1
|
Mubarak G, Zahir FR. Recent Major Transcriptomics and Epitranscriptomics Contributions toward Personalized and Precision Medicine. J Pers Med 2022; 12:199. [PMID: 35207687 PMCID: PMC8877836 DOI: 10.3390/jpm12020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/07/2022] Open
Abstract
With the advent of genome-wide screening methods-beginning with microarray technologies and moving onto next generation sequencing methods-the era of precision and personalized medicine was born. Genomics led the way, and its contributions are well recognized. However, "other-omics" fields have rapidly emerged and are becoming as important toward defining disease causes and exploring therapeutic benefits. In this review, we focus on the impacts of transcriptomics, and its extension-epitranscriptomics-on personalized and precision medicine efforts. There has been an explosion of transcriptomic studies particularly in the last decade, along with a growing number of recent epitranscriptomic studies in several disease areas. Here, we summarize and overview major efforts for cancer, cardiovascular disease, and neurodevelopmental disorders (including autism spectrum disorder and intellectual disability) for transcriptomics/epitranscriptomics in precision and personalized medicine. We show that leading advances are being made in both diagnostics, and in investigative and landscaping disease pathophysiological studies. As transcriptomics/epitranscriptomics screens become more widespread, it is certain that they will yield vital and transformative precision and personalized medicine contributions in ways that will significantly further genomics gains.
Collapse
Affiliation(s)
| | - Farah R. Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
2
|
Liu H, Qiu C, Wang B, Bing P, Tian G, Zhang X, Ma J, He B, Yang J. Evaluating DNA Methylation, Gene Expression, Somatic Mutation, and Their Combinations in Inferring Tumor Tissue-of-Origin. Front Cell Dev Biol 2021; 9:619330. [PMID: 34012960 PMCID: PMC8126648 DOI: 10.3389/fcell.2021.619330] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Carcinoma of unknown primary (CUP) is a type of metastatic cancer, the primary tumor site of which cannot be identified. CUP occupies approximately 5% of cancer incidences in the United States with usually unfavorable prognosis, making it a big threat to public health. Traditional methods to identify the tissue-of-origin (TOO) of CUP like immunohistochemistry can only deal with around 20% CUP patients. In recent years, more and more studies suggest that it is promising to solve the problem by integrating machine learning techniques with big biomedical data involving multiple types of biomarkers including epigenetic, genetic, and gene expression profiles, such as DNA methylation. Different biomarkers play different roles in cancer research; for example, genomic mutations in a patient’s tumor could lead to specific anticancer drugs for treatment; DNA methylation and copy number variation could reveal tumor tissue of origin and molecular classification. However, there is no systematic comparison on which biomarker is better at identifying the cancer type and site of origin. In addition, it might also be possible to further improve the inference accuracy by integrating multiple types of biomarkers. In this study, we used primary tumor data rather than metastatic tumor data. Although the use of primary tumors may lead to some biases in our classification model, their tumor-of-origins are known. In addition, previous studies have suggested that the CUP prediction model built from primary tumors could efficiently predict TOO of metastatic cancers (Lal et al., 2013; Brachtel et al., 2016). We systematically compared the performances of three types of biomarkers including DNA methylation, gene expression profile, and somatic mutation as well as their combinations in inferring the TOO of CUP patients. First, we downloaded the gene expression profile, somatic mutation and DNA methylation data of 7,224 tumor samples across 21 common cancer types from the cancer genome atlas (TCGA) and generated seven different feature matrices through various combinations. Second, we performed feature selection by the Pearson correlation method. The selected features for each matrix were used to build up an XGBoost multi-label classification model to infer cancer TOO, an algorithm proven to be effective in a few previous studies. The performance of each biomarker and combination was compared by the 10-fold cross-validation process. Our results showed that the TOO tracing accuracy using gene expression profile was the highest, followed by DNA methylation, while somatic mutation performed the worst. Meanwhile, we found that simply combining multiple biomarkers does not have much effect in improving prediction accuracy.
