1
|
Casey RT, Hendriks E, Deal C, Waguespack SG, Wiegering V, Redlich A, Akker S, Prasad R, Fassnacht M, Clifton-Bligh R, Amar L, Bornstein S, Canu L, Charmandari E, Chrisoulidou A, Freixes MC, de Krijger R, de Sanctis L, Fojo A, Ghia AJ, Huebner A, Kosmoliaptsis V, Kuhlen M, Raffaelli M, Lussey-Lepoutre C, Marks SD, Nilubol N, Parasiliti-Caprino M, Timmers HHJLM, Zietlow AL, Robledo M, Gimenez-Roqueplo AP, Grossman AB, Taïeb D, Maher ER, Lenders JWM, Eisenhofer G, Jimenez C, Pacak K, Pamporaki C. International consensus statement on the diagnosis and management of phaeochromocytoma and paraganglioma in children and adolescents. Nat Rev Endocrinol 2024; 20:729-748. [PMID: 39147856 DOI: 10.1038/s41574-024-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Phaeochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumours that arise not only in adulthood but also in childhood and adolescence. Up to 70-80% of childhood PPGL are hereditary, accounting for a higher incidence of metastatic and/or multifocal PPGL in paediatric patients than in adult patients. Key differences in the tumour biology and management, together with rare disease incidence and therapeutic challenges in paediatric compared with adult patients, mandate close expert cross-disciplinary teamwork. Teams should ideally include adult and paediatric endocrinologists, oncologists, cardiologists, surgeons, geneticists, pathologists, radiologists, clinical psychologists and nuclear medicine physicians. Provision of an international Consensus Statement should improve care and outcomes for children and adolescents with these tumours.
Collapse
Affiliation(s)
- Ruth T Casey
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Department of Endocrinology, Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Emile Hendriks
- Department of Paediatric Diabetes and Endocrinology, Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cheri Deal
- Endocrine and Diabetes Service, CHU Sainte-Justine and University of Montreal, Montreal, Québec, Canada
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Verena Wiegering
- University Children's Hospital, Department of Paediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Antje Redlich
- Paediatric Oncology Department, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Scott Akker
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Roderick Clifton-Bligh
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Laurence Amar
- Université de Paris, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Stefan Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Paediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | - Maria Currás Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Ronald de Krijger
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Luisa de Sanctis
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Antonio Fojo
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Amol J Ghia
- Department of Radiation Oncology, University Hospital of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Huebner
- Department of Paediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
- Blood and Transplant Research Unit in Organ Donation and Transplantation, National Institute for Health Research, University of Cambridge, Cambridge, UK
| | - Michaela Kuhlen
- Paediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marco Raffaelli
- U.O.C. Chirurgia Endocrina e Metabolica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Charlotte Lussey-Lepoutre
- Service de médecine nucléaire, Inserm U970, Sorbonne université, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR GOSH Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mirko Parasiliti-Caprino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti, Turin, Italy
| | - Henri H J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anna Lena Zietlow
- Clinical Child and Adolescent Psychology, Institute of Clinical Psychology and Psychotherapy, Department of Psychology, TU Dresden, Dresden, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, PARCC, INSERM, Paris, France
- Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Christina Pamporaki
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Urquhart C, Fleming B, Harper I, Aloj L, Armstrong R, Hook L, Long AM, Jackson C, Gallagher FA, McLean MA, Tarpey P, Kosmoliaptsis V, Nicholson J, Hendriks AEJ, Casey RT. The use of temozolomide in paediatric metastatic phaeochromocytoma/paraganglioma: A case report and literature review. Front Endocrinol (Lausanne) 2022; 13:1066208. [PMID: 36440187 PMCID: PMC9681996 DOI: 10.3389/fendo.2022.1066208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
There is increasing evidence to support the use of temozolomide therapy for the treatment of metastatic phaeochromocytoma/paraganglioma (PPGL) in adults, particularly in patients with SDHx mutations. In children however, very little data is available. In this report, we present the case of a 12-year-old female with a SDHB-related metastatic paraganglioma treated with surgery followed by temozolomide therapy. The patient presented with symptoms of palpitations, sweating, flushing and hypertension and was diagnosed with a paraganglioma. The primary mass was surgically resected six weeks later after appropriate alpha- and beta-blockade. During the surgery extensive nodal disease was identified that had been masked by the larger paraganglioma. Histological review confirmed a diagnosis of a metastatic SDHB-deficient paraganglioma with nodal involvement. Post-operatively, these nodal lesions demonstrated tracer uptake on 18F-FDG PET-CT. Due to poor tumour tracer uptake on 68Ga-DOTATATE and 123I-MIBG functional imaging studies radionuclide therapy was not undertaken as a potential therapeutic option for this patient. Due to the low tumour burden and lack of clinical symptoms, the multi-disciplinary team opted for close surveillance for the first year, during which time the patient continued to thrive and progress through puberty. 13 months after surgery, evidence of radiological and biochemical progression prompted the decision to start systemic monotherapy using temozolomide. The patient has now completed ten cycles of therapy with limited adverse effects and has benefited from a partial radiological and biochemical response.
