1
|
Singh SK, Kumar U, Guleria A, Kumar D. A brief overview about the use of different bioactive liposome-based drug delivery systems in Peritoneal Dialysis and some other diseases. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abfdd1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Peritoneal dialysis (PD) is a promising way of treatment used for patients suffering from End-Stage Renal Failure (ESRF). Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. Nanomedicine constitutes a new direction in peritonitis prevention using peritoneal dialysis (PD). In case of PD; there is a more risk of bacterial infection in the peritoneal cavity along with subcutaneous tunnel and catheter existing site. These infections are the most common complications associated with prolonged peritoneal dialysis (PD) therapy. To prevent such complications, patients used to treat with suitable antibiotic. Nanocarriers consist of assembly of nano-sized vehicles planned to deliver encapsulated/loaded bioactive(s) to the specific target (tissues or organs) and have provided prominent improved therapeutic efficacy for PD patients. The advantage of bioactive loaded nanocarrier has the efficient capacity to deliver at target specific site in PD. This review focuses mainly on the current use of different liposomal encapsulated bioactive compounds in drug delivery systems in the case of PD and other human diseases and briefly highlights the importance and use of different liposomal encapsulated antimicrobial agents to improve the PD technique.
Collapse
|
2
|
Liposomes to Augment Dialysis in Preclinical Models: A Structured Review. Pharmaceutics 2021; 13:pharmaceutics13030395. [PMID: 33809774 PMCID: PMC8002345 DOI: 10.3390/pharmaceutics13030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, a number of groups have been investigating the use of “empty” liposomes with no drug loaded as scavengers both for exogenous intoxicants and endogenous toxic molecules. Preclinical trials have demonstrated that repurposing liposomes to sequester such compounds may prove clinically useful. The use of such “empty” liposomes in the dialysate during dialysis avoids recognition by complement surveillance, allowing high doses of liposomes to be used. The “reach” of dialysis may also be increased to molecules that are not traditionally dialysable. We aim to review the current literature in this area with the aims of increasing awareness and informing further research. A structured literature search identified thirteen papers which met the inclusion criteria. Augmenting the extraction of ammonia in hepatic failure with pH-gradient liposomes with acidic centres in peritoneal dialysis is the most studied area, with work progressing toward phase one trials. Liposomes used to augment the removal of exogenous intoxicants and protein-bound uraemic and hepatic toxins that accumulate in these organ failures and liposome-supported enzymatic dialysis have also been studied. It is conceivable that liposomes will be repurposed from the role of pharmaceutical vectors to gain further indications as clinically useful nanomedical antidotes/treatments within the next decade.
Collapse
|
3
|
Aktsiali M, Papachrysanthou T, Griveas I, Andriopoulos C, Sitaras P, Triantafyllopoulos IK, Lambrou GI. Treatment with Cinacalcet in Hemodialysis Patients with Severe Secondary Hyperparathyroidism, Influences Bone Mineral Metabolism and Anemia Parameters. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190802144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the premium rate of Chronic Kidney Disease, we have increased
our knowledge with respect to diagnosis and treatment of Bone Mineral Disease (BMD) in End-
Stage Renal Disease (ESRD). Currently, various treatment options are available. The medication
used for Secondary Hyper-Parathyroidism gives promising results in the regulation of Ca, P and
Parathormone levels, improving the quality of life. The aim of the present study was to investigate
the relation of cinacalcet administration to not only parathormone, Ca and P but also to anemia
parameters such as hematocrit and hemoglobin.
Materials and Methods:
retrospective observational study was conducted in a Chronic
Hemodialysis Unit. One-hundred ESRD patients were recruited for twenty-four months and were
evaluated on a monthly rate. Biochemical parameters were related to medication prescribed and the
prognostic value was estimated. Cinacalcet was administered to 43 out of 100 patients in a dose of
30-120 mg.
Results:
Significant differences were observed in PTH, Ca and P levels with respect to Cinacalcet
administration. Ca levels appeared to be higher at 30mg as compared to 60mg cinacalcet.
Furthermore, a decreasing age-dependent pattern was observed with respect to cinacalcet dosage. A
positive correlation was observed between Dry Weight (DW) and cinacalcet dose. Finally, a
positive correlation between Hematocrit and Hemoglobin and cinacalcet was manifested.
Conclusions:
Cinacalcet, is a potential cardiovascular and bone protective agent, which is approved
for use in ESRD patients to assist SHPT. A novel information was obtained from this study,
regarding the improvement of the control of anemia.
Collapse
Affiliation(s)
- Maria Aktsiali
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | | | - Ioannis Griveas
- 417 Veterans Army Administration Hospital of Athens, Monis Petraki 10-12, 11521, Athens, Greece
| | - Christos Andriopoulos
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | - Panagiotis Sitaras
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | - Ioannis K. Triantafyllopoulos
- Graduate Program “Metabolic Bones Diseases”, National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece
| | - George I. Lambrou
- Graduate Program “Metabolic Bones Diseases”, National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece
| |
Collapse
|