1
|
Salman DM, Mohammad TAM. siRNA-based therapy for gastric adenocarcinoma: what's next step? Pathol Res Pract 2024; 258:155328. [PMID: 38744002 DOI: 10.1016/j.prp.2024.155328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Gastric cancer continues to have a high death rate despite advancements in their diagnosis and treatment. Novel treatment techniques are thus desperately needed. This is where double-stranded RNA molecules known as small interfering RNA (siRNA), which may selectively target the mRNA of disease-causing genes, may find use in medicine. For siRNAs to function properly in the human body, they must be shielded from deterioration. Furthermore, in order to maintain organ function, they must only target the tumor and spare normal tissue. siRNAs have been designed using clever delivery mechanisms including polymers and lipids to achieve these objectives. Although siRNA protection is not hard to acquire, it is still challenging to target cancer cells with them. Here, we first discuss the basic characteristics of gastric cancer before describing the properties of siRNA and typical delivery methods created specifically for gastric tumors. Lastly, we provide a succinct overview of research using siRNAs to treat gastric tumors.
Collapse
Affiliation(s)
- Dyar Mudhafar Salman
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Pharmacy department, School of Medicine, University of Kurdistan Hewlêr (UKH), Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Cousin R, Groult H, Manseur C, Ferru-Clément R, Gani M, Havret R, Toucheteau C, Prunier G, Colin B, Morel F, Piot JM, Lanneluc I, Baranger K, Maugard T, Fruitier-Arnaudin I. A Marine λ-Oligocarrageenan Inhibits Migratory and Invasive Ability of MDA-MB-231 Human Breast Cancer Cells through Actions on Heparanase Metabolism and MMP-14/MMP-2 Axis. Mar Drugs 2021; 19:md19100546. [PMID: 34677445 PMCID: PMC8539239 DOI: 10.3390/md19100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE “modulator” capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.
Collapse
Affiliation(s)
- Rémi Cousin
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Hugo Groult
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Chanez Manseur
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Romain Ferru-Clément
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Mario Gani
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Rachel Havret
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Claire Toucheteau
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Grégoire Prunier
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Béatrice Colin
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, Poitiers University, LITEC EA 4331, 86073 Poitiers, France;
| | - Jean-Marie Piot
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Isabelle Lanneluc
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Kévin Baranger
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France;
| | - Thierry Maugard
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
| | - Ingrid Fruitier-Arnaudin
- BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France; (R.C.); (H.G.); (C.M.); (R.F.-C.); (M.G.); (R.H.); (C.T.); (G.P.); (B.C.); (J.-M.P.); (I.L.); (T.M.)
- Correspondence: ; Tel.: +33-546-458-562
| |
Collapse
|
3
|
Jin H, Cui M. Gene silencing of heparanase results in suppression of invasion and migration of gallbladder carcinoma cells. Biosci Biotechnol Biochem 2018; 82:1116-1122. [PMID: 29598788 DOI: 10.1080/09168451.2018.1456316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study investigated the effect of transcriptional gene silencing of the heparanase gene on standard gallbladder carcinoma cells (GBC-SD). The miRNAs targeting the promoter region and coding region of the heparanase gene were designed and synthesized. We transfected four recombinant miRNA vectors into GBC-SD. We performed the wound healing assays and invasion assays. The result shows that the heparanase expression was significantly decreased by recombinant vectors in transfected GBC-SD cells (p < 0.01), of which pmiR-Hpa-2 showed best interference effect (p < 0.05). The penetrated and migrating cells numbers and adherence rate of GBC-SD cells were significantly decreased by pmiR-Hpa-2 (p < 0.05).
Collapse
Affiliation(s)
- Hao Jin
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| | - Min Cui
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| |
Collapse
|
4
|
Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2016; 6:22613-23. [PMID: 26158901 PMCID: PMC4673186 DOI: 10.18632/oncotarget.4209] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a lethal disease whose incidence is increasing. Epidemiologic studies demonstrate an association between periodontitis and oral cancer, and periodontal pathogens are implicated in the pathogenesis of numerous disorders, including rheumatoid arthritis, cardiovascular diseases, diabetes and gastrointestinal malignancies. Nevertheless, a causal role for periodontal pathogens in OSCC has not been shown, partly due to the lack of an appropriate animal model. Here, utilizing a newly-established murine model of periodontitis-associated oral tumorigenesis, we report that chronic bacterial infection promotes OSCC, and that augmented signaling along the IL-6-STAT3 axis underlies this effect. Our results indicate that periodontal pathogens P. gingivalis and F. nucleatum stimulate tumorigenesis via direct interaction with oral epithelial cells through Toll-like receptors. Furthermore, oral pathogens stimulate human OSCC proliferation and induce expression of key molecules implicated in tumorigenesis. To the best of our knowledge, these findings represent the first demonstration of a mechanistic role for oral bacteria in chemically induced OSCC tumorigenesis. These results are highly relevant for the design of effective prevention and treatment strategies for OSCC.