Collapse
Affiliation(s)
- Calum Urquhart
- Department of Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ben Fleming
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Luigi Aloj
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Armstrong
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Liz Hook
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anna-May Long
- Department of Paediatric Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Claire Jackson
- Department of Paediatric Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Mary A. McLean
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Tarpey
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery and NIHR Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - James Nicholson
- Department of Paediatric Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - A. Emile J. Hendriks
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ruth T. Casey
- Department of Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Lingertat-Walsh K, Weilnau J, Cober MP, Ostrenga A, Poon B, Sales P, Law S, Dupuis LL, Walker SE. Stability of extemporaneously compounded temozolomide 10 mg/mL suspensions in Oral Mix SF® in glass and plastic bottles and plastic syringes. J Oncol Pharm Pract 2020; 27:78-87. [PMID: 32228132 DOI: 10.1177/1078155220914349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Temozolomide oral suspension is not commercially available. OBJECTIVE To evaluate the stability of three temozolomide 10 mg/mL suspensions prepared in Oral Mix SF® in three container types stored at 4°C and 23°C. METHODS Using commercial capsules, three separate batches of three different temozolomide 10 mg/mL formulations (Oral Mix SF® with PK-30; PK-30 and citric acid; and neither PK-30 nor citric acid) were made and stored in three container types (amber glass bottles, amber polyethylene terephthalate bottles, and polypropylene oral syringes). The aliquots in each container type were stored protected from light, half at 25°C and half at 4°C. On study days 0, 5, 8, 14, 21, 28, 35, 42, and 56, physical properties of samples from each container type at each temperature were assessed, and the temozolomide concentration was determined using a stability-indicating method. The beyond-use-date (time to achieve 90% of initial concentration calculated using the lower limit of the 95% confidence interval of the observed degradation rate) was calculated. RESULTS Samples stored at 25°C turned from white to orange within seven days. Temozolomide crystals were observed in all samples. Concentration changes due to study day and temperature (p < 0.001) were observed but not due to container (p = 0.991) or formulation (p = 0.987). The beyond-use-date of all formulations in all container types was 56 days at 4°C and 6 days at 23°C. CONCLUSIONS We recommend that these temozolomide 10 mg/mL formulations be stored at 4°C and be assigned a beyond-use-date of 30 days.
