNA, owing to its high copy number and population-level variability. Despite this long-standing interest in mitochondrial DNA, it was only in 2001 that the first complete ancient mitogenomic sequences were obtained. As a result of various methodological developments, including the introduction of high-throughput sequencing techniques, the total number of ancient mitogenome sequences has increased rapidly over the past few years. In this review, we present a brief history of ancient mitogenomics and describe the technical challenges that face researchers in the field. We catalogue the diverse sequencing methods and source materials used to obtain ancient mitogenomic sequences, summarise the associated genetic and phylogenetic studies that have been conducted, and evaluate the future prospects of the field.
Collapse
Affiliation(s)
- Simon Y W Ho
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 0200, Australia.
| | | |
Collapse
|
15
|
Nie ZL, Wen J, Azuma H, Qiu YL, Sun H, Meng Y, Sun WB, Zimmer EA. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol Phylogenet Evol 2008; 48:1027-40. [PMID: 18619549 DOI: 10.1016/j.ympev.2008.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 06/12/2008] [Accepted: 06/15/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Ze-Long Nie
- Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang X, Liu W, Cui J, Du K. Paleontological evidence for membrane fusion between a unit membrane and a half-unit membrane. Mol Membr Biol 2007; 24:496-506. [PMID: 17710653 DOI: 10.1080/09687680701446973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Membrane fusion is of fundamental importance for many biological processes and has been a topic of intensive research in past decades with several models being proposed for it. Fossils had previously not been considered relevant to studies on membrane fusion. But here two different membrane fusion patterns are reported in the same well-preserved fossil plant from the Miocene (15-20 million years old) at Clarkia, Idaho, US. Scanning electron microscope, transmission electron microscope, and traditional studies reveal the vesicles in various states (even transient semi-fusion) of membrane fusion, and thus shed new light on their membrane structure and fusion during exocytoses. The new evidence suggests that vesicles in plant cells may have not only a unit membrane but also a half-unit membrane, and that a previously overlooked membrane fusion pattern exists in plant cells. This unexpected result from an unexpected material not only marks the first evidence of on-going physiological activities in fossil plants, but also raises questions on membrane fusion in recent plants.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing, P. R. China.
| | | | | | | |
Collapse
|
17
|
Hermsen EJ, Hendricks JR. A method for constraining the age of origination of derived characters. Cladistics 2007; 23:169-179. [PMID: 34905848 DOI: 10.1111/j.1096-0031.2006.00129.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Fossils are the physical records of the history of morphological character evolution on Earth and can provide valuable information concerning the sequence and timing of origination of derived characters. Knowledge of the timing of origination of synapomorphies makes it possible to estimate when unobserved character changes occurred in the geological past. Here we present a method for estimating the temporal interval during which synapomorphies evolved. The method requires either direct inclusion of fossil taxa (with or without extant taxa) in cladistic analyses based on morphological or combined data, or indirectly using the "molecular scaffold approach." Second, characters of interest are mapped on a most parsimonious tree and "minimum age node mapping" is used to place minimum ages on the nodes of the tree. Finally, characters of interest are evaluated for younger and/or older temporal constraints on the time of their origination; application of the older bound assumes ancestry of fossil terminals included in the tree. A key is provided herein describing the method. Among other applications, this approach has the potential to provide a powerful test of purported evolutionary cause-effect relationships. For example, the method has the ability to discover that derived characters of suggested adaptational significance may considerably pre-date the cause(s) that are hypothesized to have favored their establishment.
