1
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|
2
|
Matsuyama T, Toiyama Y, Ishikawa T, Okugawa Y, Yasuno M, Maurel J, Kinugasa Y, Uetake H, Goel A. A metastasis-associated microRNA-based liquid biopsy signature for risk-stratification in colorectal cancer: a multicenter cohort study. Clin Transl Med 2022; 12:e998. [PMID: 36513881 PMCID: PMC9747679 DOI: 10.1002/ctm2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Takatoshi Matsuyama
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer CenterBaylor University Medical CenterDallasTexasUSA,Department of Gastrointestinal SurgeryTokyo Medical and Dental University Graduate School of MedicineTokyoJapan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life SciencesGraduate School of Medicine, Mie UniversityMieJapan
| | - Toshiaki Ishikawa
- Department of Specialized SurgeryTokyo Medical and Dental University Graduate School of MedicineTokyoJapan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life SciencesGraduate School of Medicine, Mie UniversityMieJapan
| | - Masamichi Yasuno
- Department of Gastrointestinal SurgeryTokyo Medical and Dental University Graduate School of MedicineTokyoJapan
| | - Joan Maurel
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group Medical OncologyHospital Clinic of Barcelona, CIBERehd, IDIBAPSBarcelonaSpain
| | - Yusuke Kinugasa
- Department of Gastrointestinal SurgeryTokyo Medical and Dental University Graduate School of MedicineTokyoJapan
| | - Hiroyuki Uetake
- Department of Specialized SurgeryTokyo Medical and Dental University Graduate School of MedicineTokyoJapan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer CenterBaylor University Medical CenterDallasTexasUSA,Department of Molecular Diagnostics and Experimental TherapeuticsBeckman Research Institute of City of HopeMonroviaCaliforniaUSA,City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
3
|
Deconstructing Immune Cell Infiltration in Human Colorectal Cancer: A Systematic Spatiotemporal Evaluation. Genes (Basel) 2022; 13:genes13040589. [PMID: 35456394 PMCID: PMC9024576 DOI: 10.3390/genes13040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and immunohistochemistry to evaluate tumor infiltrating immune cells (CD3, CD4, CD8, CD20, CD23, CD45 and CD56) and immune checkpoint markers (CTLA-4, PD-L1, PD-1) in systematically selected tumor regions and their corresponding lymph nodes, as well as in liver metastases. Additionally, an immune panel gene expression assay was performed on 12 primary tumors and 12 consecutive liver metastases. A higher number of natural killer cells and more mature B cells along with PD-1+ expressing cells were observed in the main tumor area as compared to metastases. A higher number of metastatic lymph nodes were associated with significantly lower B cell counts. With more advanced lymph node metastatic status, higher leukocyte—particularly T cell numbers—were observed. Eleven differentially expressed immune-related genes were found between primary tumors and liver metastases. Also, alterations of the innate immune response and the tumor necrosis factor superfamily pathways had been identified.
Collapse
|
4
|
Su R, Zhu Y, Zou Q, Wei L. Distant metastasis identification based on optimized graph representation of gene interaction patterns. Brief Bioinform 2021; 23:6457167. [PMID: 34882198 DOI: 10.1093/bib/bbab468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Metastasis is a major cause of cancer morbidity and mortality, and most cancer deaths are caused by cancer metastasis rather than by the primary tumor. The prediction of metastasis based on computational methods has not been explored much in the previous research. In this study, we proposed a graph convolutional network embedded with a graph learning (GL) module, named glmGCN, to predict the distant metastasis of cancer. Both the mRNA and lncRNA expressions were used to provide more genetic information than using the mRNA alone and we used them to construct gene interaction graph representation to consider the effect of genetic interaction. Then, the prediction of the cancer metastasis was performed under a GCN framework, which extracted informative and advanced features from the built non-regular graph structures. Particularly, a GL module was embedded in the proposed glmGCN to learn an optimal graph representation of the gene interaction. We firstly constructed the protein-protein interaction network to represent the initial gene(node) relationship graph. Then, through the GL module, a new graph representation was built which optimally learned the gene interaction strength. Finally, the GCN was adopted to identify the distant metastasis cases. It is worth mentioning that the proposed method pays more attentions on the gene-gene relation than the previous GCN-based method, so more accurate prediction performance can be obtained. The glmGCN was trained based on two types of cancer and was further validated using two other cancer types. A series of experiments have shown that the effectiveness of the proposed method. The implementation for the proposed method is available at https://github.com/RanSuLab/Metastasis-glmGCN.