Collapse
Affiliation(s)
| | - JoEllen Weilnau
- Department of Pharmacy, Akron Children's Hospital, Akron, Ohio
| | - M Petrea Cober
- Department of Pharmacy Practice, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio
| | - Andrew Ostrenga
- Department of Pharmacy, University of Mississippi Medical Center, Jackson, Mississippi
| | - Betsy Poon
- Department of Pharmacy, AdventHealth, Orlando, Florida
| | - Pacita Sales
- Department of Pharmacy, The Hospital for Sick Children, Toronto, Canada
| | - Shirley Law
- Department of Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - L Lee Dupuis
- Department of Pharmacy, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Scott E Walker
- Department of Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Schafer ES, Rau RE, Berg SL, Liu X, Minard CG, Bishop AJR, Romero JC, Hicks MJ, Nelson MD, Voss S, Reid JM, Fox E, Weigel BJ, Blaney SM. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: A Children's Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer 2020; 67:e28073. [PMID: 31724813 PMCID: PMC9134216 DOI: 10.1002/pbc.28073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE We conducted a phase 1/2 trial of the poly(ADP-ribose) polymerase 1/2 inhibitor talazoparib in combination with low-dose temozolomide (TMZ) to determine the dose-limiting toxicities (DLTs), recommended phase 2 dose (RP2D), and pharmacokinetics of this combination in children with recurrent/refractory solid tumors; and to explore clinical activity in Ewing sarcoma (EWS) (NCT02116777). METHODS Talazoparib (400-600 µg/m2 /dose, maximum daily dose 800-1000 µg) was administered q.d. or b.i.d. orally on day 1 followed by q.d. dosing concomitant with q.d. dosing of oral TMZ (20-55 mg/m2 /day) on days 2 to 6, every 28 days. RESULTS Forty patients, aged 4 to 25 years, were enrolled. Talazoparib was increased to 600 µg/m2 /dose b.i.d. on day 1, and q.d. thereafter, with 20 mg/m2 /day of TMZ, without DLTs. TMZ was subsequently increased, during which dose-limiting neutropenia and thrombocytopenia occurred in two of three subjects at 55 mg/m2 /day, two of six subjects at 40 mg/m2 /day, and one of six subjects at 30 mg/m2 /day. During dose-finding, two of five EWS and four of 25 non-EWS subjects experienced prolonged stable disease (SD), and one subject with malignant glioma experienced a partial response. In phase 2, 0 of 10 EWS subjects experienced an objective response; two experienced prolonged SD. CONCLUSIONS Talazoparib and low-dose TMZ are tolerated in children with recurrent/refractory solid tumors. Reversible neutropenia and thrombocytopenia were dose limiting. The RP2D is talazoparib 600 µg/m2 b.i.d. on day 1 followed by 600 µg/m2 q.d. on days 2 to 6 (daily maximum 1000 µg) in combination with temozolomide 30 mg/m2 /day on days 2 to 6. Antitumor activity was not observed in EWS, and limited antitumor activity was observed in central nervous system tumors.
Collapse
Affiliation(s)
- Eric S. Schafer
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | - Rachel E. Rau
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | - Stacey L. Berg
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| | | | | | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX,Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX
| | - J. Carolina Romero
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | | | | | | | | | - Elizabeth Fox
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Susan M. Blaney
- Baylor College of Medicine, Houston, TX,Texas Children’s Cancer and Hematology Centers, Houston, TX
| |
Collapse
|
5
|
Dahlrot RH, Dowsett J, Fosmark S, Malmström A, Henriksson R, Boldt H, de Stricker K, Sørensen MD, Poulsen HS, Lysiak M, Söderkvist P, Rosell J, Hansen S, Kristensen BW. Prognostic value of O-6-methylguanine-DNA methyltransferase (MGMT) protein expression in glioblastoma excluding nontumour cells from the analysis. Neuropathol Appl Neurobiol 2018; 44:172-184. [PMID: 28574607 DOI: 10.1111/nan.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023]
Abstract
AIMS It is important to predict response to treatment with temozolomide (TMZ) in glioblastoma (GBM) patients. Both MGMT protein expression and MGMT promoter methylation status have been reported to predict the response to TMZ. We investigated the prognostic value of quantified MGMT protein levels in tumour cells and the prognostic importance of combining information of MGMT protein level and MGMT promoter methylation status. METHODS MGMT protein expression was quantified in tumour cells in 171 GBMs from the population-based Region of Southern Denmark (RSD)-cohort using a double immunofluorescence approach. Pyrosequencing was performed in 157 patients. For validation we used GBM-patients from a Nordic Study (NS) investigating the effect of radiotherapy and different TMZ schedules. RESULTS When divided at the median, patients with low expression of MGMT protein (AF-low) had the best prognosis (HR = 1.5, P = 0.01). Similar results were observed in the subgroup of patients receiving the Stupp regimen (HR = 2.0, P = 0.001). In the NS-cohort a trend towards superior survival (HR = 1.6, P = 0.08) was seen in patients with AF-low. Including MGMT promoter methylation status, we found for both cohorts that patients with methylated MGMT promoter and AF-low had the best outcome; median OS 23.1 and 20.0 months, respectively. CONCLUSION Our data indicate that MGMT protein expression in tumour cells has an independent prognostic significance. Exclusion of nontumour cells contributed to a more exact analysis of tumour-specific MGMT protein expression. This should be incorporated in future studies evaluating MGMT status before potential integration into clinical practice.
