1
|
Li Q, Fu M, Zhu S, Liu J, Li Y, Xue Z, Zhou Z, Yu L. Effects of dietary hydroxy-cinnamic acid derivatives on growth, muscle, and intestinal parameters of Tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:4. [PMID: 39760933 DOI: 10.1007/s10695-024-01438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.99 ± 0.12 g) were randomly divided into 4 groups with 4 replicates per group and 20 tilapia per replicate. Each group was fed a basal diet (control group), and the experimental diet supplemented with 0.52 mmol/kg sinapic acid, ferulic acid, and caffeic acid, respectively. After 8 weeks of feeding, the growth indexes and serum indexes of tilapia were measured, and the body, muscle composition, and muscle physical parameters, as well as the intestinal morphology were analyzed. The results showed that the addition of hydroxycinnamic acid derivatives to the diets significantly increased the weight gain rate (WGR) compared with the control (p < 0.05), with improvements of approximately 14.93%, 27.27%, and 28.06% for sinapic acid, ferulic acid, and caffeic acid, respectively. In the caffeic acid and ferulic acid groups, the final mean weight (FBW) was significantly increased and the feed coefficient (FCR) was significantly decreased compared with the control (p < 0.05). Compared with the control group, the hydroxycinnamic acid derivatives group had significantly lower levels of aspartate aminotransferase (AST), glucose (GLU), triglyceride (TG), and lactate dehydrogenase (LDH) (p < 0.05), but had significantly higher levels of albumin (ALB), total protein (TP), alkaline phosphatase (ALP), and blood urea nitrogen (BUN) (p < 0.05). There were no significant differences in alanine aminotransferase (ALT) and total cholesterol (TCHO) among all groups (p > 0.05). Besides, moisture, crude protein, crude fat, and ash in whole fish and muscle among all groups showed no significant differences (p > 0.05). In addition, hardness, gumminess, adhesiveness, and resilience of muscle in tilapia fed the hydroxycinnamic acid derivative were significantly higher than that of the control group (p < 0.05). Chewiness, springiness, stringiness, and cohesiveness showed no statistically significant differences among the treatments (p > 0.05). The analysis of intestinal morphology showed that the villus height and muscle thickness of the foregut and hindgut in the fish fed hydroxycinnamic acid derivatives were significantly higher than those in the control fish (p < 0.05), but the villus width of the foregut and hindgut did not differ significantly among the treatment groups (p > 0.05). In conclusion, dietary hydroxycinnamic acid derivatives can improve the growth, muscle physical parameters, and intestinal morphology of tilapia. Ferulic acid and caffeic acid had stronger beneficial effects on tilapia than sinapic acid.
Collapse
Affiliation(s)
- Qing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Min Fu
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China
- China-Norway Joint Lab On Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengqin Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Juan Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Yanqing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
- China-Norway Joint Lab On Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Zhigang Zhou
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
- China-Norway Joint Lab On Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lijuan Yu
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China
- China-Norway Joint Lab On Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Ikhsan LN, Chin KY, Ahmad F. The Potential of Dehydrated Geniotrigona thoracica Stingless Bee Honey against Metabolic Syndrome in Rats Induced by a High-Carbohydrate, High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1427. [PMID: 39598339 PMCID: PMC11597213 DOI: 10.3390/ph17111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MS) is diagnosed when at least three out of five key risk factors are present: obesity, high blood pressure, insulin resistance, high triglycerides (TG) and low high-density lipoprotein (HDL). MS is often associated with chronic low-grade inflammation. Recent studies have shown that raw stingless bee honey (SBH) can alleviate MS risk factors. However, the high moisture content in raw SBH predisposes it to fermentation, which can degrade its quality. Therefore, dehydrating SBH is necessary to prevent the fermentation process. This study aimed to compare the effects of dehydrated (DeGT) and raw (RGT) SBH from Geniotrigona thoracica species on high-carbohydrate, high-fat diet (HCHF)-induced MS in rats. METHODS Twenty-four male Wistar rats were divided into four groups: control (C), HCHF-induced MS without treatment (MS), HCHF-induced MS treated with DeGT (MS+DeGT) and HCHF-induced MS treated with RGT (MS+RGT). Group C received standard rat chow, while the other groups were fed with HCHF diet for 16 weeks. In the final eight weeks, two HCHF-induced groups received their respective SBH treatments. RESULTS Both DeGT and RGT treatments reduced energy intake, fat mass, high blood pressure, inflammatory (tumour necrosis factor-alpha (TNF-α)) and obesity (the leptin/adiponectin (L/A) ratio, corticosterone, 11 beta-hydroxysteroid dehydrogenase type-1 (11βHSD1)) markers, as well as prevented histomorphometry changes (prevented adipocyte hypertrophy, increased the Bowman's space area and glomerular atrophy). Additionally, DeGT increased serum HDL levels, while RGT reduced serum TG, leptin and other inflammatory markers (interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as hepatosteatosis. CONCLUSIONS While DeGT demonstrates potential as a preventive agent for MS, RGT exhibited more pronounced anti-MS effects in this study.