Collapse
Affiliation(s)
- Adi Binder Gallimidi
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Stuart Fischman
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Brurya Revach
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raanan Bulvik
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alina Maliutina
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Ariel M Rubinstein
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Li HL, Gu J, Wu JJ, Ma CL, Yang YL, Wang HP, Wang J, Wang Y, Chen C, Wu HY. Heparanase mRNA and Protein Expression Correlates with Clinicopathologic Features of Gastric Cancer Patients: a Meta-analysis. Asian Pac J Cancer Prev 2016; 16:8653-8. [DOI: 10.7314/apjcp.2015.16.18.8653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Downregulation of Heparanase Expression Results in Suppression of Invasion, Migration, and Adhesion Abilities of Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241983. [PMID: 26839882 PMCID: PMC4709605 DOI: 10.1155/2015/241983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
Objective. Heparanase (HPSE) is high-expressed in most malignant tumors including hepatocellular carcinoma (HCC) and promotes cancer cell invasion and migration. The aim of the study is to explore whether HPSE enhances adhesion in metastasis of HCC cells. Methods. HPSE expressions in human HCC cells were measured with real-time RT-PCR and Western blot analysis. Four recombinant miRNA vectors pcDNATM6.2-GW/EmGFP-miR-HPSE (pmiR-HPSE) were transfected into HCCLM3 cell. HPSE expression in transfected cell was measured. The cell invasion, migration, and adhesion abilities were detected, respectively. Results. Both HPSE mRNA and protein relative expression levels were higher in HepG2, BEL-7402, and HCCLM3 cells than those in normal hepatocyte (P < 0.05). HPSE showed highest expression level in HCCLM3 cell (P < 0.05). Transfection efficiencies of four miRNA vectors were 75%–85%. The recombinant vectors significantly decreased HPSE expression in transfected HCCLM3 cells (P < 0.01), and pmiR-HPSE-1 showed best interference effect (P < 0.05). pmiR-HPSE-1 significantly decreased the penetrated and migrating cells numbers and adherence rate of HCCLM3 cells (P < 0.05). Conclusion. HPSE is a potentiator of cell adhesion in metastasis of HCC.
Collapse
|
7
|
Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase. Tumour Biol 2012; 34:215-21. [DOI: 10.1007/s13277-012-0531-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 02/02/2023] Open
|
8
|
Hermano E, Lerner I, Elkin M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell Mol Life Sci 2012; 69:2501-13. [PMID: 22331282 PMCID: PMC11114524 DOI: 10.1007/s00018-012-0930-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022]
Abstract
Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate, the key polysaccharide of the extracellular matrix and basement membranes. Enzymatic cleavage of heparan sulfate profoundly affects a variety of physiological and pathological processes, including morphogenesis, neovascularization, inflammation, and tumorigenesis. Critical involvement of heparanase in colorectal tumor progression and metastatic spread is widely documented; however, until recently a role for heparanase in the initiation of colon carcinoma remained underappreciated. Interestingly, the emerging data that link heparanase to chronic inflammatory bowel conditions, also suggest contribution of the enzyme to colonic tumor initiation, at least in the setting of colitis-associated cancer. Highly coordinated interplay between intestinal heparanase and immune cells (i.e., macrophages) preserves chronic inflammatory conditions and creates a tumor-promoting microenvironment. Here we review the action of heparanase in colon tumorigenesis and discuss recent findings, pointing to a role for heparanase in sustaining immune cell-epithelial crosstalk that underlies intestinal inflammation and the associated cancer.
Collapse
Affiliation(s)
- Esther Hermano
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Immanuel Lerner
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Michael Elkin
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| |
Collapse
|
9
|
Mogler C, Herold-Mende C, Dyckhoff G, Jenetzky E, Beckhove P, Helmke BM. Heparanase expression in head and neck squamous cell carcinomas is associated with reduced proliferation and improved survival. Histopathology 2011; 58:944-52. [PMID: 21585429 DOI: 10.1111/j.1365-2559.2011.03834.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cellular expression of heparanase, a degrading enzyme of the extracellular matrix, is associated with poorer prognosis in several cancers. The present analysis, has studied the role of heparanase in tumour growth and clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC). METHODS AND RESULTS We analysed the cellular expression of the active form of heparanase in 71 human HNSCCs, using immunohistochemistry. The results were compared with clinicopathological data and, in 65 cases with immunoreactivity for the proliferation marker, MIB1. Cellular heparanase expression was detected in 41 of 71 (57.74%) cases; in particular, UICC IV-stage tumours showed high heparanase levels. Heparanase was localized mainly in the cytoplasm and, to a lesser extent, at the cell membrane. High levels of heparanase were significantly correlated with an almost four-fold decrease in MIB1 labelling (P = 0.006). Comparison with clinical outcome by multivariate analysis revealed that patients with high-level heparanase expression had prolonged overall survival (P = 0.029). CONCLUSIONS Although heparanase was mainly found in late-stage HNSCCs, cellular heparanase expression in HNSCCs was associated with prolonged overall survival. We propose that the proliferation-reducing effect of high heparanase levels might outweigh the tumour-promoting effects of heparanase, especially in advanced tumours.
Collapse
Affiliation(s)
- Carolin Mogler
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Cheng C, Lu X, Wang G, Zheng L, Shu X, Zhu S, Liu K, Wu K, Tong Q. Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS 2010; 118:855-63. [PMID: 20955458 DOI: 10.1111/j.1600-0463.2010.02673.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to investigate the expression of special AT-rich binding protein 1 (SATB1) and heparanase in human gastric cancer as well as its relationship to the clinicopathologic factors. Specimens from 102 patients who underwent radical gastrectomy between 2000 and 2002 were studied by immunohistochemistry for SATB1 and heparanase expression. SATB1 and heparanase were positively expressed in 48.0% and 51.0% of gastric cancer cases, respectively. The expression of SATB1 and heparanase was significantly correlated with the depth of invasion, tumor-node-metastatsis (TNM) stage, lymph node metastasis, whereas SATB1 expression was also significantly correlated with distant metastasis. Patients with SATB1-negative expression and heparanase-negative expression had higher survival rates than those with SATB1-positive or heparanase-positive expression. Moreover, a positive correlation was found between SATB1 and heparanase. In multivariable analysis, SATB1 expression was also identified as an independent prognostic indicator for gastric cancer. Our results suggest that combined analysis of SATB1 and heparanase expression may have significant value in determining invasion and metastasis of gastric cancer and assessing prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|