Collapse
Affiliation(s)
- R H Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - J Dowsett
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - S Fosmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - A Malmström
- Department of Advanced Home Care, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - R Henriksson
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
- Regional Cancer Center Stockholm Gotland, Stockholm, Sweden
| | - H Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - K de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - M D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - H S Poulsen
- Department of Radiation Biology & Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - M Lysiak
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - P Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Rosell
- Regional Cancer Center South East Sweden and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - S Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - B W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Lam S, Lin Y, Zinn P, Su J, Pan IW. Patient and treatment factors associated with survival among pediatric glioblastoma patients: A Surveillance, Epidemiology, and End Results study. J Clin Neurosci 2017; 47:285-293. [PMID: 29102237 DOI: 10.1016/j.jocn.2017.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Glioblastoma (GBM) is a rare malignancy in children. The United States Surveillance, Epidemiology, and End Results (SEER) database allows large-scale analyses of clinical characteristics and prognostic features. We used it to study patients aged <20 years with histologically confirmed GBM (2000-2010) and examined the relationship between patient demographics, tumor characteristics, patterns of treatment, and outcomes. The primary outcome was disease-specific survival. 302 subjects were identified, with median age 11 years. Median follow-up was 32 months (95% CI 27-39). 34.4% had gross total resection (GTR). 61% underwent radiation after surgery (17% of subjects <3 years, 67% of those aged 4-19 years). Median survival and 2-year survival rates were 20 months and 46.9%, respectively. In multivariate analyses, age, tumor location, extent of resection, and year of diagnosis were significantly associated with the primary outcome. Compared to those aged 0-4 years, subjects aged 5-9 years and 10-14 years had higher risk of mortality. Infratentorial tumor location (HR 2.0, 95% CI 1.2-3.3, p = 0.007) and subtotal resection (HR 2.04, 95% CI 1.4-3.0, p < 0.001) were associated with increased mortality. Later year of diagnosis was significantly associated with decreased risk of death (HR 0.93, 95% CI 0.9-0.99, p = 0.031). There was no association between sex, race, region, or tumor size and the primary outcome. Repeat analyses examining all-cause mortality identified the same risk factors as for CNS cancer-specific mortality. Younger age, supratentorial location, GTR, and later year of diagnosis were associated with improved survival.
Collapse
Affiliation(s)
- Sandi Lam
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA.
| | - Yimo Lin
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| | - Pascal Zinn
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| | - Jack Su
- Baylor College of Medicine, Department of Pediatrics, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Hematology/Oncology, Houston, TX, USA
| | - I-Wen Pan
- Baylor College of Medicine, Department of Neurosurgery, Houston, TX, USA; Texas Children's Hospital, Division of Pediatric Neurosurgery, Houston, TX, USA
| |
Collapse
|
7
|
Al-Saffar NMS, Agliano A, Marshall LV, Jackson LE, Balarajah G, Sidhu J, Clarke PA, Jones C, Workman P, Pearson ADJ, Leach MO. In vitro nuclear magnetic resonance spectroscopy metabolic biomarkers for the combination of temozolomide with PI3K inhibition in paediatric glioblastoma cells. PLoS One 2017; 12:e0180263. [PMID: 28704425 PMCID: PMC5509135 DOI: 10.1371/journal.pone.0180263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
Recent experimental data showed that the PI3K pathway contributes to resistance to temozolomide (TMZ) in paediatric glioblastoma and that this effect is reversed by combination treatment of TMZ with a PI3K inhibitor. Our aim is to assess whether this combination results in metabolic changes that are detectable by nuclear magnetic resonance (NMR) spectroscopy, potentially providing metabolic biomarkers for PI3K inhibition and TMZ combination treatment. Using two genetically distinct paediatric glioblastoma cell lines, SF188 and KNS42, in vitro 1H-NMR analysis following treatment with the dual pan-Class I PI3K/mTOR inhibitor PI-103 resulted in a decrease in lactate and phosphocholine (PC) levels (P<0.02) relative to control. In contrast, treatment with TMZ caused an increase in glycerolphosphocholine (GPC) levels (P≤0.05). Combination of PI-103 with TMZ showed metabolic effects of both agents including a decrease in the levels of lactate and PC (P<0.02) while an increase in GPC (P<0.05). We also report a decrease in the protein expression levels of HK2, LDHA and CHKA providing likely mechanisms for the depletion of lactate and PC, respectively. Our results show that our in vitro NMR-detected changes in lactate and choline metabolites may have potential as non-invasive biomarkers for monitoring response to combination of PI3K/mTOR inhibitors with TMZ during clinical trials in children with glioblastoma, subject to further in vivo validation.
