1
|
Nogueira-Silva C, Piairo P, Carvalho-Dias E, Veiga C, Moura RS, Correia-Pinto J. The role of glycoprotein 130 family of cytokines in fetal rat lung development. PLoS One 2013; 8:e67607. [PMID: 23826327 PMCID: PMC3691159 DOI: 10.1371/journal.pone.0067607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/24/2013] [Indexed: 11/24/2022] Open
Abstract
The glycoprotein 130 (gp130) dependent family of cytokines comprises interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and oncostatin M (OSM). These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM) were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Paulina Piairo
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Carvalho-Dias
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Carla Veiga
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
- * E-mail:
| |
Collapse
|
2
|
Ernst M, Putoczki TL. Stat3: Linking inflammation to (gastrointestinal) tumourigenesis. Clin Exp Pharmacol Physiol 2012; 39:711-8. [DOI: 10.1111/j.1440-1681.2011.05659.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research; Melbourne Parkville Branch; Melbourne; Victoria; Australia
| | - Tracy L Putoczki
- Ludwig Institute for Cancer Research; Melbourne Parkville Branch; Melbourne; Victoria; Australia
| |
Collapse
|
3
|
Jarnicki A, Putoczki T, Ernst M. Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling? Cell Div 2010; 5:14. [PMID: 20478049 PMCID: PMC2887830 DOI: 10.1186/1747-1028-5-14] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/17/2010] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important environmental factor that promotes tumourigenesis and the progression of established cancerous lesions, and recent studies have started to dissect the mechanisms linking the two pathologies. These inflammatory and infectious conditions trigger immune and stromal cell release of soluble mediators which facilitate survival and proliferation of tumour cells in a paracrine manner. In addition, (epi-)genetic mutations affecting oncogenes, tumour-suppressor genes, chromosomal rearrangements and amplifications trigger the release of inflammatory mediators within the tumour microenvironment to promote neoplastic growth in an autocrine manner. These two pathways converge in tumour cells and result in activation of the latent signal transducer and activator of transcription 3 (Stat3) which mediates a transcriptional response favouring survival, proliferation and angiogenesis. The abundance of cytokines that activate Stat3 within the tumour microenvironment, which comprises of members of the interleukin (IL) IL6, IL10 and IL17/23 families, underpins a signaling network that simultaneously promotes the growth of neoplastic epithelium, fuels inflammation and suppresses the host's anti-tumour immune response. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in human cancers of epithelial origin and is often associated with poor outcome. Here we summarize insights gained from mice harbouring mutations in components of the Stat3 signaling cascade and in particular of gp130, the shared receptor for the IL6 family of cytokines. We focus on the various feed-back and feed-forward loops in which Stat3 provides the signaling node in cells of the tumour and its microenvironment thereby functionally linking excessive inflammation to neoplastic growth. Although these observations are particularly pertinent to gastrointestinal tumours, we suggest that the tumour's addiction to persistent Stat3 activation is likely to also impact on other epithelial cell-derived cancers. These insights provide clues to the judicious interference of the gp130/Stat3 signaling cascade in therapeutically targeting cancer.
Collapse
Affiliation(s)
- Andrew Jarnicki
- Ludwig Institute for Cancer Research, PO Box 2008 Royal Melbourne Hospital, VIC 3050, Australia.
| | | | | |
Collapse
|
4
|
Boerma M, Wang J, Burnett AF, Santin AD, Roman JJ, Hauer-Jensen M. Local administration of interleukin-11 ameliorates intestinal radiation injury in rats. Cancer Res 2007; 67:9501-6. [PMID: 17909060 DOI: 10.1158/0008-5472.can-07-0810] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intestinal radiation injury is dose limiting during abdominal and pelvic radiotherapy and critical for the outcome after accidental whole-body radiation exposure. The multifunctional cytokine, interleukin-11 (IL-11), ameliorates the intestinal radiation response, but its clinical use is hampered by severe toxicity after systemic administration. This study addressed whether protection against intestinal radiation injury can be achieved by intraluminal administration of IL-11. Male rats underwent surgical transposition of a 4-cm small bowel loop to the scrotum. For repeated intraluminal drug administration, an ileostomy, proximal to the bowel loop in the scrotum, was created. The transposed intestinal loop was exposed to 5 Gy fractions on 9 consecutive days. Recombinant human IL-11 (rhIL-11; 2 mg/kg/d) or vehicle was given through the ileostomy from 2 days before until 2 weeks after irradiation. At 2 weeks, structural, cellular, and molecular aspects of intestinal radiation injury were assessed. rhIL-11 ameliorated structural manifestations of radiation enteropathy, including radiation injury score (6.5 +/- 0.6 in the vehicle group versus 4.0 +/- 0.3 in the IL-11 group; P = 0.001), mucosal surface area loss (0.2 +/- 0.1 versus 0.5 +/- 0.03; P < 0.0001), and intestinal wall thickening (842 +/- 66 microm versus 643 +/- 54 microm; P = 0.02), reduced postradiation transforming growth factor-beta overexpression, and reduced numbers of ED2-positive cells. Postirradiation mucosal mast cell numbers were partially restored by rhIL-11. These data show that local administration of rhIL-11 ameliorates early intestinal radiation injury and support further development of rhIL-11 to reduce manifestations of intestinal radiation injury in the clinic.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Uemura T, Nakayama T, Kusaba T, Yakata Y, Yamazumi K, Matsuu-Matsuyama M, Shichijo K, Sekine I. The protective effect of interleukin-11 on the cell death induced by X-ray irradiation in cultured intestinal epithelial cell. JOURNAL OF RADIATION RESEARCH 2007; 48:171-7. [PMID: 17380044 DOI: 10.1269/jrr.06047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Interleukin-11 (IL-11) is a well known anti-inflammatory cytokine that is associated with cell growth, and also participates in limiting X-ray irradiation induced intestinal mucosal injury. The aim of this study was to evaluate the protective effect of IL-11 on the cell injury induced by X-ray irradiation in rat intestinal epithelial IEC-18 cells. Recombinant human IL-11 (rhIL-11) treated cells were irradiated and then examined for cell viability. To evaluate irradiation injury, trypan blue staining was used to detect the dead cells. The viability of irradiated cells was up-regulated by rhIL-11 treatment and also resulted in the activation of p90 ribosomal S6 kinase (p90RSK) and S6 ribosomal protein (S6Rp). Wortmannin, a specific inhibitor of PI3K, suppressed the activation of S6Rp in rhIL-11 treated cells, and decreased the up-regulation of viability by rhIL-11 treatment in irradiated cells. The TUNEL assay was also perfomed to estimate the rate of apoptosis in X-ray induced cell death. There was no difference in the results between trypan blue staining and the TUNEL assay. Further, rhIL-11 down-regulated the expression of cleaved caspase-3 in irradiated cells. These results suggest that rhIL-11 may play an important role in protection from radiation injury.
Collapse
Affiliation(s)
- Takashi Uemura
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|