1
|
The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 2021; 136:596-609. [PMID: 32270193 DOI: 10.1182/blood.2019003636] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.
Collapse
|
2
|
Rothe K, Babaian A, Nakamichi N, Chen M, Chafe SC, Watanabe A, Forrest DL, Mager DL, Eaves CJ, Dedhar S, Jiang X. Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell 2020; 27:110-124.e9. [DOI: 10.1016/j.stem.2020.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
|
3
|
Chen M, Turhan AG, Ding H, Lin Q, Meng K, Jiang X. Targeting BCR-ABL+ stem/progenitor cells and BCR-ABL-T315I mutant cells by effective inhibition of the BCR-ABL-Tyr177-GRB2 complex. Oncotarget 2018; 8:43662-43677. [PMID: 28599273 PMCID: PMC5546432 DOI: 10.18632/oncotarget.18216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023] Open
Abstract
Treatment of BCR-ABL+ human leukemia has been significantly improved by ABL tyrosine kinase inhibitors (TKIs), but they are not curative for most patients and relapses are frequently associated with BCR-ABL mutations, warranting new targets for improved treatments. We have now demonstrated that protein expression of human estrogen receptor alpha 36 (ERα36), an alternative splicing variant of human estrogen receptor alpha 66 (ERα66), is highly increased in TKI-insensitive CD34+ chronic myeloid leukemia (CML) cells and BCR-ABL-T315I mutant cells, and is abnormally localized in plasma membrane and cytoplasm. Interestingly, new pre-clinically-validated analogs of Icaritin (SNG162 and SNG1153), which target abnormal ERα36 activity, inhibit cell growth and induce apoptosis of BCR-ABL+ leukemic cells, particularly BCR-ABL-T315I mutant cells. A combination of SNG inhibitors and TKI selectively eliminates treatment-naïve TKI-insensitive stem/progenitor cells while sparing healthy counterparts. Oral TKI dasatinib combined with potent SNG1153 inhibitor effectively eliminates infiltrated BCR-ABL+ blast cells and enhances survival of mice. Importantly, a unique mechanism of SNG inhibition was uncovered by demonstrating a marked interruption of the BCR-ABLTyr177-GRB2 interaction, leading to inhibition of the downstream RAS/MAPK pathway. This new combination therapy may lead to more effective disease eradication, especially in patients at high risk of TKI resistance and disease progression.
Collapse
Affiliation(s)
- Min Chen
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ali G Turhan
- Department of Hematology, Paris Sud University Hospitals, University Paris Sud 11 and INSERM U935, Villejuif, France
| | | | | | - Kun Meng
- Shenogen Pharma Group Ltd, Beijing, China
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Lai D, Chen M, Su J, Liu X, Rothe K, Hu K, Forrest DL, Eaves CJ, Morin GB, Jiang X. PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL
+
human leukemia. Sci Transl Med 2018; 10. [DOI: 10.1126/scitranslmed.aan8735] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
PP2A inhibitors and BCR-ABL inhibitors synergize to kill drug-insensitive leukemia cells.
Collapse
Affiliation(s)
- Damian Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Min Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jiechuang Su
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Xiaohu Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Katharina Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Kaiji Hu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Donna L. Forrest
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Leukemia/Bone Marrow Transplant Program of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Gregg B. Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| |
Collapse
|
5
|
Liu X, Rothe K, Yen R, Fruhstorfer C, Maetzig T, Chen M, Forrest DL, Humphries RK, Jiang X. A novel AHI-1-BCR-ABL-DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy. Leukemia 2017; 31:2376-2387. [PMID: 28366933 PMCID: PMC5668499 DOI: 10.1038/leu.2017.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
Abstract
Tyrosine kinase inhibitor (TKI) therapies induce clinical remission with remarkable effects on chronic myeloid leukemia (CML). However, very few TKIs completely eradicate the leukemic clone and persistence of leukemic stem cells (LSCs) remains challenging, warranting new, distinct targets for improved treatments. We demonstrated that the scaffold protein AHI-1 is highly deregulated in LSCs and interacts with multiple proteins, including Dynamin-2 (DNM2), to mediate TKI-resistance of LSCs. We have now demonstrated that the SH3 domain of AHI-1 and the proline rich domain of DNM2 are mainly responsible for this interaction. DNM2 expression was significantly increased in CML stem/progenitor cells; knockdown of DNM2 greatly impaired their survival and sensitized them to TKI treatments. Importantly, a new AHI-1-BCR-ABL-DNM2 protein complex was uncovered, which regulates leukemic properties of these cells through a unique mechanism of cellular endocytosis and ROS-mediated autophagy. Thus, targeting this complex may facilitate eradication of LSCs for curative therapies.
