1
|
Peihong M, Yuzhu Q, Tao Y, Zhaoxuan H, Shirui C, Yuke T, Kunnan X, Shenghong L, Ruirui S, Fang Z. Neuroimaging in the Understanding of Acupuncture Analgesia: A Review of Acupuncture Neuroimaging Study Based on Experimental Pain Models. Front Neurosci 2021; 15:648305. [PMID: 34093111 PMCID: PMC8172961 DOI: 10.3389/fnins.2021.648305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
With the development of real-time and visualized neuroimaging techniques, the studies on the central mechanism of acupuncture analgesia gain increasing attention. The experimental pain models have been widely used in acupuncture-analgesia neuroimaging studies with quantitative and controlled advantages. This review aimed to analyze the study design and main findings of acupuncture neuroimaging studies to provide reference for future study. The original studies were collected and screened in English databases (PubMed, EMBASE, and Cochrane Library) and Chinese databases (Chinese Nation Knowledge Infrastructure, Chinese Biomedical Literature Database, the Chongqing VIP Database, and Wanfang Database). As a result, a total of 27 articles were included. Heat stimulation and electroacupuncture were the mostly used pain modeling method and acupuncture modality, respectively. The neuroimaging scanning process can be divided into two models and five subtypes. The anterior cingulate cortex and insula were the most commonly reported brain regions involved in acupuncture analgesia with experimental pain models.
Collapse
Affiliation(s)
- Ma Peihong
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qu Yuzhu
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Tao
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He Zhaoxuan
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Shirui
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Teng Yuke
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xie Kunnan
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Shenghong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sun Ruirui
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeng Fang
- Acupuncture and Tuina School/The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Tlacomulco-Flores LL, Déciga-Campos M, González-Trujano ME, Carballo-Villalobos AI, Pellicer F. Antinociceptive effects of Salvia divinorum and bioactive salvinorins in experimental pain models in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112276. [PMID: 31593812 DOI: 10.1016/j.jep.2019.112276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia divinorum Epling & Játiva is a Mexican plant used not only in rituals but also in traditional medicine for pain relief. One of the most known bioactive compounds is salvinorin A, which acts centrally in kappa-type opioid receptors. AIM OF THE STUDY Despite its traditional use as a medicinal plant, there is not enough scientific investigation to reinforce its potential as analgesic. In this study, Salvia divinorum antinociceptive activity was evaluated in experimental models of nociceptive pain; the writhing test and formalin-induced licking behavior in mice. MATERIAL AND METHODS Different Salvia divinorum extracts were prepared by maceration at room temperature in increased polarity (hexane, ethyl acetate and methanol). The ethyl acetate extract (EAEx) was chosen in order to be fractioned and to obtain a mixture of salvinorins. The antinociceptive effect of EAEx (3, 10, 30, and 100 mg/kg, i.p.) was compared with that of tramadol (a partial opioid agonist analgesic drug, 30 mg/kg, i.p.) and the mixture of salvinorins (30 mg/kg, i.p.). In addition, a participation of opioids (naloxone, NX 1 and/or 3 mg/kg, i.p.) and serotonin 5-HT1A receptors (WAY100635, 0.32 mg/kg, i.p.) was investigated as possible inhibitory neurotransmission involved. RESULTS As a result, the EAEx produced significant and dose-dependent antinociceptive effect concerning salvinorins constituents. This effect was blocked in the presence of NX and WAY100635 in the abdominal test, but only by NX in the formalin-induced licking behavior. Whereas, the effect of salvinorins mixture involved opioids and serotonin 5-HT1A receptors. CONCLUSION Data provide evidence of the potential of this species, where salvinorin A is in part responsible bioactive constituent involving participation of the opioids and/or 5-HT1A serotonin receptors depending on the kind of pain model explored.
