1
|
Zhang Y, Wei J, Li L, Liu Y, Sun S, Xu L, Liu S, Wang Z, Yang L. Rapid identification of bear bile powder from other bile sources using chip-based nano-electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9326. [PMID: 35582902 DOI: 10.1002/rcm.9326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Bear bile powder (BBP) is a widely used traditional Chinese medicine (TCM), and bile acids (BAs) are the main active components in BBP. Due to the scarcity of BBP resources, adulterations often occur in the market. Conventional methods to distinguish them are usually complicated and time-consuming. To enhance effectiveness and accuracy, a rapid and rough analytical method is desperately needed. METHODS In this study, a rapid strategy using chip-based nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was established to distinguish BBP from other sources of bile powder (BP). In addition, the results were further verified by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry (UPLC/MS). RESULTS The precision of the chip-based nano-ESI-MS/MS method was validated to be acceptable with relative standard deviation (RSD) <15%. The distinction between BBP and other sources of BP, including common adulterants of pig bile powder (PBP), cattle bile powder (CBP), sheep bile powder (SBP), and chicken bile powder (CkBP), can be observed in the spectra. By using orthogonal partial least-squares discriminant analysis (OPLS-DA), more potential m/z markers were investigated. A BAs-related m/z marker of 498.3 was discovered as a typical differential molecular ion peak and was identified as tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) in BBP. CONCLUSIONS The proposed strategy has simple sample pretreatment steps and significantly shortened analysis time. As an emerging technology, chip-based nano-ESI-MS not only provides a reference for the rapid distinction of adulterated Chinese medicines, but also provides some insights into the identification of other chemicals and foods.
Collapse
Affiliation(s)
- Yixin Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Wei
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Sun
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen Z. Pien Tze Huang (PZH) as a Multifunction Medicinal Agent in Traditional Chinese Medicine (TCM): a review on cellular, molecular and physiological mechanisms. Cancer Cell Int 2021; 21:146. [PMID: 33658028 PMCID: PMC7931540 DOI: 10.1186/s12935-021-01785-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
RELEVANCE Pien Tze Huang (PZH) is a well-known Traditional Chinese Medicine (TCM), characterized by a multitude of pharmacological effects, such as hepatoprotection and inhibition of inflammation and cell proliferative conditions. Many of these effects have been validated at the cellular, molecular and physiological levels but, to date, most of these findings have not been comprehensively disclosed. OBJECTIVES This review aims to provide a critical summary of recent studies focusing on PZH and its multiple pharmacological effects. As a result, we further discuss some novel perspectives related to PZH's mechanisms of action and a holistic view of its therapeutic activities. METHODS A systematic review was performed focusing on PZH studies originated from original scientific resources. The scientific literature retrieved for this work was obtained from International repositories including NCBI/PubMed, Web of Science, Science Direct and China National Knowledge Infrastructure (CNKI) databases. RESULTS The major active componentes and their potential functions, including hepatoprotective and neuroprotective effects, as well as anti-cancer and anti-inflammatory activities, were summarized and categorized accordingly. As indicated, most of the pharmacological effects were validated in vitro and in vivo. The identification of complex bioactive components in PZH may provide the basis for further therapeutic initiatives. CONCLUSION Here we have collectively discussed the recent evidences covering most, if not all, pharmacological effects driven by PZH. This review provides novel perspectives on understanding the modes of action and the holistic view of TCM. The rational development of future clinical trials will certainly provide evidence-based medical evidences that will also confirm the therapeutic advantages of PZH, based on the current information available.
Collapse
Affiliation(s)
- Zhiliang Chen
- Fujian Provincial Key Laboratory of PTH Natural Medicine Research and Development, Zhangzhou PTH Pharmaceutical CO., LTD, Zhangzhou, 363000, China.
| |
Collapse
|
3
|
Poposka Svirkova Z, Arsova-Sarafinovska Z, Grozdanova A. Optimization of RP-HPLC method with UV detection for determination of ursodeoxycholic acid in pharmaceutical formulations. MAKEDONSKO FARMACEVTSKI BILTEN 2020. [DOI: 10.33320/maced.pharm.bull.2020.66.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Due to the low absorptivity of bile acids, the aim of this study was to develop and validate a simple and sensitive HPLC/UV method for quantification of ursodeoxycholic acid (UDCA) in pharmaceutical formulations. Effective separation was achieved on C18 end–capped column, with gradient elution of a mobile phase composed of 0.001 M phosphate buffer (pH 2.8±0.5) – acetonitrile mix, at flow rate 1.5 mL min-1, UV detection at 200 nm and injection volumes were 50 µL. The proposed HPLC method was fully validated according to the ICH guidelines and it was found to be simple, accurate, precise and robust.
