1
|
Wang Y, Zhao DG. Cloning and functional characterization of the peptide deformylase encoding gene EuPDF1B from Eucommia ulmoides Oliv. Sci Rep 2024; 14:11587. [PMID: 38773239 PMCID: PMC11109091 DOI: 10.1038/s41598-024-62512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - De-Gang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
2
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Padilla-Ramírez JS, Soria-Guerra RE, Morales-Domínguez JF. Identification in silico and expression analysis of a β-1-4-endoglucanase and β-galactosidase genes related to ripening in guava fruit. J Genet Eng Biotechnol 2022; 20:3. [PMID: 34978628 PMCID: PMC8724366 DOI: 10.1186/s43141-021-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the β-1, 4-endoglucanase 17 (BEG) which hydrolyze β-1, 4 bonds from cellulose and hemicellulose, and (b) β-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit. RESULTS A fragment of a β-1, 4-endoglucanase 17 (PgE17), and another of a β-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states. CONCLUSIONS A β-1, 4-endoglucanase 17, and β-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.
Collapse
Affiliation(s)
- Mario A Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - José S Padilla-Ramírez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Pabellón, KM 32.5. Carretera Aguascalientes-Zacatecas, C.P. 20660, Pabellón de Arteaga, Aguascalientes, Ags, México
| | - Ruth E Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6-Zona Universitaria, C.P. 78210, San Luis Potosí, S.L.P., México
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México.
| |
Collapse
|
3
|
Frank JA, Lorimer D, Youle M, Witte P, Craig T, Abendroth J, Rohwer F, Edwards RA, Segall AM, Burgin AB. Structure and function of a cyanophage-encoded peptide deformylase. THE ISME JOURNAL 2013; 7:1150-60. [PMID: 23407310 PMCID: PMC3660681 DOI: 10.1038/ismej.2013.4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/01/2012] [Accepted: 12/07/2012] [Indexed: 12/19/2022]
Abstract
Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities.
Collapse
Affiliation(s)
- Jeremy A Frank
- Department of Biology, San Diego State University, San Diego, CA 92182-7720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fernández-San Millán A, Obregón P, Veramendi J. Over-expression of peptide deformylase in chloroplasts confers actinonin resistance, but is not a suitable selective marker system for plastid transformation. Transgenic Res 2011; 20:613-24. [PMID: 20936344 DOI: 10.1007/s11248-010-9447-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/23/2010] [Indexed: 01/09/2023]
Abstract
Arabidopsis thaliana peptide deformylase PDF1B was expressed in tobacco chloroplasts using spectinomycin as the selective agent. The foreign protein accumulated in chloroplasts (6% of the total soluble protein) and was enzymatically active. Transplastomic plants were evaluated for resistance to the peptide deformylase inhibitor actinonin. In vitro seed germination in the presence of actinonin and in planta application of the inhibitor demonstrated the resistance of the transformed plants. In addition, transgenic leaf explants were able to develop shoots via organogenesis in the presence of actinonin. However, when the combination of the PDF1B gene and actinonin was used as the primary selective marker system for chloroplast transformation of tobacco, all developed shoots were escapes. Therefore, under the experimental conditions tested, the use of this system for plastid transformation would be limited to function as a secondary selective marker.
Collapse
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | | | | |
Collapse
|
5
|
Topp SH, Rasmussen SK, Mibus H, Sander L. A search for growth related genes in Kalanchoë blossfeldiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1024-30. [PMID: 19819156 DOI: 10.1016/j.plaphy.2009.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 05/28/2023]
Abstract
Differential display of mRNA from four sets of contrasting phenotypes were carried out in order to identify and isolate genes associated with elongating growth of Kalanchoë blossfeldiana. A total of 17 unique differential expressed cDNA fragments were sequenced and 12 showed homology to genes in other plant species. Three genes were subsequently tested for growth related activity by Virus Induced Gene Silencing (VIGS) in Nicotiana benthamiana. One gene fragment (13C) resulted in plants with significantly reduced growth (N = 20, P = 0.05, one-tailed students t-test) from day 25 after virus infection. Full-length cDNA and genomic DNA sequences were obtained by inverse PCR and thermal asymmetric interlaced (TAIL) PCR and the gene was named KbORF1. The predicted gene is 2244 bp long with three exons of 411 bp in total encoding a protein of 137 amino acid residues with homologs widespread among plants. The protein has no known function, but its expression has been confirmed in a proteomic study of Arabidopsis. Southern blot analysis shows two hybridizing fragments in agreement with the tetraploid nature of K. blossfeldiana. Fragment 13C comprises 446 bp of the gene, and the portion of 13C conferring growth retardation by VIGS is located 10 bp into the second intron indicating a regulatory function of this part of the KbORF1 mRNA. Differential display in combination with VIGS as a screening method proved to be a good functional approach not only to search for genes of interest, but also to isolate expressed genetic regulatory domains.
Collapse
Affiliation(s)
- Sine H Topp
- University of Copenhagen, Faculty of Life Sciences, Department of Agriculture and Ecology, Plant and Soil Sciences Laboratory, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
6
|
Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture. Biochem J 2008; 413:417-27. [PMID: 18412546 DOI: 10.1042/bj20071641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 A (1 A=0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr(178) as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr(2) in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr(178) to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr(178) can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.
Collapse
|
7
|
Hou CX, Dirk LMA, Pattanaik S, Das NC, Maiti IB, Houtz RL, Williams MA. Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:275-81. [PMID: 17309682 DOI: 10.1111/j.1467-7652.2007.00238.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Transgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase (AtDEF1.1, AtDEF1.2 and AtDEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over-expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over-expression of AtDEF1.1 did not. Immunological analyses demonstrated that AtDEF1.2 and AtDEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but AtDEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal AtDEF2, which was approximately 180-fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2-D and Atdef2-D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad-spectrum herbicide target.
Collapse
Affiliation(s)
- Cai-Xia Hou
- Department of Horticulture, Plant Physiology/Biochemistry/Molecular Biology Program, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Eubel H, Braun HP, Millar AH. Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. PLANT METHODS 2005; 1:11. [PMID: 16287510 PMCID: PMC1308860 DOI: 10.1186/1746-4811-1-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/16/2005] [Indexed: 05/05/2023]
Abstract
Intact protein complexes can be separated by apparent molecular mass using a standard polyacrylamide gel electrophoresis system combining mild detergents and the dye Coomassie Blue. Referring to the blue coloured gel and the gentle method of solubilization yielding native and enzymatically active protein complexes, this technique has been named Blue-Native Polyacrylamide Gel-Electrophoresis (BN-PAGE). BN-PAGE has become the method of choice for the investigation of the respiratory protein complexes of the electron transfer chains of a range of organisms, including bacteria, yeasts, animals and plants. It allows the separation in two dimensions of extremely hydrophobic protein sets for analysis and also provides information on their native interactions. In this review we discuss the capabilities of BN-PAGE in proteomics and the wider investigation of protein:protein interactions with a focus on its use and potential in plant science.
Collapse
Affiliation(s)
- Holger Eubel
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Australia
| | - Hans-Peter Braun
- Abteilung Angewandte Genetik, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Australia
| |
Collapse
|