Collapse
Affiliation(s)
- Liyana Nabihah Ikhsan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Cho SY, Choi JS, Jung UJ. Effects of Ecklonia stolonifera Extract on Metabolic Dysregulation in High-Fat Diet-Induced Obese Mice. J Med Food 2024; 27:242-249. [PMID: 38354279 DOI: 10.1089/jmf.2023.k.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
This study aimed to test the hypothesis that long-term and low-dose supplementation with an ethanol extract of Ecklonia stolonifera may confer protection against high-fat diet (HFD)-induced obesity in mice. Male C57BL/6J mice were divided into two groups, one of which was fed an HFD (40 kcal% fat) and the other an HFD+E. stolonifera (0.006%, w/w, ∼5 mg/kg body weight/day) for 16 weeks. E. stolonifera supplementation significantly reduced body weight from week 3 and until the end of the experiment. E. stolonifera-supplemented mice also exhibited lower fat mass (epididymal, perirenal, and mesenteric fat) and smaller adipocyte size than HFD control mice. The two groups displayed similar food intakes, but E. stolonifera markedly decreased lipogenesis and increased lipolysis and fatty acid oxidation in adipose tissue. Moreover, E. stolonifera significantly decreased plasma and hepatic lipid levels, hepatic lipid droplet accumulation, plasma aminotransferase levels, and liver weight by decreasing lipogenesis and increasing fatty acid oxidation. As E. stolonifera-supplemented mice showed improvements in hyperglycemia, insulin resistance, and inflammation, compared to control mice, it is possible that the beneficial effects of E. stolonifera on obesity might be associated with decreased inflammation and insulin resistance. Collectively, these results indicate that E. stolonifera could be used as a novel means of preventing and treating obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Su Yeon Cho
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
4
|
Jeong S, Bae S, Shin EC, Lee JH, Ha JH. Ellagic Acid Prevents Particulate Matter-Induced Pulmonary Inflammation and Hyperactivity in Mice: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4523. [PMID: 36901532 PMCID: PMC10001477 DOI: 10.3390/ijerph20054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The inhalation of fine particulate matter (PM) is a significant health-related environmental issue. Previously, we demonstrated that repeated PM exposure causes hyperlocomotive activity in mice, as well as inflammatory and hypoxic responses in their lungs. In this study, we evaluated the potential efficacy of ellagic acid (EA), a natural polyphenolic compound, against PM-induced pulmonary and behavioral abnormalities in mice. Four treatment groups were assigned in this study (n = 8): control (CON), particulate-matter-instilled (PMI), low-dose EA with PMI (EL + PMI), and high-dose EA with PMI (EH + PMI). EA (20 and 100 mg/kg body weight for low dose and high dose, respectively) was orally administered for 14 days in C57BL/6 mice, and after the eighth day, PM (5 mg/kg) was intratracheally instilled for 7 consecutive days. PM exposure induced inflammatory cell infiltration in the lungs following EA pretreatment. Moreover, PM exposure induced inflammatory protein expression in the bronchoalveolar lavage fluid and the expression of inflammatory (tumor necrosis factor alpha (Tnfα), interleukin (Il)-1b, and Il-6) and hypoxic (vascular endothelial growth factor alpha (Vegfα), ankyrin repeat domain 37 (Ankrd37)) response genes. However, EA pretreatment markedly prevented the induction of expression of inflammatory and hypoxic response genes in the lungs. Furthermore, PM exposure significantly triggered hyperactivity by increasing the total moving distance with an increase in moving speed in the open field test. On the contrary, EA pretreatment significantly prevented PM-induced hyperactivity. In conclusion, dietary intervention with EA may be a potential strategy to prevent PM-induced pathology and activity.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sungryong Bae
- Department of Fire Protection and Disaster Management, Chosun University, Gwangju 61452, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|