Collapse
Affiliation(s)
| | - Jonathan R Hendricks
- Department of Ecology and Evolutionary Biology, Department of Geology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
18
|
Hebsgaard MB, Wiuf C, Gilbert MTP, Glenner H, Willerslev E. Evaluating Neanderthal genetics and phylogeny. J Mol Evol 2006; 64:50-60. [PMID: 17146600 DOI: 10.1007/s00239-006-0017-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 08/29/2006] [Indexed: 11/28/2022]
Abstract
The retrieval of Neanderthal (Homo neanderthalsensis) mitochondrial DNA is thought to be among the most significant ancient DNA contributions to date, allowing conflicting hypotheses on modern human (Homo sapiens) evolution to be tested directly. Recently, however, both the authenticity of the Neanderthal sequences and their phylogenetic position outside contemporary human diversity have been questioned. Using Bayesian inference and the largest dataset to date, we find strong support for a monophyletic Neanderthal clade outside the diversity of contemporary humans, in agreement with the expectations of the Out-of-Africa replacement model of modern human origin. From average pairwise sequence differences, we obtain support for claims that the first published Neanderthal sequence may include errors due to postmortem damage in the template molecules for PCR. In contrast, we find that recent results implying that the Neanderthal sequences are products of PCR artifacts are not well supported, suffering from inadequate experimental design and a presumably high percentage (>68%) of chimeric sequences due to "jumping PCR" events.
Collapse
Affiliation(s)
- Martin B Hebsgaard
- Centré for Ancient Genetics, Niels Bohr Institute and Biological Institute, University of Copenhagen, Juliane Maries vej 30, Copenhagen DK-2100, Denmark
| | | | | | | | | |
Collapse
|
19
|
Abstract
In an application of modern genomic methods to material from the Pleistocene, a recent study has undertaken to clone and sequence a portion of the ancient
genome of the cave bear. Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.
Collapse
Affiliation(s)
- A Rus Hoelzel
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
20
|
Renner SS. Relaxed molecular clocks for dating historical plant dispersal events. TRENDS IN PLANT SCIENCE 2005; 10:550-8. [PMID: 16226053 DOI: 10.1016/j.tplants.2005.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 09/12/2005] [Accepted: 09/28/2005] [Indexed: 05/04/2023]
Abstract
Age estimation from molecular sequences has emerged as a powerful tool for inferring when a plant lineage arrived in a particular area. Knowing the tenure of lineages within a region is key to understanding the evolution of traits, the evolution of biotic interactions, and the evolution of floras. New analytical methods model change in substitution rates along individual branches of a phylogenetic tree by combining molecular data with time constraints, usually from fossils. These "relaxed clock" approaches can be applied to several gene regions that need not all have the same substitution rates, and they can also incorporate multiple simultaneous fossil calibrations. Since 1995, at least 100 plant biogeographic studies have used molecular-clock dating, and about a fifth has used relaxed clocks. Many of these report evidence of long-distance dispersal. Meta-analyses of studies from the same geographic region can identify directional biases because of prevailing wind or water currents and the relative position and size of landmasses.
Collapse
Affiliation(s)
- Susanne S Renner
- Department of Biology, Ludwig Maximilians University, D-80638 Munich, Germany.
| |
Collapse
|
21
|
|
22
|
Abstract
Studies continue to report ancient DNA sequences and viable microbial cells that are many millions of years old. In this paper we evaluate some of the most extravagant claims of geologically ancient DNA. We conclude that although exciting, the reports suffer from inadequate experimental setup and insufficient authentication of results. Consequently, it remains doubtful whether amplifiable DNA sequences and viable bacteria can survive over geological timescales. To enhance the credibility of future studies and assist in discarding false-positive results, we propose a rigorous set of authentication criteria for work with geologically ancient DNA.
Collapse
Affiliation(s)
- Martin B Hebsgaard
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK OX1 3PS
| | | | | |
Collapse
|
23
|
Abstract
In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets.
Collapse
|
24
|
Abstract
Ancient DNA has received much attention since the mid-1980s, when the first sequence of an extinct animal species was recovered from a museum specimen. Since then, the majority of ancient DNA studies have focused predominantly on animal species, while studies in plant palaeogenetics have been rather limited, with the notable exception of cultivated species found in archaeological sites. Here, we outline the recent developments in the analysis of plant ancient DNA. We emphasize the trend from species identification to population-level investigation and highlight the potential and the difficulties in this field, related to DNA preservation and to risks of contamination. Further efforts towards the analysis of ancient DNA from the abundant store of fossil plant remains should provide new research opportunities in palaeoecology and phylogeography. In particular, intraspecific variation should be considered not only in cultivated plants but also in wild taxa if palaeogenetics is to become a fully emancipated field of plant research.
Collapse
Affiliation(s)
- Felix Gugerli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | | | | |
Collapse
|