Collapse
Affiliation(s)
- Lorenzo Leonel Tlacomulco-Flores
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Av. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, Ciudad de México, Mexico; Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/n Col, Casco de Santo Tomás, 11340, Ciudad de México, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/n Col, Casco de Santo Tomás, 11340, Ciudad de México, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Av. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| | - Azucena Ibeth Carballo-Villalobos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Conjunto E. Circuito de la Investigación Científica, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Av. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| |
Collapse
|
3
|
Feehan AK, Morgenweck J, Zhang X, Amgott-Kwan AT, Zadina JE. Novel Endomorphin Analogs Are More Potent and Longer-Lasting Analgesics in Neuropathic, Inflammatory, Postoperative, and Visceral Pain Relative to Morphine. THE JOURNAL OF PAIN 2017; 18:1526-1541. [PMID: 28939014 DOI: 10.1016/j.jpain.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Activation of the mu-opioid receptor provides the gold standard for pain relief, but most opioids used clinically have adverse effects that have contributed to an epidemic of overdose deaths. We recently characterized mu-opioid receptor selective endomorphin (EM) analogs that provide potent antinociception with reduction or absence of a number of side effects of traditionally prescribed opioids including abuse liability, respiratory depression, motor impairment, tolerance, and inflammation. The current study explores the effectiveness of these EM analogs relative to morphine in four major pain models by intrathecal as well as intravenous administration in male Sprague Dawley rats and subcutaneous administration in male CD-1 mice. In the spared nerve injury model of neuropathic pain, mechanical allodynia and mechanical hyperalgesia were assessed with von Frey and Randall-Selitto tests, respectively. In the paw incision model of postoperative pain, von Frey testing was used to assess mechanical allodynia and thermal hyperalgesia was evaluated with Hargreaves testing. In the Complete Freund's Adjuvant model of inflammatory pain, thermal hyperalgesia was assessed using Hargreaves testing. In CD-1 mice, visceral pain was assessed with the acetic acid writhing test. In all cases, EM analogs had equal or greater potency and longer duration of action relative to morphine. The data suggest that EM analogs, particularly analog 4 (ZH853), could provide effective therapy for a diverse spectrum of pain conditions with low risk of adverse side effects compared with currently used opioids such as morphine. PERSPECTIVE Novel EM analogs show equal or greater potency and effectiveness relative to morphine in multiple pain models. Together with substantially reduced side effects, including abuse liability, the compounds show promise for addressing the critical need for effective pain relief as well as reducing the opioid overdose epidemic.
Collapse
Affiliation(s)
- Amy K Feehan
- The Tulane Brain Institute, New Orleans, Louisiana
| | | | - Xing Zhang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - James E Zadina
- The Tulane Brain Institute, New Orleans, Louisiana; Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana.
| |
Collapse
|
4
|
Farmer AD, Brock C, Frøkjaer JB, Gregersen H, Khan S, Lelic D, Lottrup C, Drewes AM. Understanding the sensory irregularities of esophageal disease. Expert Rev Gastroenterol Hepatol 2016; 10:907-14. [PMID: 26890720 DOI: 10.1586/17474124.2016.1155984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future.
Collapse
Affiliation(s)
- Adam D Farmer
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark.,b Centre for Digestive Diseases, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London , London , UK.,c Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK
| | - Christina Brock
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark
| | - Jens Brøndum Frøkjaer
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark.,d Department of Radiology , Aalborg University Hospital , Aalborg , Denmark
| | - Hans Gregersen
- e GIOME, Key Laboratory for Biorheological Science and Technology , College of Bioengineering, Chongqing University , Chongqing , China
| | - Sheeba Khan
- c Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK
| | - Dina Lelic
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark
| | | | | |
Collapse
|
5
|
Pokuri VK, Kumar CU, Pingali U. A randomized, double-blind, placebo-controlled, cross-over study to evaluate analgesic activity of Terminalia chebula in healthy human volunteers using a mechanical pain model. J Anaesthesiol Clin Pharmacol 2016; 32:329-32. [PMID: 27625480 PMCID: PMC5009838 DOI: 10.4103/0970-9185.173365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND AIMS To evaluate analgesic activity and safety of single oral dose (1000 mg) of Terminalia chebula using a mechanical pain model in healthy human volunteers. MATERIAL AND METHODS Twelve healthy volunteers were randomized to receive either single oral dose of 2 capsules of T. chebula 500 mg each or identical placebo capsules in a double-blinded manner. Mechanical pain was assessed using Ugo basile analgesy meter (Randall-Selitto test) before and 3 h after administration of test drug. The parameters evaluated were pain threshold force and time; pain tolerance force and time. A washout period of 1-week was given for crossover between active drug and placebo. RESULTS Terminalia chebula significantly increased the mean percentage change for pain threshold force and time, and pain tolerance force and time compared to placebo (P < 0.001). The mean percentage change for pain threshold force and time (20.8% and 21.0%) was increased more than that of pain tolerance force and time (13.4% and 13.4%). No adverse drug reaction was reported with either of the study medications during the study period. CONCLUSION T. chebula significantly increased pain threshold and pain tolerance compared to placebo. Both the study medications were well tolerated. Further multiple dose studies may be needed to establish the analgesic efficacy of the drug in patients suffering from osteoarthritis, rheumatoid arthritis and other painful conditions.