Collapse
Affiliation(s)
- X Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - R Yen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C Fruhstorfer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - T Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - M Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - D L Forrest
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Leukemia/BMT Program of British Columbia, Vancouver, BC, Canada
| | - R K Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - X Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Lin H, Chen M, Rothe K, Lorenzi MV, Woolfson A, Jiang X. Selective JAK2/ABL dual inhibition therapy effectively eliminates TKI-insensitive CML stem/progenitor cells. Oncotarget 2015; 5:8637-50. [PMID: 25226617 PMCID: PMC4226710 DOI: 10.18632/oncotarget.2353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Imatinib Mesylate (IM) and other tyrosine kinase inhibitor (TKI) therapies have had a major impact on the treatment of chronic myeloid leukemia (CML). However, TKI monotherapy is not curative, with relapse and persistence of leukemic stem cells (LSCs) remaining a challenge. We have recently identified an AHI-1-BCR-ABL-JAK2 protein complex that contributes to the transforming activity of BCR-ABL and IM-resistance in CML stem/progenitor cells. JAK2 thus emerges as an attractive target for improved therapies, but off-target effects of newly developed JAK2 inhibitors on normal hematopoietic cells remain a concern. We have examined the biological effects of a highly selective, orally bioavailable JAK2 inhibitor, BMS-911543, in combination with TKIs on CD34+ treatment-naïve IM-nonresponder cells. Combination therapy reduces JAK2/STAT5 and CRKL activities, induces apoptosis, inhibits proliferation and colony growth, and eliminates CML LSCs in vitro. Importantly, BMS-911543 selectively targets CML stem/progenitor cells while sparing healthy stem/progenitor cells. Oral BMS-911543 combined with the potent TKI dasatinib more effectively eliminates infiltrated leukemic cells in hematopoietic tissues than TKI monotherapy and enhances survival of leukemic mice. Dual targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may consequently lead to more effective disease eradication, especially in patients at high risk of TKI resistance and disease progression.
Collapse
Affiliation(s)
- Hanyang Lin
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Katharina Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia; Vancouver, BC, Canada
| | - Matthew V Lorenzi
- Discovery Medicine Oncology, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Adrian Woolfson
- Discovery Medicine Oncology, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medicine, University of British Columbia, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia; Vancouver, BC, Canada
| |
Collapse
|
7
|
The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood 2014; 123:3622-34. [PMID: 24755409 DOI: 10.1182/blood-2013-07-516807] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies demonstrated that imatinib mesylate (IM) induces autophagy in chronic myeloid leukemia (CML) and that this process is critical to cell survival upon therapy. However, it is not known if the autophagic process differs at basal levels between CML patients and healthy individuals and if pretreatment CML cells harbor unique autophagy characteristics that could predict patients' clinical outcomes. We now demonstrate that several key autophagy genes are differentially expressed in CD34(+) hematopoietic stem/progenitor cells, with the highest transcript levels detected for ATG4B, and that the transcript and protein expression levels of ATG4 family members, ATG5 and BECLIN-1 are significantly increased in CD34(+) cells from chronic-phase CML patients (P < .05). Importantly, ATG4B is differentially expressed in pretreatment CML stem/progenitor cells from subsequent IM responders vs IM nonresponders (P < .05). Knockdown of ATG4B suppresses autophagy, impairs the survival of CML stem/progenitor cells and sensitizes them to IM treatment. Moreover, deregulated expression of ATG4B in CD34(+) CML cells inversely correlates with transcript levels of miR-34a, and ATG4B is shown to be a direct target of miR-34a. This study identifies ATG4B as a potential biomarker for predicting therapeutic response in treatment-naïve CML stem/progenitor cells and uncovers ATG4B as a possible drug target in these cells.
