1
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Gasparini F, Caicci F, Rigon F, Zaniolo G, Manni L. Testing an unusual in vivo vessel network model: a method to study angiogenesis in the colonial tunicate Botryllus schlosseri. Sci Rep 2014; 4:6460. [PMID: 25248762 PMCID: PMC4173039 DOI: 10.1038/srep06460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022] Open
Abstract
Tunicates are the closest relatives to vertebrates and include the only chordate species able to reproduce both sexually and asexually. The colonial tunicate Botryllus schlosseri is embedded in a transparent extracellular matrix (the tunic) containing the colonial circulatory system (CCS). The latter is a network of vessels external to zooids, limited by a simple, flat epithelium that originated from the epidermis. The CCS propagates and regenerates by remodelling and extending the vessel network through the mechanism of sprouting, which typically characterises vertebrate angiogenesis. In exploiting the characteristics of B. schlosseri as a laboratory model, we present a new experimental and analysis method based on the ability to obtain genetically identical subclones representing paired samples for the appropriate quantitative outcome statistical analysis. The method, tested using human VEGF and EGF to induce angiogenesis, shows that the CCS provides a useful in vivo vessel network model for testing the effects of specific injected solutes on vessel dynamics. These results show the potentiality of B. schlosseri CCS as an effective complementary model for in vivo studies on angiogenesis and anticancer therapy. We discuss this potentiality, taking into consideration the origin, nature, and roles of the cellular and molecular agents involved in CCS growth.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Francesca Rigon
- CORIT-Consortium for Research in Organ Transplantation, Legnaro, 35020 Padova, Italy
| | - Giovanna Zaniolo
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
3
|
Guan P, Olaharski A, Fielden M, Roome N, Dragan Y, Sina J. Biomarkers of carcinogenicity and their roles in drug discovery and development. Expert Rev Clin Pharmacol 2014; 1:759-71. [DOI: 10.1586/17512433.1.6.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Kuklin A, Tokovenko B, Makogon N, Oczko-Wojciechowska M, Jarząb B, Obolenskaya M. Hepatocytes response to interferon alpha levels recorded after liver resection. J Interferon Cytokine Res 2013; 34:90-9. [PMID: 24107099 DOI: 10.1089/jir.2012.0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extensive damage of liver parenchyma stimulates hepatic cells to transit from quiescence to proliferation with eventual restoration of liver mass and function. Our recent studies have revealed upregulated expression of interferon (IFN)-α and its antiviral activity during the early hours after partial hepatectomy. In this study, we analyzed the response of primary hepatocytes from intact liver to IFN-α mimicking its levels (250 U/mL) during the transition period of liver restoration. The gene expression profile was analyzed with rat genome array 230 2.0 (Affymetrix). After 3- and 6-h treatment we identified respectively 28 and 124 differentially expressed genes responsible for autonomous changes in hepatocytes and those involving non-parenchymal cells in a concerted response to IFN-α. The response has an energy sparing character and affects all levels of gene expression. The factors activating T cells and apoptosis are opposed by those restricting the signal propagation, inhibiting T cells activation, and promoting survival. The partial resemblance between the specific in vitro response to IFN-α and the processes in regenerating liver is discussed. Our study opens the way to a more focused investigation of the liver cell response to quasiphysiological dose of IFN-α.
Collapse
Affiliation(s)
- Andrii Kuklin
- 1 Institute of Molecular Biology and Genetics , National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
5
|
Xu C, Zhao W, Hao Y, Chang C, Fan J. Comparative analysis of gene expression profiles of acute hepatic failure and that of liver regeneration in rat. Gene 2013; 528:59-66. [DOI: 10.1016/j.gene.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 01/18/2023]
|
6
|
Rychtrmoc D, Hubálková L, Víšková A, Libra A, Bunček M, Červinková Z. Transcriptome temporal and functional analysis of liver regeneration termination. Physiol Res 2013; 61:S77-92. [PMID: 23130906 DOI: 10.33549/physiolres.932393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5(th) day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways might prove helpful in preventing and managing liver tumours.
