1
|
Pauly G, Larue C, Petit RJ. Adaptive function of duodichogamy: Why do chestnut trees have two pollen emission phases? AMERICAN JOURNAL OF BOTANY 2023; 110:e16204. [PMID: 37342965 DOI: 10.1002/ajb2.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2023]
Abstract
PREMISE Intersexual mating facilitation in flowering plants has been largely underexplored. Duodichogamy is a rare flowering system in which individual plants flower in the sequence male-female-male. We studied the adaptive advantages of this flowering system using chestnuts (Castanea spp., Fagaceae) as models. These insect-pollinated trees produce many unisexual male catkins responsible for a first staminate phase and a few bisexual catkins responsible for a second staminate phase. We hypothesized that duodichogamy increases female mating success by facilitating pollen deposition on stigmas of the rewardless female flowers through their proximity with attractive male flowers responsible for the minor staminate phase. METHODS We monitored insect visits to 11 chestnut trees during the entire flowering period and explored reproductive traits of all known duodichogamous species using published evidence. RESULTS In chestnuts, insects visited trees more frequently during the first staminate phase but visited female flowers more frequently during the second staminate phase. All 21 animal-pollinated duodichogamous species identified are mass-flowering woody plants at high risk of self-pollination. In 20 of 21 cases, gynoecia (female flower parts) are located close to androecia (male flower parts), typically those responsible for the second minor staminate phase, whereas androecia are often distant from gynoecia. CONCLUSIONS Our results suggest that duodichogamy increases female mating success by facilitating pollen deposition on stigmas by means of the attractiveness of the associated male flowers while effectively limiting self-pollination.
Collapse
Affiliation(s)
| | - Clément Larue
- Univ. Bordeaux, INRAE, BIOGECO, 33610, Cestas, France
- INVENIO, Maison Jeannette, 24140, Douville, France
| | - Rémy J Petit
- Univ. Bordeaux, INRAE, BIOGECO, 33610, Cestas, France
| |
Collapse
|
2
|
|
3
|
Tomaszewski CE, Kulbaba MW, Harder LD. Mating consequences of contrasting hermaphroditic plant sexual systems. Evolution 2018; 72:2114-2128. [PMID: 30095165 DOI: 10.1111/evo.13572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/15/2018] [Indexed: 11/27/2022]
Abstract
For hermaphroditic angiosperms with multiple flowers, the sex roles can be exclusively combined in bisexual flowers (monocliny), strictly separated among different flowers (monoecy), or arrayed in mixtures of bisexual flowers with female flowers (gynomonoecy) or male flowers (andromonoecy). The hypothesized benefits favoring the evolution of these contrasting hermaphroditic sexual systems are typically examined individually, usually by assessing success through only one sex role. We tested predictions of most hypotheses experimentally with an andromonoecious species, Anticlea occidentalis (Melanthiaceae), based on the performance of intact plants (andromonoecy) and those with emasculated bisexual flowers (functionally monoecious) or emasculated male flowers (functionally monoclinous with sterile peripheral flowers). Andromonoecy in this species enables efficient, size-dependent resource allocation, emphasizing female function in large plants. Emasculation revealed that anthers in male flowers promote female mating quality (outcrossing rate and mate diversity), whereas anthers in bisexual flowers promote male mating quantity (pollen dispersal distance and probability of any siring success). Thus, different hermaphroditic sexual systems likely evolve to capitalize on suites of benefits, rather than just one, and provide compromises between quantitative and qualitative reproductive components. These compromises apparently maximize an individual's combined genetic contributions through female and male functions, rather than separate contributions through each sex role.
Collapse
Affiliation(s)
| | - Mason W Kulbaba
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Current Address: Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108
| | - Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Knapp S, Sagona E, Carbonell AK, Chiarini F. A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PHYTOKEYS 2017; 84:1-104. [PMID: 29033654 PMCID: PMC5624188 DOI: 10.3897/phytokeys.84.12695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2017] [Indexed: 05/25/2023]
Abstract
The Solanum elaeagnifolium clade (Elaeagnifolium clade) contains five species of small, often rhizomatous, shrubs from deserts and dry forests in North and South America. Members of the clade were previously classified in sections Leprophora, Nycterium and Lathyrocarpum, and were not thought to be closely related. The group is sister to the species-rich monophyletic Old World clade of spiny solanums. The species of the group have an amphitropical distribution, with three species in Mexico and the southwestern United States and three species in Argentina. Solanum elaeagnifolium occurs in both North and South America, and is a noxious invasive weed in dry areas worldwide. Members of the group are highly variable morphologically, and this variability has led to much synonymy, particularly in the widespread S. elaeagnifolium. We here review the taxonomic history, morphology, relationships and ecology of these species and provide keys for their identification, descriptions, full synonymy (including designations of lectotypes) and nomenclatural notes. Illustrations, distribution maps and preliminary conservation assessments are provided for all species.
