1
|
Danopoulos S, Schlieve CR, Grikscheit TC, Al Alam D. Fibroblast Growth Factors in the Gastrointestinal Tract: Twists and Turns. Dev Dyn 2017; 246:344-352. [PMID: 28198118 DOI: 10.1002/dvdy.24491] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) are a family of conserved peptides that play an important role in the development, homeostasis, and repair processes of many organ systems, including the gastrointestinal tract. All four FGF receptors and several FGF ligands are present in the intestine. They play important roles in controlling cell proliferation, differentiation, epithelial cell restitution, and stem cell maintenance. Several FGFs have also been proven to be protective against gastrointestinal diseases such as inflammatory bowel diseases or to aid in regeneration after intestinal loss associated with short bowel syndrome. Herein, we review the multifaceted actions of canonical FGFs in intestinal development, homeostasis, and repair in rodents and humans. Developmental Dynamics 246:344-352, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christopher R Schlieve
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
2
|
Wang Y, Wang H, Ren L, Weng Q, Bao Y, Tian H, Yang YG, Li X. Non-mitogenic form of acidic fibroblast growth factor protects against graft-versus-host disease without accelerating leukemia. Int Immunopharmacol 2014; 23:395-9. [PMID: 25239811 DOI: 10.1016/j.intimp.2014.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
Acid fibroblast growth factor (aFGF) has been shown to prevent epithelial damage under various conditions, suggesting its potential to inhibit GVHD. However, because aFGF receptors are expressed on tumor cells, it may possibly offset the graft-vs.-tumor (GVT) effects of allogeneic bone marrow transplantation (allo-BMT). Here, we addressed these questions in a B6→B6D2F1 allo-BMT model. Although aFGF administration attenuated GVHD in non-leukemic recipients, aFGF treatment markedly accelerated death in mice that received recipient-type tumor (P815) cells along with allo- or syngeneic-BMT. Similar protection against GVHD was achieved by administration of a non-mitogenic form of aFGF (naFGF). Importantly, GVT effects were fully preserved in naFGF-treated recipients. Furthermore, aFGF, but not naFGF, significantly enhanced P815 cell proliferation both in vitro and in vivo. Our data indicate that the tumor-promoting, but not GVHD-protecting, effect of aFGF largely depends on its mitogenic activity, and suggest that naFGF may provide a safer approach to inhibiting GVHD in patients with malignancies.
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Hui Wang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Luqing Ren
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Bao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haishan Tian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA; First Hospital of Jilin University, Changchun, PR China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
3
|
Wang Y, Lin H, Lin S, Qu J, Xiao J, Huang Y, Xiao Y, Fu X, Yang Y, Li X. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia-reperfusion injury in rats. J Cell Mol Med 2009; 14:1998-2005. [PMID: 19432810 PMCID: PMC3823281 DOI: 10.1111/j.1582-4934.2009.00786.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The development of non-invasive ocular drug delivery systems is of practical importance in the treatment of retinal disease. In this study, we evaluated the efficacy of transactivator of transcription protein transduction domain (TAT-PTD, TAT(49-57)) as a vehicle to deliver acidic FGF (aFGF) to retina in rats. TAT-conjugated aFGF-His (TAT-aFGF-His) exhibited efficient penetration into the retina following topical administration to the ocular surface. Immunochemical staining with anti-His revealed that TAT-aFGF-His proteins were readily found in the retina (mainly in the ganglion cell layer) at 30 min. and remained detectable for at least 8 hrs after administration. In contrast, His(+) proteins were undetectable in the retina after topical administration of aFGF-His, indicating that aFGF-His cannot penetrate the ocular barrier. Furthermore, TAT-aFGF-His, but not aFGF-His, mediated significant protection against retinal ischemia-reperfusion (IR) injury. After IR injury, retina from TAT-aFGF-His-treated rats showed better-maintained inner retinal layer structure, reduced apoptosis of retinal ganglion cells and improved retinal function compared to those treated with aFGF-His or PBS. These results indicate that conjugation of TAT to aFGF-His can markedly improve the ability of aFGF-His to penetrate the ocular barrier without impairing its biological function. Thus, TAT(49-57) provides a potential vehicle for efficient drug delivery in the treatment of retinal disease.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering of Zhejiang Province, School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|