Collapse
Affiliation(s)
- D Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Wang G, Xu C, Zhi J, Hao Y, Zhang L, Chang C. Gene expression profiles reveal significant differences between rat liver cancer and liver regeneration. Gene 2012; 504:41-52. [DOI: 10.1016/j.gene.2012.04.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 02/08/2023]
|
8
|
Rychtrmoc D, Libra A, Buncek M, Garnol T, Cervinková Z. Studying liver regeneration by means of molecular biology: how far we are in interpreting the findings? ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:91-9. [PMID: 20073420 DOI: 10.14712/18059694.2016.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Liver regeneration in mammals is a unique phenomenon attracting scientific interest for decades. It is a valuable model for basic biology research of cell cycle control as well as for clinically oriented studies of wide and heterogeneous group of liver diseases. This article provides a concise review of current knowledge about the liver regeneration, focusing mainly on rat partial hepatectomy model. The three main recognized phases of the regenerative response are described. The article also summarizes history of molecular biology approaches to the topic and finally comments on obstacles in interpreting the data obtained from large scale microarray-based gene expression analyses.
Collapse
Affiliation(s)
- David Rychtrmoc
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Cokakli M, Erdal E, Nart D, Yilmaz F, Sagol O, Kilic M, Karademir S, Atabey N. Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer 2009; 9:65. [PMID: 19239691 PMCID: PMC2656543 DOI: 10.1186/1471-2407-9-65] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/24/2009] [Indexed: 11/18/2022] Open
Abstract
Background Caveolin-1 is the main component of caveolae membrane structures and has different roles during tumorigenesis in different cancer types with varying expression profiles, indicating that the role of caveolin-1 varies according to tumor type. In this study, we investigated the role and expression of caveolin-1 in hepatocellular carcinogenesis. Methods We analyzed the expression of Caveolin-1 in 96 hepatocellular carcinoma (HCC), 29 cirrhosis, 20 normal liver tissues and 9 HCC cell lines by immunostaining and western blotting, respectively. After caveolin-1 was stably transfected to HepG2 and Huh7 cells, the effects of Caveolin-1 on the cellular motility, matrix invasion and anchorage-independent growth were studied. Also, caveolae structure was disrupted in endogenously caveolin expressing cells, SNU 449 and SNU 475 by addition of methyl-β-cyclodextrin and analyzed cellular motility and invasion. Results In HCC cell lines, Caveolin-1 expression is correlated to differentiation and basal motility status of these cells. The percentage of Caveolin-1 positivity was found extremely low in normal liver tissue (5%) while it was increased in cirrhosis (45%) and in HCC (66%) (p = 0.002 and p = 0.001 respectively). Cav-1 expression in poorly differentiated HCC samples has been found significantly higher than well differentiated ones (p = 0.001). The caveolin-1 expression was found significantly higher in tumor cells than its peritumoral cirrhotic tissues in HCC samples (p < 0.001). Additionally, the patients with positive staining for Caveolin-1 had significantly higher portal vein invasion than those with negative staining (p = 0.02). Caveolin-1 overexpression increased motility and invasion of HepG2 and Huh7 cells. And disruption of caveolae results in a dramatic decline in both motility and invasion abilities in SNU-449 and SNU-475 cells. Furthermore, caveolin-1 overexpression resulted in down-regulation of E-cadherin while up-regulation of Vimentin. Also, it increased secreted MMP-2 and expression levels of MMP-9 and MT1-MMP. There was no significant difference in colony formation in soft agar between stable clones and parental ones. Conclusion In conclusion, stepwise increase in Cav-1 expression in neoplastic stage with respect to pre-neoplastic stage during hepatocellular carcinogenesis and its ability to stimulate HCC cell motility and invasiveness indicate that this protein plays a crucial role in tumor progression.