Collapse
|
8
|
Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL, Chan M, Lai D, Jorgensen H, Ringrose A, Wang HM, Lambie K, Nakamoto H, Saw KM, Turhan A, Arlinghaus R, Paul J, Stobo J, Barnett MJ, Eaves A, Eaves CJ, Holyoake TL, Jiang X. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst 2013; 105:405-23. [PMID: 23446755 PMCID: PMC3601953 DOI: 10.1093/jnci/djt006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/25/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Imatinib mesylate (IM) induces clinical remission of chronic myeloid leukemia (CML). The Abelson helper integration site 1 (AHI-1) oncoprotein interacts with BCR-ABL and Janus kinase 2 (JAK2) to mediate IM response of primitive CML cells, but the effect of the interaction complex on the response to ABL and JAK2 inhibitors is unknown. METHODS The AHI-1-BCR-ABL-JAK2 interaction complex was analyzed by mutational analysis and coimmunoprecipitation. Roles of the complex in regulation of response or resistance to ABL and JAK2 inhibitors were investigated in BCR-ABL (+) cells and primary CML stem/progenitor cells and in immunodeficient NSG mice. All statistical tests were two-sided. RESULTS The WD40-repeat domain of AHI-1 interacts with BCR-ABL, whereas the N-terminal region interacts with JAK2; loss of these interactions statistically significantly increased the IM sensitivity of CML cells. Disrupting this complex with a combination of IM and an orally bioavailable selective JAK2 inhibitor (TG101209 [TG]) statistically significantly induced death of AHI-1-overexpressing and IM-resistant cells in vitro and enhanced survival of leukemic mice, compared with single agents (combination vs TG alone: 63 vs 53 days, ratio = 0.84, 95% confidence interval [CI] = 0.6 to 1.1, P = .004; vs IM: 57 days, ratio = 0.9, 95% CI = 0.61 to 1.2, P = .003). Combination treatment also statistically significantly enhanced apoptosis of CD34(+) leukemic stem/progenitor cells and eliminated their long-term leukemia-initiating activity in NSG mice. Importantly, this approach was effective against treatment-naive CML stem cells from patients who subsequently proved to be resistant to IM therapy. CONCLUSIONS Simultaneously targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may improve outcomes in patients destined to develop IM resistance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport
- Administration, Oral
- Animals
- Antigens, CD34/analysis
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Biological Availability
- Blotting, Western
- Cell Proliferation/drug effects
- DNA Mutational Analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate
- Immunoprecipitation
- Janus Kinase 2/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Microfilament Proteins/metabolism
- Mutation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Phosphorylation/drug effects
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Remission Induction
- Sulfonamides/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Min Chen
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
10
|
Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood 2010; 116:2112-21. [PMID: 20574046 DOI: 10.1182/blood-2009-05-222471] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imatinib mesylate (IM) induces clinical remissions in chronic-phase chronic myeloid leukemia (CML) patients but IM resistance remains a problem. We recently identified several features of CML CD34(+) stem/progenitor cells expected to confer resistance to BCR-ABL-targeted therapeutics. From a study of 25 initially chronic-phase patients, we now demonstrate that some, but not all, of these parameters correlate with subsequent clinical response to IM therapy. CD34(+) cells from the 14 IM nonresponders demonstrated greater resistance to IM than the 11 IM responders in colony-forming cell assays in vitro (P < .001) and direct sequencing of cloned transcripts from CD34(+) cells further revealed a higher incidence of BCR-ABL kinase domain mutations in the IM nonresponders (10%-40% vs 0%-20% in IM responders, P < .003). In contrast, CD34(+) cells from IM nonresponders and IM responders were not distinguished by differences in BCR-ABL or transporter gene expression. Interestingly, one BCR-ABL mutation (V304D), predicted to destabilize the interaction between p210(BCR-ABL) and IM, was detectable in 14 of 20 patients. T315I mutant CD34(+) cells found before IM treatment in 2 of 20 patients examined were preferentially amplified after IM treatment. Thus, 2 properties of pretreatment CML stem/progenitor cells correlate with subsequent response to IM therapy. Prospective assessment of these properties may allow improved patient management.
Collapse
|