1
|
Zhai LL, Li WB, Chen LJ, Wang W, Ju TF, Yin DL. Curcumin inhibits the invasion and migration of pancreatic cancer cells by upregulating TFPI-2 to regulate ERK- and JNK-mediated epithelial-mesenchymal transition. Eur J Nutr 2024; 63:639-651. [PMID: 38129361 DOI: 10.1007/s00394-023-03296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Pancreatic cancer (PC) is one of the most deadly human malignancies. Curcumin is a natural polyphenolic compound with wide-ranging pharmacological effects. Growing evidence suggests that curcumin has anticancer activity against PC, but the mechanism remains incompletely elucidated. This study aimed to investigate the effects and mechanisms of curcumin on the invasion and migration of PC cells. METHODS Effect of curcumin on tissue factor pathway inhibitor (TFPI)-2 mRNA expression in PC cells was initially identified using qRT-PCR. Cytotoxicity of curcumin was assessed with MTT assays and IC50 was calculated. Involvement of ERK and JNK pathways, as well as protein expression of TFPI-2 and epithelial-mesenchymal transition (EMT)-related markers, were detected using immunoblotting. Invasion and migration of PC cells were examined using Transwell assays. TFPI-2 expression was manipulated by transfection with siRNA and shRNA. Rescue assays were used to validate the effect of curcumin on cell invasion and migration via TFPI-2. RESULTS Curcumin increased the expression of TFPI-2 mRNA and protein in PC cells and attenuated cell invasion and migration. Curcumin also inhibited ERK and JNK pathways and EMT in PC cells. Knockdown of TFPI-2 partially reversed the inhibition of ERK and JNK pathways and EMT by curcumin. Mechanistically, curcumin upregulated TFPI-2, thereby inhibiting the ERK and JNK pathways, leading to the inhibition of EMT in PC cells. CONCLUSION Collectively, curcumin inhibits ERK- and JNK-mediated EMT through upregulating TFPI-2, which in turn suppresses the migration and invasion of PC cells. These findings provide new insights into the antitumor mechanism of curcumin.
Collapse
Affiliation(s)
- Lu-Lu Zhai
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, People's Republic of China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Wei-Bo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Long-Jiang Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Tong-Fa Ju
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China.
| | - Da-Long Yin
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, People's Republic of China.
| |
Collapse
|
2
|
Bhati R, Zadeng H, Singh E, Kumar A, Jain M, Senthil Kumaran J, Singh AK, Muthukumaran J. Molecular dynamics simulations assisted investigation of phytochemicals as potential lead candidates against anti-apoptotic Bcl-B protein. J Biomol Struct Dyn 2023:1-15. [PMID: 38111145 DOI: 10.1080/07391102.2023.2295385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Due to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function. Although several inhibitors are reported for Bcl-2 family proteins, no specific inhibitors are available against the anti-apoptotic Bcl-B protein. This study aims to address this research gap by using virtual screening of an in-house library of phytochemicals from seven anti-cancer medicinal plants to identify lead molecules against Bcl-B protein. Through pharmacokinetic analysis and molecular docking studies, we identified three lead candidates (Enterolactone, Piperine, and Protopine) based on appreciable drug-likeliness, ADME properties, and binding affinity values. The identified molecules also exhibited specific interactions with critical amino acid residues of the binding cleft, highlighting their potential as lead candidates. Finally, molecular dynamics simulations and MM/PBSA based binding free energy analysis revealed that Enterolactone (CID_114739) and Piperine (CID_638024) molecules were on par with Obatoclax (CID_11404337), which is a known inhibitor of the Bcl-2 family proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Hazel Zadeng
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ankit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - J Senthil Kumaran
- Department of Chemistry, DLR Arts and Science College, Arcot, India
- Department of Science and Humanities, Er. Perumal Manimekalai College of Engineering, Hosur, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
4
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
5
|
Pérez CN, Falcón CR, Mons JD, Orlandi FC, Sangiacomo M, Fernandez-Muñoz JM, Guerrero M, Benito PG, Colombo MI, Zoppino FCM, Alvarez SE. Melanoma cells with acquired resistance to vemurafenib have decreased autophagic flux and display enhanced ability to transfer resistance. Biochim Biophys Acta Mol Basis Dis 2023:166801. [PMID: 37419396 DOI: 10.1016/j.bbadis.2023.166801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Over the last years, the incidence of melanoma, the deadliest form of skin cancer, has risen significantly. Nearly half of the melanoma patients exhibit the BRAFV600E mutation. Although the use of BRAF and MEK inhibitors (BRAFi and MEKi) showed an impressive success rate in melanoma patients, durability of response remains an issue because tumor quickly becomes resistant. Here, we generated and characterized Lu1205 and A375 melanoma cells resistant to vemurafenib (BRAFi). Resistant cells (Lu1205R and A375R) exhibit higher IC50 (5-6 fold increase) and phospho-ERK levels and 2-3 times reduced apoptosis than their sensitive parents (Lu1205S and A375S). Moreover, resistant cells are 2-3 times bigger, display a more elongated morphology and have a modulation the migration capacity. Interestingly, pharmacological inhibition of sphingosine kinases, that prevents sphingosine-1-phosphate production, reduces migration of Lu1205R cells by 50 %. In addition, although Lu1205R cells showed increased basal levels of the autophagy markers LC3II and p62, they have decreased autophagosome degradation and autophagy flux. Remarkably, expression of Rab27A and Rab27B, which are involved in the release of extracellular vesicles are dramatically augmented in resistant cells (i.e. 5-7 fold increase). Indeed, conditioned media obtained from Lu1205R cells increased the resistance to vemurafenib of sensitive cells. Hence, these results support that resistance to vemurafenib modulates migration and the autophagic flux and may be transferred to nearby sensitive melanoma cells by factors that are released to the extracellular milieu by resistant cells.
Collapse
Affiliation(s)
- Celia N Pérez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | - Cristian R Falcón
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | - Johinna Delgado Mons
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | - Federico Cuello Orlandi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | - Mercedes Sangiacomo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | | | - Martín Guerrero
- Instituto de Biología y Medicina Experimental de Cuyo (IMBECU), CONICET, Argentina
| | - Paula G Benito
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Argentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Argentina
| | - Felipe C M Zoppino
- Instituto de Biología y Medicina Experimental de Cuyo (IMBECU), CONICET, Argentina
| | - Sergio E Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina.
| |
Collapse
|