Collapse
Affiliation(s)
- Murat Cokakli
- Dokuz Eylul University, Faculty of Medicine, Department of Medical Biology and Genetics, Inciralti, Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
AIM Lipids are important in constituting cell structure and participating in many biological processes, particularly in energy supplementation to cells. The aim of the present study is to elucidate the action of lipid metabolism-associated genes on rat liver regeneration (LR). METHODS Lipid metabolism-associated genes were obtained by collecting website data and retrieving related articles, and their expression changes in the regenerating rat liver were checked by the Rat Genome 230 2.0 array. RESULTS In total, 280 genes involved in lipid metabolism were proven to be LR-associated by comparing the gene expression discrepancy between the partial-hepatectomy and sham-operation groups. The initial and total expression numbers of these genes occurring in the initial phase, G(0)/G(1) transition, cell proliferation, cell differentiation, and structure-functional rebuilding of LR were 128, 33, 135, 6, and 267, 147, 1026, 306, respectively, illustrating that these genes were initially expressed mainly in the initiation stage and functioned in different phases. Upregulation (850 times) and downregulation (749 times), as well as 25 types of expression patterns, showed that the physiological and biochemical activities were diverse and complicated in LR. CONCLUSION According to the results of the chip detection, it was presumed that fatty acid synthesis at 24-66 h, leukotriene and androgen synthesis at 16-168 h, prostaglandin synthesis at 2-96 h, triglyceride synthesis at 18-24 h, glycosphingolipid synthesis at 0.5-66 h, metabolism of phosphatidyl inositol and sphingomyelin at 2-16 h, and cholesterol catabolism at 30-168 h were enhanced. Throughout almost the whole LR, the genes participating in estrogen, glucocorticoid, and progesterone synthesis, and triglyceride catabolism were upregulated, while phospholipid and glycosphingolipid catabolism were downregulated.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Henan, Xinziang, China
| | | | | |
Collapse
|
11
|
Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C. Gene Profiling in the Livers of Wild-type and PPARα-Null Mice Exposed to Perfluorooctanoic Acid. Toxicol Pathol 2008; 36:592-607. [DOI: 10.1177/0192623308318208] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Health concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor α (PPARα) activator; however, PFOA is capable of inducing heptomegaly in the PPARα-null mouse. To study the mechanism associated with PFOA toxicity, wild-type and PPARα-null mice were orally dosed for 7 days with PFOA (1 or 3 mg/kg) or the PPARα agonist Wy14,643 (50 mg/kg). Gene expression was evaluated using commercial microarrays. In wild-type mice, PFOA and Wy14,643 induced changes consistent with activation of PPARα. PFOA-treated wild-type mice deviated from Wy14,643-exposed mice with respect to genes involved in xenobiotic metabolism. In PFOA-treated null mice, changes were observed in transcripts related to fatty acid metabolism, inflammation, xenobiotic metabolism, and cell cycle regulation. Hence, a component of the PFOA response was found to be independent of PPARα. Although the signaling pathways responsible for these effects are not readily apparent, overlapping gene regulation by additional PPAR isoforms could account for changes related to fatty acid metabolism and inflammation, whereas regulation of xenobiotic metabolizing genes is suggestive of constitutive androstane receptor activation.
Collapse
Affiliation(s)
- Mitchell B. Rosen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Barbara D. Abbott
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Douglas C. Wolf
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Environmental Carcinogenesis Division, Research Triangle Park, North Carolina, USA
| | - J. Christopher Corton
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Environmental Carcinogenesis Division, Research Triangle Park, North Carolina, USA
| | - Carmen R. Wood
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Judith E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Kaberi P. Das
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Robert D. Zehr
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| | - Eric T. Blair
- Applied Biosystems, 850 Lincoln Centre Dr, Foster City, California, USA
| | - Christopher Lau
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, North Carolina, USA
| |
Collapse
|