Collapse
Affiliation(s)
- Nada M. S. Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alice Agliano
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Lynley V. Marshall
- Divisions of Cancer Therapeutics and Molecular Pathology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - L. Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Geetha Balarajah
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jasmin Sidhu
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Divisions of Cancer Therapeutics and Molecular Pathology, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Andrew D. J. Pearson
- Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Martin O. Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, Beroukhim R, Ligon KL, Grill J, Kieran MW. Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta Rev Cancer 2014; 1845:294-307. [PMID: 24589977 DOI: 10.1016/j.bbcan.2014.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
Abstract
Low-grade gliomas represent the most frequent brain tumors arising during childhood. They are characterized by a broad and heterogeneous group of tumors that are currently classified by the WHO according to their morphological appearance. Here we review the clinical features of these tumors, current therapeutic strategies and the recent discovery of genomic alterations characteristic to these tumors. We further explore how these recent biological findings stand to transform the treatment for these tumors and impact the diagnostic criteria for pediatric low-grade gliomas.
Collapse
Affiliation(s)
| | - Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Boston Children's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacques Grill
- Departement de Cancerologie de l'enfant et de l'adolescent, Gustave Roussy and Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Université Paris-Sud, Villejuif, France
| | - Mark W Kieran
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Lee C, Fotovati A, Triscott J, Chen J, Venugopal C, Singhal A, Dunham C, Kerr JM, Verreault M, Yip S, Wakimoto H, Jones C, Jayanthan A, Narendran A, Singh SK, Dunn SE. Polo-like kinase 1 inhibition kills glioblastoma multiforme brain tumor cells in part through loss of SOX2 and delays tumor progression in mice. Stem Cells 2012; 30:1064-75. [PMID: 22415968 DOI: 10.1002/stem.1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) ranks among the deadliest types of cancer and given these new therapies are urgently needed. To identify molecular targets, we queried a microarray profiling 467 human GBMs and discovered that polo-like kinase 1 (PLK1) was highly expressed in these tumors and that it clustered with the proliferative subtype. Patients with PLK1-high tumors were more likely to die from their disease suggesting that current therapies are inactive against such tumors. This prompted us to examine its expression in brain tumor initiating cells (BTICs) given their association with treatment failure. BTICs isolated from patients expressed 110-470 times more PLK1 than normal human astrocytes. Moreover, BTICs rely on PLK1 for survival because the PLK1 inhibitor BI2536 inhibited their growth in tumorsphere cultures. PLK1 inhibition suppressed growth, caused G(2) /M arrest, induced apoptosis, and reduced the expression of SOX2, a marker of neural stem cells, in SF188 cells. Consistent with SOX2 inhibition, the loss of PLK1 activity caused the cells to differentiate based on elevated levels of glial fibrillary acidic protein and changes in cellular morphology. We then knocked glial fibrillary acidic protein (GFAP) down SOX2 with siRNA and showed that it too inhibited cell growth and induced cell death. Likewise, in U251 cells, PLK1 inhibition suppressed cell growth, downregulated SOX2, and induced cell death. Furthermore, BI2536 delayed tumor growth of U251 cells in an orthotopic brain tumor model, demonstrating that the drug is active against GBM. In conclusion, PLK1 level is elevated in GBM and its inhibition restricts the growth of brain cancer cells.
Collapse
Affiliation(s)
- Cathy Lee
- Department of Pediatrics, Child and Family Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|