Collapse
Affiliation(s)
- Venkata Kishan Pokuri
- Department of Clinical Pharmacology and Therapeutics, ICMR Advanced Center for Pharmacodynamics, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Chiranjeevi Uday Kumar
- Department of Clinical Pharmacology and Therapeutics, ICMR Advanced Center for Pharmacodynamics, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Usharani Pingali
- Department of Clinical Pharmacology and Therapeutics, ICMR Advanced Center for Pharmacodynamics, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Prabhavathi K, Chandra USJ, Soanker R, Rani PU. A randomized, double blind, placebo controlled, cross over study to evaluate the analgesic activity of Boswellia serrata in healthy volunteers using mechanical pain model. Indian J Pharmacol 2015; 46:475-9. [PMID: 25298573 PMCID: PMC4175880 DOI: 10.4103/0253-7613.140570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/22/2014] [Accepted: 07/27/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Experimental pain models in human healthy volunteers are advantageous for early evaluation of analgesics. All efforts to develop nonsteroidal anti-inflammatory drugs (NSAIDs) which are devoid of gastrointestinal and cardiovascular system effects are still far from achieving a breakthrough. Hence we evaluated the analgesic activity of an ayurvedic drug, Boswellia serrata by using validated human pain models which has shown its analgesic activity both in-vitro and preclinical studies to evaluate the analgesic activity of single oral dose (125 mg, 2 capsules) of Boswellia serrata compared to placebo using mechanical pain model in healthy human subjects. MATERIALS AND METHODS After taking written informed consent, twelve healthy subjects were randomized (1:1) to receive single oral dose of Boswellia serrata (Shallaki (®)) 125 mg, 2 capsules or identical placebo in a crossover design. Mechanical pain was assessed using Ugo basile analgesymeter (by Randall Selitto test) at baseline and at 1 hr, 2 hrs and 3 hrs after test drug administration. Pain Threshold force and time and Pain Tolerance force and time were evaluated. Statistical analysis was done by paired t-test. RESULTS Twelve healthy volunteers have completed the study. Mean percentage change from baseline in Pain Threshold force and time with Boswellia serrata when compared to placebo had significantly increased [Force: 9.7 ± 11.0 vs 2.9 ± 3.4 (P = 0.05) and time: 9.7 ± 10.7 vs 2.8 ± 3.4 (P = 0.04)] at third hr. Mean Percentage change from baseline in Pain Tolerance force and time with Boswellia serrata when compared to placebo had significantly (P ≤ 0.01) increased at 1 hr, 2 hrs and 3 hrs. CONCLUSION In the present study, Boswellia serrata significantly increased the Pain Threshold and Pain Tolerance force and time compared to placebo. Both study medications were well tolerated. Further multiple dose studies may be needed to establish the analgesic efficacy of the drug.
Collapse
Affiliation(s)
- K Prabhavathi
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Andhra Pradesh, India
| | - U Shobha Jagdish Chandra
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Andhra Pradesh, India
| | - Radhika Soanker
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Andhra Pradesh, India
| | - P Usha Rani
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
7
|
Verano J, González-Trujano ME, Déciga-Campos M, Ventura-Martínez R, Pellicer F. Ursolic acid from Agastache mexicana aerial parts produces antinociceptive activity involving TRPV1 receptors, cGMP and a serotonergic synergism. Pharmacol Biochem Behav 2013; 110:255-64. [PMID: 23932918 DOI: 10.1016/j.pbb.2013.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 11/29/2022]
Abstract
Agastache mexicana is a plant that has long been used in large demands in Mexican folk medicine to treat anxiety, insomnia and pain, among others affections. Chromatographic technique was used to identify ursolic acid (UA), 130.7 mg/g and 20.3 mg/g, as an antinociceptive active compound identified in ethyl acetate and methanol extracts of A. mexicana aerial parts, respectively. Temporal course curves of the antinociceptive response demonstrated a dose-dependent and significant activity of UA (1 to 100 mg/kg, i.p.) with an ED50=2 mg/kg in comparison to the efficacy of diclofenac (1 or 30 to 100 mg/kg, i.p.), a non-steroidal anti-inflammatory drug, with an ED50=11.56 mg/kg. The antinociceptive response consisted in the reduction of abdominal constrictions induced with 1% acetic acid in mice. Similarly, UA at 2 mg/kg produced significant antinociception in the intracolonic administration of 0.3% capsaicin (a TRPV1 agonist) in mice. It has been reported the inhibition produced by UA on the calcium-flux induced by capsaicin on TRPV1 receptor suggesting the antagonistic activity of this receptor. Finally, an ED50=44 mg/kg was calculated in the neurogenic and inflammatory nociception induced in the formalin test in rats. The antinociceptive response of UA in the formalin test was not modified in presence of naloxone, flumazenil or L-arginine. Nevertheless, it was reverted in presence of 1-H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, an inhibitor of soluble guanylyl cyclase) and increased in presence of N(G)-L-nitro-arginine methyl ester (L-NAME, inhibitor of nitric oxide synthase), theophylline (inhibitor of phosphodiesterase) and WAY100635 (an antagonist of 5-HT1A receptors). Current results provide evidence that the antinociceptive response of A. mexicana depends in part on the presence of UA. Moreover, this triterpene may exerts its antinociceptive effect mediated by the presence of cGMP and an additive synergism with 5HT1A receptors, but also an antagonistic activity towards TRPV1 receptors may be involved.