Collapse
Affiliation(s)
- Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Eva Sagona
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Orto Botanico Forestale di Abetone, Associazione Ecomuseo della Montagna Pistoese, Palazzo Achilli, Piazzetta Achilli n. 7 - 51028 Gavinana, Pistoia (PT), Italy
| | - Anna K.Z. Carbonell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Franco Chiarini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Li W, Zhang L, Ding Z, Wang G, Zhang Y, Gong H, Chang T, Zhang Y. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. BMC PLANT BIOLOGY 2017; 17:54. [PMID: 28241786 PMCID: PMC5329940 DOI: 10.1186/s12870-017-0990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. RESULTS Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. CONCLUSION In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Lihui Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| | - Zhan Ding
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Hongmei Gong
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Tianjun Chang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yanwen Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| |
Collapse
|
6
|
Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 2017; 71:898-912. [PMID: 28085192 DOI: 10.1111/evo.13181] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 01/22/2023]
Abstract
Sexual system is a key determinant of genetic variation and reproductive success, affecting evolution within populations and within clades. Much research in plants has focused on evolutionary transitions away from the most common state of hermaphroditism and toward the rare state of dioecy (separate sexes). Rather than transitions predominantly toward greater sexual differentiation, however, evolution may proceed in the direction of lesser sexual differentiation. We analyzed the macroevolutionary dynamics of sexual system in angiosperm genera that contain both dioecious and nondioecious species. Our phylogenetic analyses encompass a total of 2145 species from 40 genera. Overall, we found little evidence that rates of sexual system transitions are greater in any direction. Counting the number of inferred state changes revealed a mild prevalence of transitions away from hermaphroditism and away from dioecy, toward states of intermediate sexual differentiation. We identify genera in which future studies of sexual system evolution might be especially productive, and we discuss how integrating genetic or population-level studies of sexual system could improve the power of phylogenetic comparative analyses. Our work adds to the evidence that different selective pressures and constraints act in different groups, helping maintain the variety of sexual systems observed among plants.
Collapse
Affiliation(s)
- Emma E Goldberg
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, V6J 3S7, Canada
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Sabath
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
7
|
DASUMIATI, MIFTAHUDIN, TRIADIATI, HARTANA ALEX, PRONOWO DIBYO. Increasing Hermaphrodite Flowers using Plant Growth Regulators in Andromonoecious Jatropha curcas. HAYATI JOURNAL OF BIOSCIENCES 2014. [DOI: 10.4308/hjb.21.3.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Reuther K, Claßen-Bockhoff R. Andromonoecy and developmental plasticity in Chaerophyllum bulbosum (Apiaceae-Apioideae). ANNALS OF BOTANY 2013; 112:1495-503. [PMID: 23585495 PMCID: PMC3828945 DOI: 10.1093/aob/mct073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/15/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Andromonoecy, the presence of hermaphrodite and male flowers in the same individual, is genetically fixed or induced, e.g. by fruit set. Little is known about the forces triggering andromonoecy in the Apiaceae. In the present study, a natural population of the protandrous Chaerophyllum bulbosum was investigated to elucidate architectural constraints and effects of resource reallocation. METHODS Three sets of plants (each n = 15) were treated by hand pollination, pollinator exclusion and removal of low-order inflorescences. Fifteen untreated plants were left as controls. KEY RESULTS Untreated plants produce umbels up to the third branch order, with increasing proportions of male flowers from 15 % (terminal umbel) to 100 % (third-order umbels). Fruit set correspondingly decreases from 70% (terminal umbel) to <10 % (second-order umbels). Insignificant differences from hand-pollinated plants do not reveal any sign of pollinator limitation at the study site. Bagged individuals show the same increase in male flowers with age as untreated plants, indicating that the presence of andromonoecy is not induced by fruit set. After umbel removal, individuals tend to present a higher number of hermaphrodite flowers and fruits in the umbels of second and third order. Three plants (25 %) produced an additional branch order composed of 100 % male umbels. CONCLUSIONS Inherited andromonoecy and the plastic response to environmental conditions are interpreted as a self-regulating system saving investment costs and optimizing fruit set at the same time.
