1
|
Chinese herbal formula Fuzheng Huayu alleviates CCl 4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol Sin 2018; 39:930-941. [PMID: 29094729 DOI: 10.1038/aps.2017.150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a consequence of chronic liver disease that can progress to liver cirrhosis or even hepatocarcinoma. Fuzheng Huayu (FZHY), a Chinese herbal formula, has been shown to exert anti-fibrotic effects. To better understand the molecular mechanisms underlying the anti-fibrotic effects of FZHY, we analyzed transcriptomic and proteomic combination profiles in CCl4-induced liver fibrosis in rats, which were treated with extracted FZHY powder (0.35 g·kg-1·d-1, ig) for 3 weeks. We showed that FZHY administration significantly improved liver function, alleviated hepatic inflammatory and fibrotic changes, and decreased the hydroxyproline content in the livers of CCl4-treated rats. When their liver tissues were examined using microarray and iTRAQ, we found 255 differentially expressed genes (fold change ≥1.5, P<0.05) and 499 differentially expressed proteins (fold change ≥1.2, P<0.05) in the FZHY and model groups. Functional annotation with DAVID (The Database for Annotation, Visualization and Integrated Discovery) showed that 15 enriched gene ontology terms, including drug metabolic process, response to extracellular stimulus, response to vitamins, arachidonic acid metabolic process, response to wounding, and oxidation reduction might be involved in the anti-fibrotic effects of FZHY; whereas KEGG pathway analysis revealed that eight enriched pathways, including arachidonic acid metabolism, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism might also be involved. Moreover, the protein-protein interaction network demonstrated that 10 core genes/proteins overlapped, with Ugt2a3, Cyp2b1 and Cyp3a18 in retinol metabolism pathway overlapped to a higher degree. Compared to the model rats, the livers of FZHY-treated rats had significantly higher mRNA and protein expression levels of Ugt2a3, Cyp2b1 and Cyp3a18. Furthermore, the concentration of retinoic acid was significantly higher in the FZHY-treated rats compared with the model rats. The results suggest that the anti-fibrotic effects of FZHY emerge through multiple targets, multiple functions, and multiple pathways, including FZHY-regulated retinol metabolism, xenobiotic metabolism by cytochrome P450, and drug metabolism through up-regulated Ugt2a3, Cyp2b1, and Cyp3a18. These genes may play important anti-fibrotic roles in FZHY-treated rats.
Collapse
|
2
|
Xing X, Chen S, Li L, Cao Y, Chen L, Wang X, Zhu Z. The Active Components of Fuzheng Huayu Formula and Their Potential Mechanism of Action in Inhibiting the Hepatic Stellate Cells Viability - A Network Pharmacology and Transcriptomics Approach. Front Pharmacol 2018; 9:525. [PMID: 29881350 PMCID: PMC5976863 DOI: 10.3389/fphar.2018.00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: This study aimed to identify the active components of Fuzheng Huayu (FZHY) formula and the mechanism by which they inhibit the viability of hepatic stellate cells (HSCs) by a combination of network pharmacology and transcriptomics. Methods: The active components of FZHY formula were screened out by text mining. Similarity match and molecular docking were used to predict the target proteins of these compounds. We then searched the STRING database to analyze the key enriched processes, pathways and related diseases of these target proteins. The relevant networks were constructed by Cytoscape. A network analysis method was established by integrating data from above network pharmacology with known transcriptomics analysis of quiescent HSCs-activated HSCs to identify the most possible targets of the active components in FZHY formula. A cell-based assay (LX-2 and T6 cells) and surface plasmon resonance (SPR) analysis were used to validate the most possible active component-target protein interactions (CTPIs). Results: 40 active ingredients in FZHY formula and their 79 potential target proteins were identified by network pharmacology approach. Further network analysis reduced the 79 potential target proteins to 31, which were considered more likely to be the target proteins of the active components in FZHY formula. In addition, further enrichment analysis of 31 target proteins indicated that the HIF-1, PI3K-Akt, FoxO, and chemokine signaling pathways may be the primary pathways regulated by FZHY formula in inhibiting the HSCs viability for the treatment of liver fibrosis. Of the 31 target proteins, peroxisome proliferator activator receptor gamma (PPARG) was selected for validation by experiments at the cellular and molecular level. The results demonstrated that schisandrin B, salvianolic acid A and kaempferol could directly bind to PPARG, decreasing the viability of HSCs (T6 cells and LX-2 cells) and exerting anti-fibrosis effects. Conclusion: The active ingredients of FZHY formula were successfully identified and the mechanisms by which they inhibit HSC viability determined, using network pharmacology and transcriptomics. This work is expected to benefit the clinical application of this formula.
