1
|
Diao X, Chen Y, Lin J, Xu M, Cao P, Peng Y, Wu H, Guo Q, Huang F, Mao H, Yu X, Xie X, Yang X. Mesenteric elasticity assessed by shear wave elastography and its relationship with peritoneal function in peritoneal dialysis patients. Clin Kidney J 2022; 16:69-77. [PMID: 36726426 PMCID: PMC9871847 DOI: 10.1093/ckj/sfac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Background We evaluated the mesenteric elasticity in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) using shear wave elastography (SWE) and investigated its relationships with peritoneal function. Methods Patients were recruited in our peritoneal dialysis (PD) centre between 15 July 2019 and 31 December 2021 and followed up to 31 March 2022. Twelve chronic kidney disease (CKD) patients and nineteen healthy people were included as controls. Correlation, linear regression and Cox regression analyses were applied. Results Of the 218 PD patients, 104 (47.8%) were male. Their mean age was 48.0 ± 13.2 years and the median PD duration was 59.0 months [interquartile range (IQR) 17.0-105]. The median mesenteric SWE value was 8.15 kPa (IQR 5.20-16.1). The mesenteric SWE values of patients with a PD duration of <3 months [5.20 kPa (IQR 3.10-7.60)] were not significantly different from those of CKD patients [4.35 kPa (IQR 2.63-5.20), P = .17] and healthy controls [3.60 kPa (IQR 2.90-5.10), P = .13] but were lower than those of patients with a PD duration of 3 months-5 years [6.40 kPa (IQR 4.10-10.5), P < .001], 5-10 years [11.9 kPa (IQR 7.40-18.2), P < .001] and >10 years [19.3 kPa (IQR 11.7-27.3), P < .001]. Longer PD duration (β = 0.58, P < .001), high effluent interleukin-6 (β = 0.61, P = .001) and low effluent cancer antigen 125 (β = -0.34, P = .03) were independently associated with low mesenteric elasticity. The mesenteric SWE value was independently correlated with the dialysate:plasma creatinine ratio (β = 0.39, P = .01) and negatively correlated with the total daily fluid volume removed (β = -0.17, P = .03). High mesenteric SWE values were an independent risk factor for death-censored technique failure [adjusted hazard ratio 4.14 (95% confidence interval 1.25-13.7), P = .02). Conclusions SWE could be used to non-invasively characterize peritoneal textural changes, which were closely associated with changes in peritoneal function.
Collapse
Affiliation(s)
| | | | - Jianxiong Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiyi Cao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Fengxian Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xueqing Yu
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | | | - Xiao Yang
- Correspondence to: Xiao Yang; E-mail:
| |
Collapse
|
2
|
Kunin M, Beckerman P. The Peritoneal Membrane—A Potential Mediator of Fibrosis and Inflammation among Heart Failure Patients on Peritoneal Dialysis. MEMBRANES 2022; 12:membranes12030318. [PMID: 35323792 PMCID: PMC8954812 DOI: 10.3390/membranes12030318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Peritoneal dialysis is a feasible, cost-effective, home-based treatment of renal replacement therapy, based on the dialytic properties of the peritoneal membrane. As compared with hemodialysis, peritoneal dialysis is cheaper, survival rate is similar, residual kidney function is better preserved, fluid and solutes are removed more gradually and continuously leading to minimal impact on hemodynamics, and risks related to a vascular access are avoided. Those features of peritoneal dialysis are useful to treat refractory congestive heart failure patients with fluid overload. It was shown that in such patients, peritoneal dialysis improves functional status and quality of life, reduces hospitalization rate, and may decrease mortality rate. High levels of serum proinflammatory cytokines and fibrosis markers, among other factors, play an important part in congestive heart failure pathogenesis and progression. We demonstrated that those levels decreased following peritoneal dialysis treatment in refractory congestive heart failure patients. The exact mechanism of beneficial effect of peritoneal dialysis in refractory congestive heart failure is currently unknown. Maintenance of fluid balance, leading to resetting of neurohumoral activation towards a more physiological condition, reduced remodeling due to the decrease in mechanical pressure on the heart, decreased inflammatory cytokine levels and oxidative stress, and a potential impact on uremic toxins could play a role in this regard. In this paper, we describe the unique characteristics of the peritoneal membrane, principals of peritoneal dialysis and its role in heart failure patients.