Collapse
Affiliation(s)
- Haiyan Liu
- Academician Workstation, Changsha Medical University, Changsha, China.,College of Information Engineering, Changsha Medical University, Changsha, China
| | - Chun Qiu
- Department of Oncology, Hainan General Hospital, Haikou, China
| | - Bo Wang
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Xueliang Zhang
- Department of Oncology, Jiamusi Cancer Hospital, Jiamusi, China
| | - Jun Ma
- College of Information Engineering, Changsha Medical University, Changsha, China
| | - Bingsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha, China.,Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
3
|
Liu X, Li L, Peng L, Wang B, Lang J, Lu Q, Zhang X, Sun Y, Tian G, Zhang H, Zhou L. Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data. Front Genet 2020; 11:674. [PMID: 32760423 PMCID: PMC7372518 DOI: 10.3389/fgene.2020.00674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with carcinoma of unknown primary (CUP) account for 3-5% of all cancer cases. A large number of metastatic cancers require further diagnosis to determine their tissue of origin. However, diagnosis of CUP and identification of its primary site are challenging. Previous studies have suggested that molecular profiling of tissue-specific genes could be useful in inferring the primary tissue of a tumor. The purpose of this study was to evaluate the performance somatic mutations detected in a tumor to identify the cancer tissue of origin. We downloaded the somatic mutation datasets from the International Cancer Genome Consortium project. The random forest algorithm was used to extract features, and a classifier was established based on the logistic regression. Specifically, the somatic mutations of 300 genes were extracted, which are significantly enriched in functions, such as cell-to-cell adhesion. In addition, the prediction accuracy on tissue-of-origin inference for 3,374 cancer samples across 13 cancer types reached 81% in a 10-fold cross-validation. Our method could be useful in the identification of cancer tissue of origin, as well as the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | | | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Bo Wang
- Genesis Beijing Co., Ltd., Beijing, China
| | | | | | | | - Yi Sun
- Chifeng Municipal Hospital, Chifeng, China
| | - Geng Tian
- Genesis Beijing Co., Ltd., Beijing, China
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
4
|
He B, Lang J, Wang B, Liu X, Lu Q, He J, Gao W, Bing P, Tian G, Yang J. TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression. Front Bioeng Biotechnol 2020; 8:394. [PMID: 32509741 PMCID: PMC7248358 DOI: 10.3389/fbioe.2020.00394] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancers require further diagnosis to determine their primary tumor sites. However, the tissue-of-origin for around 5% tumors could not be identified by routine medical diagnosis according to a statistics in the United States. With the development of machine learning techniques and the accumulation of big cancer data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), it is now feasible to predict cancer tissue-of-origin by computational tools. Metastatic tumor inherits characteristics from its tissue-of-origin, and both gene expression profile and somatic mutation have tissue specificity. Thus, we developed a computational framework to infer tumor tissue-of-origin by integrating both gene mutation and expression (TOOme). Specifically, we first perform feature selection on both gene expressions and mutations by a random forest method. The selected features are then used to build up a multi-label classification model to infer cancer tissue-of-origin. We adopt a few popular multiple-label classification methods, which are compared by the 10-fold cross validation process. We applied TOOme to the TCGA data containing 7,008 non-metastatic samples across 20 solid tumors. Seventy four genes by gene expression profile and six genes by gene mutation are selected by the random forest process, which can be divided into two categories: (1) cancer type specific genes and (2) those expressed or mutated in several cancers with different levels of expression or mutation rates. Function analysis indicates that the selected genes are significantly enriched in gland development, urogenital system development, hormone metabolic process, thyroid hormone generation prostate hormone generation and so on. According to the multiple-label classification method, random forest performs the best with a 10-fold cross-validation prediction accuracy of 96%. We also use the 19 metastatic samples from TCGA and 256 cancer samples downloaded from GEO as independent testing data, for which TOOme achieves a prediction accuracy of 89%. The cross-validation validation accuracy is better than those using gene expression (i.e., 95%) and gene mutation (53%) alone. In conclusion, TOOme provides a quick yet accurate alternative to traditional medical methods in inferring cancer tissue-of-origin. In addition, the methods combining somatic mutation and gene expressions outperform those using gene expression or mutation alone.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | | | - Bo Wang
- Geneis Beijing Co., Ltd., Beijing, China
| | | | | | - Jianjun He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Wei Gao
- Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
5
|
Kamath SD, Lin X, Kalyan A. A Case of Metastatic Biliary Tract Cancer Diagnosed Through Identification of an IDH1 Mutation. Oncologist 2018; 24:151-156. [PMID: 30352944 DOI: 10.1634/theoncologist.2018-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
The role of next-generation sequencing from either circulating tumor DNA (ctDNA) or formalin-fixed paraffin-embedded (FFPE) tissue to identify therapeutically targetable genomic alterations has been well established. Genomic profiling may also have untapped potential as a diagnostic tool in cases in which traditional immunohistochemistry assays cannot establish a clear histologic diagnosis. Expanding the number of histologies with unique genomic signatures or alterations is critical in this setting. Here we describe a case of a 73-year-old man who presented with a duodenal mass extending to the liver and peritoneal carcinomatosis, initially thought to be metastatic duodenal adenocarcinoma. Subsequent genomic profiling of ctDNA and FFPE tissue revealed an IDH1 mutation, which is rare in duodenal adenocarcinoma but common in biliary tract cancers (BTCs). This finding prompted a second biopsy, which revealed pancreaticobiliary adenocarcinoma. The clinical significance of IDH mutations in terms of their molecular specificity to certain histologies is reviewed. Recent and ongoing investigations into IDH inhibitors for advanced and metastatic BTCs are also discussed. KEY POINTS: This case demonstrates a novel use of next-generation sequencing as a diagnostic tool to modify a primary cancer diagnosis, leading to important changes in therapy.Isocitrate dehydrogenase mutations are rare in solid organ malignancies and are highly specific for biliary tract cancers (BTCs) within the gastrointestinal malignancies.IDH inhibition is an active area of investigation in metastatic BTCs; early results have been promising.
Collapse
Affiliation(s)
- Suneel Deepak Kamath
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaoqi Lin
- Department of Pathology, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun 2018; 9:3962. [PMID: 30262806 PMCID: PMC6160438 DOI: 10.1038/s41467-018-06485-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
To evaluate the potential of an integrated clinical test to detect diverse classes of somatic and germline mutations relevant to pediatric oncology, we performed three-platform whole-genome (WGS), whole exome (WES) and transcriptome (RNA-Seq) sequencing of tumors and normal tissue from 78 pediatric cancer patients in a CLIA-certified, CAP-accredited laboratory. Our analysis pipeline achieves high accuracy by cross-validating variants between sequencing types, thereby removing the need for confirmatory testing, and facilitates comprehensive reporting in a clinically-relevant timeframe. Three-platform sequencing has a positive predictive value of 97–99, 99, and 91% for somatic SNVs, indels and structural variations, respectively, based on independent experimental verification of 15,225 variants. We report 240 pathogenic variants across all cases, including 84 of 86 known from previous diagnostic testing (98% sensitivity). Combined WES and RNA-Seq, the current standard for precision oncology, achieved only 78% sensitivity. These results emphasize the critical need for incorporating WGS in pediatric oncology testing. Clinical oncology is rapidly adopting next-generation sequencing technology for nucleotide variant and indel detection. Here the authors present a three-platform approach (whole-genome, whole-exome, and whole-transcriptome) in pediatric patients for the detection of diverse types of germline and somatic variants.
Collapse
|
7
|
Bester JC, Sabatello M, van Karnebeek CD, Lantos JD. Please Test My Child for a Cancer Gene, but Don't Tell Her. Pediatrics 2018. [PMID: 29535250 PMCID: PMC5882554 DOI: 10.1542/peds.2017-2238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 38-year-old woman is diagnosed with Li-Fraumeni syndrome, an autosomal dominant genetic condition that predisposes to a variety of cancers. The woman has an 11-year-old daughter. The geneticist recommends that the child be tested for the Li-Fraumeni genetic variant. The mother is concerned about the impact of testing and diagnosis on Karen's psychological well-being. She describes Karen as "highly strung" and as "a worrier." The child has been diagnosed with an anxiety disorder and is managed by a psychologist for counseling. The child is otherwise well. The mother requests that testing be done without disclosing it to the child by adding the test on to routine blood work done for another reason and requests that the results only be revealed if they are positive. Experts in genetics, law, and bioethics discuss whether it is permissible to test the child without her knowledge or assent.
Collapse
Affiliation(s)
- Johan C. Bester
- Director of Bioethics, School of Medicine, University of Nevada, Las Vegas
| | - Maya Sabatello
- Department of Psychiatry, Columbia University, New York, NY
| | - Clara D.M. van Karnebeek
- Department of Pediatrics and Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam NL
| | - John D. Lantos
- Children’s Mercy Bioethics Center, Children’s Mercy Kansas City, MO 64108
| |
Collapse
|