Collapse
Affiliation(s)
- Xinrui Xing
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Si Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Postdoctoral Research Workstation, 210th Hospital of the Chinese People's Liberation Army, Dalian, China
| | - Ling Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiaobo Wang
- Postdoctoral Research Workstation, 210th Hospital of the Chinese People's Liberation Army, Dalian, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu. Sci Rep 2016; 6:18841. [PMID: 26733102 PMCID: PMC4702137 DOI: 10.1038/srep18841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023] Open
Abstract
Chinese medicine, Fuzhenghuayu (FZHY), appears to prevent fibrosis progression and improve liver function in humans. Here we found that FZHY enhanced hepatocyte differentiation from human embryonic stem cells (hESC). After treatment with FZHY, albumin expression was consistently increased during differentiation and maturation process, and expression of metabolizing enzymes and transporter were also increased. Importantly, expression of mesenchymal cell and cholangiocyte marker was significantly reduced by treatment with FZHY, indicating that one possible mechanism of FZHY’s role is to inhibit the formation of mesenchymal cells and cholangiocytes. Edu-labelled flow cytometric analysis showed that the percentage of the Edu positive cells was increased in the treated cells. These results indicate that the enhanced proliferation involved hepatocytes rather than another cell type. Our investigations further revealed that these enhancements by FZHY are mediated through activation of canonical Wnt and ERK pathways and inhibition of Notch pathway. Thus, FZHY not only promoted hepatocyte differentiation and maturation, but also enhanced hepatocyte proliferation. These results demonstrate that FZHY appears to represent an excellent therapeutic agent for the treatment of liver fibrosis, and that FZHY treatment can enhance our efforts to generate mature hepatocytes with proliferative capacity for cell-based therapeutics and for pharmacological and toxicological studies.
Collapse
|
4
|
Dong S, Chen QL, Su SB. Curative Effects of Fuzheng Huayu on Liver Fibrosis and Cirrhosis: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:125659. [PMID: 26221168 PMCID: PMC4499386 DOI: 10.1155/2015/125659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
The Fuzheng Huayu (FZHY) formula is being used in antiliver fibrosis treatment in China. For systemic evaluation of the curative effects of FZHY on liver fibrosis and cirrhosis progress, a total of 1392 subjects (714 cases and 678 controls) were found to be eligible for meta-analysis in this study. Standard mean differences (SMDs) with 95% confidence interval (CI) were calculated for changes between FZHY groups and controls by employing fixed effects or random effects model. In the overall analysis, alanine transaminase (ALT) (P = 0.003, SMD = -0.87, 95% CI: -1.46 to -0.29), total bilirubin (TBil) (P = 0.001, SMD = -1.30, 95% CI: -2.10 to -0.50), hyaluronic acid (HA) (P = 0.000, SMD = -0.94, 95% CI: -1.30 to -0.58), laminin (LN) (P = 0.000, SMD = -0.80, 95% CI: -1.20 to -0.41), type III procollagen (PC-III) (P = 0.000, SMD = -1.27, 95% CI: -1.93 to -0.60), and type IV procollagen (IV-C) (P = 0.000, SMD = -0.78, 95% CI: -1.05 to -0.51) were decreased after FZHY treatment; however, albumin (ALB) was increased (P = 0.037, SMD = 1.10, 95% CI: 0.07 to 2.12) significantly. Furthermore, the Child-Pugh score was reduced significantly and the life quality was improved after FZHY treatment in cirrhosis patients. The results of this meta-analysis indicated that FZHY effectively improves the liver function, alleviates hepatic fibrosis, decreases Child-Pugh score, and relieves TCM symptoms caused by liver dysfunction, indicating that FZHY may contribute to the alleviation of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Shu Dong
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi-Long Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Zhao CQ, Zhou Y, Ping J, Xu LM. Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities. JOURNAL OF INTEGRATIVE MEDICINE 2014; 12:401-8. [PMID: 25292339 PMCID: PMC7128864 DOI: 10.1016/s2095-4964(14)60039-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) is commonly used in treating liver diseases worldwide, especially in China. The advantages of using TCM for treatment of liver diseases include: protecting hepatocytes, inhibiting hepatic inflammation and antifibrosis in the liver. In this article, we introduce TCM herbal preparations from the Chinese materia medica (such as Fuzheng Huayu) that are typically used for the treatment of liver diseases. Literature surrounding the mechanisms of TCM therapy for treatment of liver diseases is presented and discussed. We propose that side effects of herbal compounds are often under-appreciated, and that more care should be taken in the prescription of potentially hepatotoxic medicines. Further, to deepen the understanding of TCM mechanisms, new techniques and methodologies must be developed. Future studies will lead to the enhancement of clinical outcomes of TCM. As complementary and alternative therapies, TCMs will play an expanding role in the future of liver disease treatment.