Collapse
Affiliation(s)
- Margarita Kunin
- Correspondence: ; Tel.: +97-235-302-581; Fax: 97-235-302-582
| | | |
Collapse
|
3
|
Verger C, Dratwa M. Traduction des Recommandations de l'ISPD pour l'évaluation du dysfonctionnement de la membrane péritonéale chez l'adulte. BULLETIN DE LA DIALYSE À DOMICILE 2021. [DOI: 10.25796/bdd.v4i3.62673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Informations concernant cette traductionDans le cadre d’un accord de partenariat entre l’ISPD et le RDPLF, le RDPLF est le traducteur français officiel des recommandations de l’ISPD. La traduction ne donne lieu à aucune compensation financière de la part de chaque société et le RDPLF s’est engagé à traduire fidèlement le texte original sous la responsabilité de deux néphrologues connus pour leur expertise dans le domaine. Avant publication le texte a été soumis à l’accord de l’ISPD. La traduction est disponible sur le site de l’ISPD et dans le Bulletin de la Dialyse à Domicile.Le texte est, comme l’original, libremement téléchargeable sous licence copyright CC By 4.0https://creativecommons.org/licenses/by/4.0/Cette traduction est destinée à aider les professionnels de la communauté francophone à prendre connaissance des recommandations de l’ISPD dans leur langue maternelle.
Toute référence dans un article doit se faire au texte original en accès libre :Peritoneal Dialysis International https://doi.org/10.1177/0896860820982218
Dans les articles rédigés pour des revues françaises, conserver la référence à la version originale anglaise ci dessus, mais ajouter «version française https://doi.org/10.25796/bdd.v4i3.62673"»TraducteursDr Christian Verger, néphrologue, président du RDPLFRDPLF, 30 rue Sere Depoin, 95300 Pontoise – FranceProfesseur Max Dratwa, néphrologueHôpital Universitaire Brugmann – Bruxelles – Belgique
Collapse
|
4
|
Parikova A, Michalickova K, van Diepen AT, Voska L, Viklicky O, Krediet RT. Do low GDP neutral pH solutions prevent or retard peritoneal membrane alterations in long-term peritoneal dialysis? Perit Dial Int 2021; 42:236-245. [PMID: 34259088 DOI: 10.1177/08968608211027008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have been published in the last decade on the effects of low glucose degradation product (GDP) neutral pH (L-GDP/N-pH) dialysis solutions on peritoneal morphology and function during the long-term PD treatment. Compared to conventional solutions, the impact of these solutions on the morphological and functional alterations of the peritoneal membrane is discussed, including those of effluent proteins that reflect the status of peritoneal tissues. Long-term PD with conventional solutions is associated with the loss of mesothelium, submesothelial and interstitial fibrosis, vasculopathy, and deposition of advanced glycosylation end products (AGEs). L-GDP/N-pH solutions mitigate these alterations, although vasculopathy and AGE deposition are still present. Increased vascular density was found in some studies. Small solute transport increases with PD duration on conventional solutions. Initially, higher values are present on L-GDP/N-pH treatment, but these may be reversible and remain stable with PD duration. Consequently, ultrafiltration (UF) is lower initially but remains stable thereafter. At 5 years, UF and small pore fluid transport are higher, while free water transport decreased only slightly during follow-up. Cancer antigen 125 was initially higher on L-GDP/N-pH solutions, suggesting better mesothelial preservation but decreased during follow-up. Therefore, L-GDP/N-pH solutions may not prevent but reduce and retard the peritoneal alterations induced by continuous exposure to glucose-based dialysis fluids.