Collapse
Affiliation(s)
- Kerstin Reuther
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Bentzelweg 2, D-55099 Mainz, Germany.
| | | |
Collapse
|
9
|
Diggle PK, Miller JS. Developmental plasticity, genetic assimilation, and the evolutionary diversification of sexual expression in Solanum. AMERICAN JOURNAL OF BOTANY 2013; 100:1050-1060. [PMID: 23624926 DOI: 10.3732/ajb.1200647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY For over a century, it has been hypothesized that selection can convert an environmentally induced phenotype (i.e., plasticity) into a fixed (constitutively produced) phenotype, a process known as genetic assimilation. While evidence of assimilation is accumulating, the role of plasticity generally and assimilation specifically in evolutionary diversification has rarely been examined from a comparative phylogenetic perspective. • METHODS We combined experimental analyses of plasticity with ancestral state reconstructions to examine the evolutionary dynamics of sexual expression in two well-characterized sections (Acanthophora and Lasiocarpa) in Solanum subgenus Leptostemonum. We examined sexual expression phenotypes and the proportion of staminate flowers produced under contrasting resource conditions in 10 species and combined these data with previous studies. • KEY RESULTS Staminate flower production was phenotypically plastic for nine of 14 species and unaffected by treatment in five species. Two of the nonplastic species bore few staminate flowers, and three constitutively produced large numbers of staminate flowers. For individuals and species producing staminate flowers, these flowers occurred in a distinctive architectural pattern that was qualitatively the same in both plastic and nonplastic species. Parsimony and Bayesian reconstructions demonstrate that plasticity is ancestral among the species studied. • CONCLUSIONS Plasticity has been lost independently in sections Acanthophora and Lasiocarpa, and the consequence of its loss results in evolutionary diversification of sexual expression. In section Acanthophora, loss of plasticity represents a reversion to production of predominantly hermaphroditic flowers. In contrast, the fixed production of staminate flowers in Lasiocarpa has the hallmarks of evolution via genetic assimilation.
Collapse
Affiliation(s)
- Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
10
|
Casimiro-Soriguer R, Herrera J, Talavera S. Andromonoecy in an Old World Papilionoid legume, Erophaca baetica. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:353-359. [PMID: 22823201 DOI: 10.1111/j.1438-8677.2012.00648.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Andromonoecy (i.e. the occurrence on individual plants of hermaphroditic and male flowers) is a rare sexual system among the angiosperms, regarded by some authors as a transitional stage from hermaphroditism to monoecy. Having discovered the occurrence of andromonoecy in Erophaca baetica (a Mediterranean shrubby legume with two subspecies), a novelty for Old World papilionoid legumes, we investigated the morpho-functional correlates and the geographical distribution of this phenomenon in the species. The relative frequencies of hermaphrodite and male flowers were determined in two field and 111 herbarium populations. Biomass allocation within flowers, pollen production and viability, pollen tube growth, nectar production and the temporal pattern of male flower production were also studied in two nearby southern Spanish populations. Virtually all of the studied populations were andromonoecious. Male flowers tended to appear at apical positions within the inflorescence, and became more abundant by the end of the flowering season. Male flowers were externally similar to hermaphroditic flowers (although with less biomass and smaller parts) and released equivalent amounts of pollen and nectar; however, their pollen germinated significantly better. Erophaca is the first example of an andromonecious Papilionoid in the Old World. Since the main difference among floral morphs in this species is functional (i.e. pollen germination rate) rather than morphological, andromonoecy is not readily noticeable, and very careful inspection may be required to reveal it. The potential effect of andromonoecy in enhancing outcrossing rate in this species is discussed.
Collapse
Affiliation(s)
- R Casimiro-Soriguer
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| | | | | |
Collapse
|
11
|
Zhang T, Tan DY. An examination of the function of male flowers in an andromonoecious shrub Capparis spinosa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:316-324. [PMID: 19261075 DOI: 10.1111/j.1744-7909.2008.00800.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The pollen donor and pollinator attractor hypotheses are explanations for the functions of the male flowers of andromonoecious plants. We tested these two hypotheses in the andromonoecious shrub Capparis spinosa L. (Capparaceae) and confirmed that pollen production and cumulative volume and sugar concentration of nectar do not differ between male and perfect flowers. However, male flowers produced larger anthers, larger pollen grains and smaller ovaries than perfect flowers. Observations on pollinators indicated that two major pollinators (Xylocopa valga Gerst and Proxylocopa sinensis Wu) did not discriminate between flower morphs and that they transferred pollen grains a similar distance. However, there were more seeds per fruit following hand pollination with pollen from male flowers than from perfect flowers. Individuals of C. spinosa with a larger floral display (i.e. bearing more flowers) received more pollen grains on the stigma of perfect flowers. Female reproductive success probably is not limited by pollen. These results indicate that male flowers of C. spinosa save resources for female function and that they primarily serve to attract pollinators as pollen donors.
Collapse
Affiliation(s)
- Tao Zhang
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urümqi 830052, China
| | | |
Collapse
|