Collapse
Affiliation(s)
- Chang-qing Zhao
- Department of Liver Cirrhosis, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Zhou
- Department of Liver Cirrhosis, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Ping
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lie-ming Xu
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-mail:
| |
Collapse
|
6
|
Wang QL, Tao YY, Shen L, Cui HY, Liu CH. [Chinese herbal medicine Fuzheng Huayu recipe inhibits liver fibrosis by mediating the transforming growth factor-β1/Smads signaling pathway]. ACTA ACUST UNITED AC 2013; 10:561-8. [PMID: 22587979 DOI: 10.3736/jcim20120512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the mechanism of Fuzheng Huayu recipe (FZHY), a compound traditional Chinese herbal medicine, against liver fibrosis related to transforming growth factor-β1 (TGF-β1)/Smads signaling transduction. METHODS The research consisted of in vitro and in vivo experiments. In the in vivo experiment, 37 male Wistar rats were divided into 3 groups: 5 rats in normal group, 18 and 14 rats respectively in model and FZHY groups. Liver fibrosis was induced in rats of the model group and the FZHY group by intraperitoneal injection of dimethylnitrosamine with a dose of 10μg/kg body weight for 4 weeks. Rats in the FZHY group were administered with FZHY for 4 weeks after liver fibrosis was induced. After the treatment of FZHY, hydroxyproline (Hyp) content in rat liver tissue was assayed by Jamall's method and protein expressions of TGF-β1, TGF-β1 receptor I (TβR-I), Smad2, Smad3 and phosphorylated-Smad2/3 were analyzed by Western blotting. In the in vitro experiment, hepatic stellate cells (HSCs) were isolated from normal rats by in situ pronase/collagenase perfusion followed by density gradient centrifugation. On the 4th day of cell culture, HSCs were stimulated by 2.5 ng/mL TGF-β1 for 24 h, then incubated with the medium containing 10% FZHY-medicated serum or 10μmol/L SB-431542 (a potent and specific inhibitor of TGF-β1 receptor I kinase) for 24 h. And the HSCs without TGF-β1 stimulating were used as control group. Protein expressions and location of α-smooth muscle actin (α-SMA) and Smad3 in HSCs were assayed by immunofluorescent staining, and the image was analyzed by Image-Pro Plus 6.1 System. RESULTS In the in vivo experiment, liver Hyp content in the FZHY group was reduced significantly compared with the model group. FZHY also down-regulated the protein expressions of TGF-β1, TβR-I and p-Smad2/3 in fibrotic liver tissue. In the in vitro experiment, FZHY-medicated serum incubated with TGF-β1-stimulated HSCs significantly down-regulated the protein expression of α-SMA. It also inhibited Smad3 nuclear translocation in TGF-β1-stimulated HSCs. CONCLUSION The mechanism of FZHY against liver fibrosis is related to the regulation of TGF-β1 signaling transduction pathway by inhibition of TGF-β1 and TβR-I expressions and Smads activation in fibrotic liver tissue and HSCs.
Collapse
Affiliation(s)
- Qing-lan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
7
|
Cheng Q, Li N, Chen M, Zheng J, Qian Z, Wang X, Huang C, Li Q, Lin Q, Shi G. Fuzheng Huayu inhibits carbon tetrachloride-induced liver fibrosis in mice through activating hepatic NK cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:175-181. [PMID: 23127651 DOI: 10.1016/j.jep.2012.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/14/2012] [Accepted: 10/25/2012] [Indexed: 06/01/2023]
Abstract
AIM OF THE STUDY Fuzheng Huayu (FZHY) is a Chinese compound herbal preparation which consists of six Chinese herbs. This study examines the preventative effects of FZHY on liver fibrosis induced by carbon tetrachloride (CCl(4)) and explores its possible mechanisms of action. MATERIALS AND METHODS Liver fibrosis was induced in male C57BL/6N mice by injecting a 10% CCl(4) solution intraperitoneal twice a week for six weeks. After 6 weeks of treatment, serum ALT and AST assay, liver tissue histological examination and immunostaining were carried out to examine the liver function and fibrosis degree. The expression levels of alpha-smooth muscle actin (SMA) were measured by quantitative real-time PCR and western blot. Hepatic natural killer (NK) cells were isolated from liver and evaluated by FACS. RESULTS Upon pathological examination, the FZHY-treated mice showed significantly reduced liver damage. The expression of α-SMA increased markedly upon treatment with CCl(4) and the increase was reversed by FZHY treatment. FZHY treatment also enhanced the activation of hepatic NK cells and the production of interferon-gamma (IFN-γ). The protective effects of FZHY were reversed in the mice that were depleted of NK cells by anti-ASGM-1 Ab treatment. CONCLUSIONS FZHY can efficiently inhibit CCl(4)-induced liver fibrosis. Furthermore, the depletion of NK cells attenuates the protective effects of FZHY. We conclude that FZHY could be an effective drug for liver fibrosis, and its mechanism of action involves the activation of hepatic NK cells.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Infectious Diseases, Huashan Hospital of Fudan University, Shanghai 200040, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jia YH, Wang RQ, Mi HM, Kong LB, Ren WG, Li WC, Zhao SX, Zhang YG, Wu WJ, Nan YM, Yu J. Fuzheng Huayu recipe prevents nutritional fibrosing steatohepatitis in mice. Lipids Health Dis 2012; 11:45. [PMID: 22452814 PMCID: PMC3359233 DOI: 10.1186/1476-511x-11-45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/28/2012] [Indexed: 01/21/2023] Open