Collapse
Affiliation(s)
- Alena Parikova
- Department of Nephrology, Transplant Centre, 48214Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kristyna Michalickova
- Department of Nephrology, Transplant Centre, 48214Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Luděk Voska
- Department of Pathology, Transplant Centre, 48214Institute for Clinical and Experimental Medicine, Prague, Czech republic
| | - Ondrej Viklicky
- Department of Nephrology, Transplant Centre, 48214Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Raymond T Krediet
- Division of Nephrology, Department of Medicine, 522567Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Morelle J, Stachowska-Pietka J, Öberg C, Gadola L, La Milia V, Yu Z, Lambie M, Mehrotra R, de Arteaga J, Davies S. ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: Classification, measurement, interpretation and rationale for intervention. Perit Dial Int 2021; 41:352-372. [DOI: 10.1177/0896860820982218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lay summary Peritoneal dialysis (PD) uses the peritoneal membrane for dialysis. The peritoneal membrane is a thin layer of tissue that lines the abdomen. The lining is used as a filter to help remove extra fluid and poisonous waste from the blood. Everybody is unique. What is normal for one person’s membrane may be very different from another person’s. The kidney care team wants to provide each person with the best dialysis prescription for them and to do this they must evaluate the person’s peritoneal lining. Sometimes dialysis treatment itself can cause the membrane to change after some years. This means more assessments (evaluations) will be needed to determine whether the person’s peritoneal membrane has changed. Changes in the membrane may require changes to the dialysis prescription. This is needed to achieve the best dialysis outcomes. A key tool for these assessments is the peritoneal equilibration test (PET). It is a simple, standardized and reproducible tool. This tool is used to measure the peritoneal function soon after the start of dialysis. The goal is to understand how well the peritoneal membrane works at the start of dialysis. Later on in treatment, the PET helps to monitor changes in peritoneal function. If there are changes between assessments causing problems, the PET data may explain the cause of the dysfunction. This may be used to change the dialysis prescription to achieve the best outcomes. The most common problem with the peritoneal membrane occurs when fluid is not removed as well as it should be. This happens when toxins (poisons) in the blood cross the membrane more quickly than they should. This is referred to as a fast peritoneal solute transfer rate (PSTR). Since more efficient fluid removal is associated with better outcomes, developing a personal PD prescription based on the person’s PSTR is critically important. A less common problem happens when the membrane fails to work properly (also called membrane dysfunction) because the peritoneal membrane is less efficient, either at the start of treatment or developing after some years. If membrane dysfunction gets worse over time, then this is associated with progressive damage, scarring and thickening of the membrane. This problem can be identified through another change of the PET. It is called reduced ‘sodium dip’. Membrane dysfunction of this type is more difficult to treat and has many implications for the individual. If the damage is major, the person may need to stop PD. They would need to begin haemodialysis treatment (also spelled hemodialysis). This is a very important and emotional decision for individuals with kidney failure. Any decision that involves stopping PD therapy or transitioning to haemodialysis therapy should be made jointly between the clinical team, the person on dialysis and a caregiver, if requested. Although evidence is lacking about how often tests should be performed to determine peritoneal function, it seems reasonable to repeat them whenever there is difficulty in removing the amount of fluid necessary for maintaining the health and well-being of the individual. Whether routine evaluation of membrane function is associated with better outcomes has not been studied. Further research is needed to answer this important question as national policies in many parts of the world and the COVID-19 has placed a greater emphasis and new incentives encouraging the greater adoption of home dialysis therapies, especially PD. For Chinese and Spanish Translation of the Lay Summary, see Online Supplement Appendix 1. Key recommendations Guideline 1: A pathophysiological taxonomy: A pathophysiological classification of membrane dysfunction, which provides mechanistic links to functional characteristics, should be used when prescribing individualized dialysis or when planning modality transfer (e.g. to automated peritoneal dialysis (PD) or haemodialysis) in the context of shared and informed decision-making with the person on PD, taking individual circumstances and treatment goals into account. (practice point) Guideline 2a: Identification of fast peritoneal solute transfer rate (PSTR): It is recommended that the PSTR is determined from a 4-h peritoneal equilibration test (PET), using either 2.5%/2.27% or 4.25%/3.86% dextrose/glucose concentration and creatinine as the index solute. (practice point) This should be done early in the course dialysis treatment (between 6 weeks and 12 weeks) (GRADE 1A) and subsequently when clinically indicated. (practice point) Guideline 2b: Clinical implications and mitigation of fast solute transfer: A faster PSTR is associated with lower survival on PD. (GRADE 1A) This risk is in part due to the lower ultrafiltration (UF) and increased net fluid reabsorption that occurs when the PSTR is above the average value. The resulting lower net UF can be avoided by shortening glucose-based exchanges, using a polyglucose solution (icodextrin), and/or prescribing higher glucose concentrations. (GRADE 1A) Compared to glucose, use of icodextrin can translate into improved fluid status and fewer episodes of fluid overload. (GRADE 1A) Use of automated PD and icodextrin may mitigate the mortality risk associated with fast PSTR. (practice point) Guideline 3: Recognizing low UF capacity: This is easy to measure and a valuable screening test. Insufficient UF should be suspected when either (a) the net UF from a 4-h PET is <400 ml (3.86% glucose/4.25% dextrose) or <100 ml (2.27% glucose /2.5% dextrose), (GRADE 1B) and/or (b) the daily UF is insufficient to maintain adequate fluid status. (practice point) Besides membrane dysfunction, low UF capacity can also result from mechanical problems, leaks or increased fluid absorption across the peritoneal membrane not explained by fast PSTR. Guideline 4a: Diagnosing intrinsic membrane dysfunction (manifesting as low osmotic conductance to glucose) as a cause of UF insufficiency: When insufficient UF is suspected, the 4-h PET should be supplemented by measurement of the sodium dip at 1 h using a 3.86% glucose/4.25% dextrose exchange for diagnostic purposes. A sodium dip ≤5 mmol/L and/or a sodium sieving ratio ≤0.03 at 1 h indicates UF insufficiency. (GRADE 2B) Guideline 4b: Clinical implications of intrinsic membrane dysfunction (de novo or acquired): in the absence of residual kidney function, this is likely to necessitate the use of hypertonic glucose exchanges and possible transfer to haemodialysis. Acquired membrane injury, especially in the context of prolonged time on treatment, should prompt discussions about the risk of encapsulating peritoneal sclerosis. (practice point) Guideline 5: Additional membrane function tests: measures of peritoneal protein loss, intraperitoneal pressure and more complex tests that estimate osmotic conductance and ‘lymphatic’ reabsorption are not recommended for routine clinical practice but remain valuable research methods. (practice point) Guideline 6: Socioeconomic considerations: When resource constraints prevent the use of routine tests, consideration of membrane function should still be part of the clinical management and may be inferred from the daily UF in response to the prescription. (practice point)
Collapse
Affiliation(s)
- Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joanna Stachowska-Pietka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Carl Öberg
- Division of Nephrology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Liliana Gadola
- Centro de Nefrología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mark Lambie
- Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| | - Rajnish Mehrotra
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington DC, USA
| | - Javier de Arteaga
- Servicio de Nefrología, Hospital Privado Universitario de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Simon Davies
- Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| |
Collapse
|
6
|
van Diepen A, Coester A, Janmaat C, Dekker F, Struijk D, Krediet R. Comparison of Longitudinal Membrane Function in Peritoneal Dialysis Patients According to Dialysis Fluid Biocompatibility. Kidney Int Rep 2020; 5:2183-2194. [PMID: 33305111 PMCID: PMC7710881 DOI: 10.1016/j.ekir.2020.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Preservation of peritoneal function is essential in long-term peritoneal dialysis. Biocompatible dialysis solutions might prevent or postpone the membrane alteration resulting in ultrafiltration failure and consecutive morbidity and mortality. Methods We conducted an observational cohort study in which we made a longitudinal comparison between the course of peritoneal solute and fluid transport during treatment with conventional and biocompatible solutions. Therefore, prospectively collected peritoneal transport data from the yearly standard peritoneal permeability analysis were analyzed in 251 incident patients treated between 1994 and censoring in 2016. Fluid transport included small pore and free water transport. Solute transport was assessed by creatinine mass transfer area coefficient and glucose absorption. Linear mixed models including change point analyses were performed. Interaction with peritonitis was examined. Results One hundred thirty-five patients received conventional and 116 biocompatible solutions. Sixty-seven percent (conventional) and 64% (biocompatible) of these underwent minimally three transport measurements. Initially, biocompatible fluids showed higher small solute transport and lower ultrafiltration than conventional fluids up to 3 years. Thereafter, conventional fluids showed an increase in small solute transport (+2.7 ml/min per year; 95% confidence interval [CI]: 0.9 to 4.5) and a decrease of free water transport (−28.0 ml/min per year; 95% CI: −60.4 to 4.4). These were minor or absent in biocompatible treatment. Peritonitis induced a decrease of transcapillary ultrafiltration after 2 years on dialysis with conventional solutions (−291 ml/min per year; 95% CI: −550 to −32) while this was absent in biocompatible treatment. Conclusion Despite a higher initial solute transport with biocompatible solutions, these have less influence on functional long-term peritoneal alterations than conventional solutions.