Collapse
Affiliation(s)
- Jazmín Verano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370 México, D.F., Mexico; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Col. Santo Tomás, 11340 México, D.F., Mexico
| | | | | | | | | |
Collapse
|
8
|
Effects of Propofol, Sevoflurane, Remifentanil, and (S)-Ketamine in Subanesthetic Concentrations on Visceral and Somatosensory Pain–evoked Potentials. Anesthesiology 2013; 118:308-17. [DOI: 10.1097/aln.0b013e318279fb21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain–evoked potentials (VPEP) and contact heat–evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs.
Methods:
In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation.
Results:
With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application.
Conclusions:
Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.
Collapse
|
9
|
Kolik LG, Zhukov VN, Gudasheva TA, Seredenin SB. Experimental Study of Antinociceptive Potency of Dipeptide GB-115 during Chemical and Thermal Stimulation. Bull Exp Biol Med 2012; 153:468-71. [DOI: 10.1007/s10517-012-1742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Olesen AE, Andresen T, Staahl C, Drewes AM. Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 2012; 64:722-79. [PMID: 22722894 DOI: 10.1124/pr.111.005447] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain models in animals have shown low predictivity for analgesic efficacy in humans, and clinical studies are often very confounded, blurring the evaluation. Human experimental pain models may therefore help to evaluate mechanisms and effect of analgesics and bridge findings from basic studies to the clinic. The present review outlines the concept and limitations of human experimental pain models and addresses analgesic efficacy in healthy volunteers and patients. Experimental models to evoke pain and hyperalgesia are available for most tissues. In healthy volunteers, the effect of acetaminophen is difficult to detect unless neurophysiological methods are used, whereas the effect of nonsteroidal anti-inflammatory drugs could be detected in most models. Anticonvulsants and antidepressants are sensitive in several models, particularly in models inducing hyperalgesia. For opioids, tonic pain with high intensity is attenuated more than short-lasting pain and nonpainful sensations. Fewer studies were performed in patients. In general, the sensitivity to analgesics is better in patients than in healthy volunteers, but the lower number of studies may bias the results. Experimental models have variable reliability, and validity shall be interpreted with caution. Models including deep, tonic pain and hyperalgesia are better to predict the effects of analgesics. Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods and can increase sensitivity. The models need to be designed with careful consideration of pharmacological mechanisms and pharmacokinetics of analgesics. Knowledge obtained from this review can help design experimental pain studies for new compounds entering phase I and II clinical trials.
Collapse
Affiliation(s)
- Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark.
| | | | | | | |
Collapse
|
11
|
Vaculin S, Franek M, Vejrazka M. Role of oxidative stress in animal model of visceral pain. Neurosci Lett 2010; 477:82-5. [PMID: 20417688 DOI: 10.1016/j.neulet.2010.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species play an important role both in physiological and pathophysiological reactions. The aim of this study was to determine the role of free radicals and antioxidants in the development of visceral pain. Visceral pain was produced by colorectal distension (CRD) in adult rats. CRD was caused by insertion of a lubricated latex balloon into the descending colon and rectum followed by inflation to 80mm Hg for 10min. During CRD, visceral pain was rated on 0-3.5 point scale. Oxidative stress was determined indirectly by measurement of free radical scavenging enzymes (glutathione peroxidase (GPx) and superoxide dismutase (SOD)) in the blood, liver and brain. Following CRD we observed (1) all rats expressed signs of visceral pain (overall rating was 1.83), (2) SOD and GPx levels were increased in the liver and blood, and decreased in the brain samples and (3) administration of the antioxidant Trolox, a water-soluble derivate of vitamin E, prior to CRD, prevented SOD and GPx changes in the liver, blood and brain, but did not affect pain scores. It was concluded, that CRD as a model of visceral pain, increases oxidative stress in animals, which could be prevented by prior administration of antioxidants; however, antioxidants did not attenuate signs of visceral pain caused by CRD.
Collapse
Affiliation(s)
- Simon Vaculin
- Third Faculty of Medicine, Charles University in Prague, Dpt. of Normal, Pathological and Clinical Physiology, Czech Republic.
| | | | | |
Collapse
|
12
|
Drewes AM, Gregersen H. New technologies in gastrointestinal research. World J Gastroenterol 2009; 15:129-30. [PMID: 19132760 PMCID: PMC2653302 DOI: 10.3748/wjg.15.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This issue presents different new techniques aiming to increase our understanding of the gastrointestinal system and to improve treatment. The technologies cover selected methods to evoke and assess gut pain, new methods for imaging and physiological measurements, histochemistry, pharmacological modelling etc. There is no doubt that the methods will revolutionize the diagnostic approach in near future.
Collapse
|