Key words: ursodeoxycholic acid, HPLC/UV, pharmaceutical formulations, validation
Collapse
Affiliation(s)
- Zhaklina Poposka Svirkova
- Institute for Public Health of the Republic of North Macedonia, St. 50 Division No.6, 1000 Skopje, Republic of North Macedonia
| | - Zorica Arsova-Sarafinovska
- Institute for Public Health of the Republic of North Macedonia, St. 50 Division No.6, 1000 Skopje, Republic of North Macedonia
| | - Aleksandra Grozdanova
- Instute of Pharmaceutical Chemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
4
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
5
|
Reshetnyak VI. Concept of the pathogenesis and treatment of cholelithiasis. World J Hepatol 2012; 4:18-34. [PMID: 22400083 PMCID: PMC3295849 DOI: 10.4254/wjh.v4.i2.18] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/15/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Gallstone disease (GD) is a chronic recurrent hepatobiliary disease, the basis for which is the impaired metabolism of cholesterol, bilirubin and bile acids, which is characterized by the formation of gallstones in the hepatic bile duct, common bile duct, or gallbladder. GD is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems. GD can result in serious outcomes, such as acute gallstone pancreatitis and gallbladder cancer. The epidemiology, pathogenesis and treatment of GD are discussed in this review. The prevalence of GD varies widely by region. The prevalence of gallstone disease has increased in recent years. This is connected with a change in lifestyle: reduction of motor activity, reduction of the physical load and changes to diets. One of the important benefits of early screening for gallstone disease is that ultrasonography can detect asymptomatic cases, which results in early treatment and the prevention of serious outcomes. The pathogenesis of GD is suggested to be multifactorial and probably develops from complex interactions between many genetic and environmental factors. It suggests that corticosteroids and oral contraceptives, which contain hormones related to steroid hormones, may be regarded as a model system of cholelithiasis development in man. The achievement in the study of the physiology of bile formation and the pathogenesis of GD has allowed expanding indications for therapeutic treatment of GD.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Vasiliy Ivanovich Reshetnyak, VA Negovsky Scientific Research Institute of General Reanimatology, Russia Academy of Medical Sciences, Moscow 107031, Russia
| |
Collapse
|
6
|
Carotti S, Guarino MPL, Cicala M, Perrone G, Alloni R, Segreto F, Rabitti C, Morini S. Effect of ursodeoxycholic acid on inflammatory infiltrate in gallbladder muscle of cholesterol gallstone patients. Neurogastroenterol Motil 2010; 22:866-73, e232. [PMID: 20426797 DOI: 10.1111/j.1365-2982.2010.01510.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reduced gallbladder (GB) contractility and chronic inflammatory changes in the mucosa have been reported in patients with cholesterol gallstones (GS). Ursodeoxycholic acid (UDCA) restores GB contractility and antagonises liver macrophage activation. In the colon, hydrophobic bile acid, not hydrophilic UDCA, induces mast cell degranulation. We studied the presence of monocyte/macrophage infiltrate, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, the number of total and degranulated mast cells in the GB muscle layer of cholesterol GS patients, and the effect of UDCA administration. METHODS Gallbladder tissue was obtained from cholesterol GS patients, either treated or untreated with UDCA (10 mg kg(-1) day(-1)) for 30 days prior to surgery. Gallbladders removed for neoplastic diseases, not involving GB, were evaluated for control purposes. The presence of monocytes/macrophages (CD68 positive), granulocytes, and mast cells, and the COX-2 and iNOS expression, was determined immunohistochemically. KEY RESULTS The number of CD68, granulocytes, mast cells, COX-2 and iNOS positive cells was significantly higher in the muscle layer of GS patients than in controls. Compared to untreated patients, those treated with UDCA showed significantly lower levels of CD68, COX-2 positive cells and degranulated mast cells and a lesser number of iNOS positive cells and granulocytes. CONCLUSIONS & INFERENCES An inflammatory monocyte/macrophage, mast cell and granulocyte infiltrate is present in the GB muscle layer of GS patients. Ursodeoxycholic acid decreases macrophages, degranulated mast cells and COX-2 expression. These results suggest that monocytes/macrophages and degranulating mast cells contribute to muscle cell dysfunction in cholesterol GS patients and support the anti-inflammatory effect of UDCA.
Collapse
Affiliation(s)
- S Carotti
- Department of Biomedical Research (CIR), University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bartoo AC, Nelson MT, Mawe GM. ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1362-8. [PMID: 18436624 PMCID: PMC2921626 DOI: 10.1152/ajpgi.00043.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to elucidate the mechanisms by which ATP increases guinea pig gallbladder smooth muscle (GBSM) excitability. We evaluated changes in membrane potential and action potential (AP) frequency in GBSM by use of intracellular recording. Application of ATP (100 microM) caused membrane depolarization and a significant increase in AP frequency that were not sensitive to block by tetrodotoxin (0.5 microM). The nonselective P2 antagonist, suramin (100 microM), blocked the excitatory response, resulting in decreased AP frequency in the presence of ATP. The excitatory response to ATP was not altered by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid (30 microM), a nonselective P2X antagonist. UTP also caused membrane depolarization and increased AP frequency, with a similar dose-response relationship as ATP. RT-PCR demonstrated that the P2Y(4), but not P2Y(2), receptor subtype is expressed in guinea pig gallbladder muscularis. ATP induced excitation was blocked by indomethacin (10 microM) and the cyclooxygenase (COX)-1 inhibitor SC-560 (300 nM), but not the COX-2 inhibitor nimesulide (500 nM). These data suggest that ATP stimulates P2Y(4) receptors within the gallbladder muscularis and, in turn, stimulate prostanoid production via COX-1 leading to increased excitability of GBSM.
Collapse
Affiliation(s)
- Aaron C. Bartoo
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont
| | - Mark T. Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary M. Mawe
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont,Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|