Collapse
Affiliation(s)
- A.T.N. van Diepen
- Department of Internal Medicine, Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands
- Division of Nephrology, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Correspondence: A.T.N. van Diepen, Elisabeth-Tweesteden ziekenhuis, locatie Tweesteden, Dr. Deelenlaan 5, 5042 AD Tilburg, The Netherlands.
| | - A.M. Coester
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - C.J. Janmaat
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - F.W. Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - D.G. Struijk
- Division of Nephrology, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R.T. Krediet
- Division of Nephrology, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Krediet R, Parikova A. Non-invasive assessment of peritoneal membrane alterations. BULLETIN DE LA DIALYSE À DOMICILE 2020. [DOI: 10.25796/bdd.v3i4.55893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The peritoneal dialysis membrane is subject to remodelling in the course of peritoneal dialysis. In the absence of longitudinal morphological studies, this process is mainly studied indirectly by the investigation of changes in peritoneal transport. Non-invasive assessment of the peritoneum is also possible by assessment of substances that originate from peritoneal tissues and can be determined either as their gene expression in peritoneal effluent cells and/or as proteins in peritoneal effluent. Three of these biomarkers will be discussed, because longitudinal data are available.
Cancer antigen 125 (CA 125) is present on the mesothelium,while its gene (MUC 16) is expressed in peritoneal effluent cells and is related to dialysate CA 125 protein. The constitutive production and the small intra-individual variability of 15% indicate its usefulness as a follow-up marker of mesothelial cell mass. Dialysate appearance rate is higher on biocompatible than on conventional solutions, but both decrease during long-term follow-up.
Interleukin-6 (Il-6) is present in peritoneal effluent due to both transport from the circulation and local intraperitoneal production. Its appearance rate is unrelated to its gene expression in peritoneal cells. The intra-individual variation of effluent Il-6 averages 28%, hampering the interpretation of cross-sectional values. The relationships between effluent Il-6 and peritoneal transport have been interpreted as microinflammation, but are difficult to interprete due to mathematical coupling.
Plasminogen activator inhibitor-1 (PAI-1) is encoded by the SERPINE 1 gene. A relationship is present between effluent concentration and gene expression. PAI-1 production is stimulated by glucose. PAI-1 appearance rate increases with PD duration. The sensitivity of effluent PAI-1 for the diagnosis of encapsulating peritoneal sclerosis was 100% one year prior to the diagnosis and the specificity 56%.
It can be concluded that the discussed biomarkers are useful extensions to transport in assessment of the peritoneum during dialysis.
Collapse
|
8
|
Krediet RT. Ultrafiltration Failure Is a Reflection of Peritoneal Alterations in Patients Treated With Peritoneal Dialysis. Front Physiol 2018; 9:1815. [PMID: 30618825 PMCID: PMC6306483 DOI: 10.3389/fphys.2018.01815] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/05/2018] [Indexed: 11/13/2022] Open
Abstract
Ultrafiltration (UF) failure is a common and important complication of peritoneal dialysis (PD), especially in long-term patients without residual urine production, because it often causes overhydration, which is an important cause of death in this population. The current review provides an overview of the pathways of peritoneal fluid transport, followed by the mechanisms and causes of UF failure. The egression of circulating fluid to the tissue compartment and its subsequent re-uptake by the colloid osmotic pressure are markedly influenced by PD, because the dialysis solutions contain glucose as a low molecular weight agent causing removal of fluid from the circulation by crystalloid osmosis. Pores involved in transcapillary UF consist of inter-endothelial small pores and the intra-endothelial water channel aquaporin-1. The former allows transport of plasma fluid with dissolved low molecular weight solutes and accounts for 60% of the filtered volume, the latter transports 40% as pure water. This free water transport (FWT) is driven by the crystalloid pressure gradient, while small pore fluid transport (SPFT) is dependent on both hydrostatic and crystalloid osmotic pressure. The number of perfused peritoneal microvessels as assessed by small solute transport parameters, is differently associated with UF: a positive relationship is present with SPFT, but a negative one with FWT, because the effect of more vessels is counteracted by a faster disappearance rate of glucose. Ultrafiltration failure can be present shortly after the start of PD, for instance due to mesothelial-to-mesenchymal transition. Late UF failure develops in 21% of long-term patients. Both FWT and SPFT can be affected. Patients with encapsulating peritoneal sclerosis have severely impaired FWT, probably due to interference of interstitial collagen-1 with the crystalloid osmotic gradient. This mechanism may also apply to other patients with reduced FWT. Those with mainly impaired SPFT likely have a reduced hydrostatic filtration pressure due to vasculopathy. Deposition of advanced glycosylation end products is probably important in the development of this vasculopathy. It can be concluded that long-term UF failure may affect both SPFT and FWT. Vasculopathy is important in the former, interstitial fibrosis in the latter. Measurements of peritoneal transport function should include separate assessments of small pore-and FWT.
Collapse
Affiliation(s)
- Raymond T Krediet
- Division of Nephrology, Department of Medicine, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|