Abstract
Background Fuzheng Huayu recipe (FZHY), a compound of Chinese herbal medicine, was reported to improve liver function and fibrosis in patients with hepatitis B virus infection. However, its effect on nutritional fibrosing steatohepatitis is unclear. We aimed to elucidate the role and molecular mechanism of FZHY on this disorder in mice. Methods C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrosing steatohepatitis. FZHY and/or heme oxygenase-1 (HO-1) chemical inducer (hemin) were administered to mice, respectively. The effect of FZHY was assessed by comparing the severity of hepatic injury, levels of hepatic lipid peroxides, activation of hepatic stellate cells (HSCs) and the expression of oxidative stress, inflammatory and fibrogenic related genes. Results Mice fed with MCD diet for 8 weeks showed severe hepatic injury including hepatic steatosis, necro-inflammation and fibrosis. Administration of FZHY or hemin significantly lowered serum levels of alanine aminotransferase, aspartate aminotransferase, reduced hepatic oxidative stress and ameliorated hepatic inflammation and fibrosis. An additive effect was observed in mice fed MCD supplemented with FZHY or/and hemin. These effects were associated with down-regulation of pro-oxidative stress gene cytochrome P450 2E1, up-regulation of anti-oxidative gene HO-1; suppression of pro-inflammation genes tumor necrosis factor alpha and interleukin-6; and inhibition of pro-fibrotic genes including α-smooth muscle actin, transforming growth factor beta 1, collagen type I (Col-1) and Col-3. Conclusions Our study demonstrated the protective role of FZHY in ameliorating nutritional fibrosing steatohepatitis. The effect was mediated through regulating key genes related to oxidative stress, inflammation and fibrogenesis.
Collapse
Affiliation(s)
- Yan-Hong Jia
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang QL, Yuan JL, Tao YY, Zhang Y, Liu P, Liu CH. Fuzheng Huayu recipe and vitamin E reverse renal interstitial fibrosis through counteracting TGF-beta1-induced epithelial-to-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:631-640. [PMID: 20015471 DOI: 10.1016/j.jep.2009.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 11/22/2009] [Accepted: 12/04/2009] [Indexed: 05/28/2023]
Abstract
AIM To investigate the mechanism of action of Fuzheng Huayu recipe (FZHY) and vitamin E (Vit E) against renal interstitial fibrosis related to transforming growth factor-beta1 (TGF-beta1) mediated tubular epithelial-to-mesenchymal transition. MATERIALS AND METHODS Renal interstitial fibrosis was induced by administration of HgCl(2) at a dose of 8 mg/kg body weight once a day for 9 weeks. Rats were randomly divided into four groups: normal, model, FZHY, and Vit E group. Rats in the latter two groups were treated with the FZHY recipe and Vit E respectively. HK-2 cells were treated with TGF-beta1 for 24h, followed by incubation with either SB-431542 (a potent and specific inhibitor of TbetaR-I kinase) or FZHY drug-containing serum for another 24h. Hyp content in rat kidney tissue was assayed with Jamall's method and collagen deposition in kidney was visualized using Masson stain. Protein expression of TGF-beta1, TbetaR-I, Smad2, p-Smad2, Smad3, and p-Smad3 was analyzed by Western blotting. Protein expression and the location of Smad3 in kidney was assayed by immunohistochemistry, E-cadherin, cytokeratin 18 (CK-18), alpha-SMA and TGF-beta1 by immunofluorescent stain. RESULTS FZHY and Vit E inhibited renal collagen deposition and reduced Hyp content significantly. They upregulated E-cadherin protein expression and down-regulated the protein expression of alpha-SMA, TGF-beta1, p-Smad2, p-Smad3, and TbetaR-I. Lastly, they inhibited the nuclear translocation of Smad3 in fibrotic kidney tissue. FZHY drug-containing serum significantly upregulated the expression of CK-18 and down-regulated the expression of alpha-SMA, TbetaR-I, p-Smad2/3 in TGF-beta1 stimulated HK-2 cells. CONCLUSION The mechanism of action of FZHY and Vit E against renal interstitial fibrosis is related to the reversal of tubular EMT induced by TGF-beta1.
Collapse
Affiliation(s)
- Qing-Lan Wang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|