Collapse
Affiliation(s)
- Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, China
| | - Yingying Zhu
- School of Computer Software, College of Intelligence and Computing, Tianjin University, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Leyi Wei
- School of Software, Shandong University, China
| |
Collapse
|
5
|
Zhang T, Yuan K, Wang Y, Xu M, Cai S, Chen C, Ma J. Identification of Candidate Biomarkers and Prognostic Analysis in Colorectal Cancer Liver Metastases. Front Oncol 2021; 11:652354. [PMID: 34422629 PMCID: PMC8371911 DOI: 10.3389/fonc.2021.652354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
Background Colorectal cancer (CRC), one of the most common malignant tumors worldwide, has a high mortality rate, especially for patients with CRC liver metastasis (CLM). However, CLM pathogenesis remains unclear. Methods We integrated multiple cohort datasets and databases to clarify and verify potential key candidate biomarkers and signal transduction pathways in CLM. GEO2R, DAVID 6.8, ImageGP, STRING, UALCAN, ONCOMINE, THE HUMAN PROTEIN ATLAS, GEPIA 2.0, cBioPortal, TIMER 2.0, DRUGSURV, CRN, GSEA 4.0.3, FUNRICH 3.1.3 and R 4.0.3 were utilized in this study. Results Sixty-three pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened from three gene expression profiles (GSE6988, GSE14297 and GSE81558). Thirty-one up-regulated genes and four down-regulated genes were identified from these three gene expression profiles and verified by another gene expression profiles (GSE 49355) and TCGA database. Two pathways (IGFBP-IGF signaling pathway and complement-coagulation cascade), eighteen key differentially expressed genes (DEGs), six hub genes (SPARCL1, CDH2, CP, HP, TF and SERPINA5) and two biomarkers (CDH2 and SPARCL1) with significantly prognostic values were screened by multi-omics data analysis and verified by Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) cohort. Conclusions In this study, we identified a robust set of potential candidate biomarkers in CLM, which would provide potential value for early diagnosis and prognosis, and would promote molecular targeting therapy for CRC and CLM.
Collapse
Affiliation(s)
- Tianhao Zhang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaitao Yuan
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingzhao Wang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingze Xu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangqi Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Ma
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020. [DOI: 10.3390/ijms21103494
expr 969553959 + 931886332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
7
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
8
|
Fei F, Liu K, Li C, Du J, Wei Z, Li B, Li Y, Zhang Y, Zhang S. Molecular Mechanisms by Which S100A4 Regulates the Migration and Invasion of PGCCs With Their Daughter Cells in Human Colorectal Cancer. Front Oncol 2020; 10:182. [PMID: 32154176 PMCID: PMC7047322 DOI: 10.3389/fonc.2020.00182] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, an increasing number of evidences have shown that polyploid giant cancer cells (PGCCs) could generate daughter cells with a strong migration and invasion ability, which have been implicated in cancer recurrence and metastasis. However, the underlying molecular mechanisms of PGCCs with their daughter cells remain largely unclear. In vitro and in vivo experiments combined with 222 cases of human colorectal cancer (CRC) samples were used to identify the molecular mechanisms of S100A4-related proteins regulating the invasion and metastasis of PGCCs with their daughter cells. PGCCs with their daughter cells had high migration, invasion, and proliferation abilities compared to control cells; these were significantly inhibited after S100A4 knockdown. The high expression of cathepsin B, cyclin B1, TRIM21, and Annexin A2 were significantly downregulated after S100A4 knockdown, while the overexpression of S100A4, cathepsin B, cyclin B1, and S100A10 were significantly downregulated after TRIM21 knockdown in PGCCs with their daughter cells. The tumorigenic and metastatic ability of PGCCs with their daughter cells in vivo was significantly stronger compared to the untreated cells, which was significantly decreased after S100A4 knockdown. Moreover, the expression of S100A4-related proteins was positively correlated with the malignancy degree of human CRC, and maintained a high level in lymph node metastasis. S100A4 and TRIM21 may regulate each other to affect the expression and subcellular localization of cyclin B1, and participate in regulating the structure and function of Annexin A2/S100A10 complex, affecting downstream cathepsin B, resulting in the invasion and metastasis of PGCCs with their daughter cells. Besides, 14-3-3 ζ/δ and Ezrin may be involved in the motility and invasion of PGCCs with their daughter cells via cytoskeletal constructions with S100A4.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yi Zhang
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
9
|
Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications. Int J Mol Sci 2019; 20:ijms20194915. [PMID: 31623387 PMCID: PMC6801528 DOI: 10.3390/ijms20194915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in men and women worldwide as well as is the leading cause of death in the western world. Almost a third of the patients has or will develop liver metastases. While genetic as well as epigenetic mechanisms are important in CRC pathogenesis, the basis of the most cases of cancer is unknown. High spatial and inter-patient variability of the molecular alterations qualifies this cancer in the group of highly heterogeneous tumors, which makes it harder to elucidate the mechanisms underlying CRC progression. Determination of highly sensitive and specific early diagnosis markers and understanding the cellular and molecular mechanism(s) of cancer progression are still a challenge of the current era in oncology of solid tumors. One of the accepted risk factors for CRC development is overexpression of insulin-like growth factor 2 (IGF2), a 7.5-kDa peptide produced by liver and many other tissues. IGF2 is the first gene discovered to be parentally imprinted. Loss of imprinting (LOI) or aberrant imprinting of IGF2 could lead to IGF2 overexpression, increased cell proliferation, and CRC development. IGF2 as a mitogen is associated with increased risk of developing colorectal neoplasia. Higher serum IGF2 concentration as well as its tissue overexpression in CRC compared to control are associated with metastasis. IGF2 protein was one of the three candidates for a selective marker of CRC progression and staging. Recent research indicates dysregulation of different micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively) embedded within the IGF2 gene in CRC carcinogenesis, with some of them indicated as potential diagnostic and prognostic CRC biomarkers. This review systematises the knowledge on the role of genetic and epigenetic instabilities of IGF2 gene, free (active form of IGF2) and IGF-binding protein (IGFBP) bound (inactive form), paracrine/autocrine secretion of IGF2, as well as mechanisms of inducing dysplasia in vitro and tumorigenicity in vivo. We have tried to answer which molecular changes of the IGF2 gene and its regulatory mechanisms have the most significance in initiation, progression (including liver metastasis), prognosis, and potential anti-IGF2 therapy in CRC patients.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznan, Poland.
| |
Collapse
|
10
|
Zheng G, Ma Y, Zou Y, Yin A, Li W, Dong D. HCMDB: the human cancer metastasis database. Nucleic Acids Res 2019; 46:D950-D955. [PMID: 29088455 PMCID: PMC5753185 DOI: 10.1093/nar/gkx1008] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the main event leading to death in cancer patients. Over the past decade, high-throughput technologies have provided genome-wide view of transcriptomic changes associated with cancer metastases. Many microarray and RNA sequencing studies have addressed metastases-related expression patterns in various types of cancer, and the number of relevant works continues to increase rapidly. These works have characterized genes that orchestrate the metastatic phenotype of cancer cells. However, these expression data have been deposited in various repositories, and efficiently analyzing these data is still difficult because of the lack of an integrated data mining platform. To facilitate the in-depth analyses of transcriptome data on metastasis, it is quite important to make a comprehensive integration of these metastases-related expression data. Here, we presented a database, HCMDB (the human cancer metastasis database, http://hcmdb.i-sanger.com/index), which is freely accessible to the research community query cross-platform transcriptome data on metastases. HCMDB is developed and maintained as a useful resource for building the systems-biology understanding of metastasis.
Collapse
Affiliation(s)
- Guantao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.,Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Yijie Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Zou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - An Yin
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Wushuang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Mehrotra S, Wickremesekera SK, Brasch HD, Van Schaijik B, Marsh RW, Tan ST, Itinteang T. Expression and Localization of Cathepsins B, D and G in Cancer Stem Cells in Liver Metastasis From Colon Adenocarcinoma. Front Surg 2018; 5:40. [PMID: 30177970 PMCID: PMC6110174 DOI: 10.3389/fsurg.2018.00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Aim We have previously identified and characterized cancer stem cell (CSC) subpopulations in liver metastasis from colon adenocarcinoma (LMCA). In this study we investigated the expression and localization of cathepsins B, D and G, in relation to these CSCs. Methods 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining for cathepsins B, D and G was performed on 4μm-thick formalin-fixed paraffin-embedded LMCA sections from nine patients. Immunofluorescence (IF) IHC staining was performed on three representative samples of LMCA from the original cohort of nine patients, to determine the localization of these cathepsins in relation to the CSC subpopulations. NanoString mRNA analysis and Western Blotting (WB) were used to examine the transcript and protein expression of these cathepsins, respectively. Enzyme activity assays were utilized to determine their functional activity. Data acquired from counting of cells staining positively of the cathepsins on the DAB IHC-stained slides and from Nanostring mRNA analysis were subjected to statistical analyses to determine significance. Results DAB IHC staining demonstrated expression of cathepsins B, D and G within LMCA. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4− cells within the tumor nests and the OCT4+ CSC subpopulation within the peritumoral stroma. NanoString mRNA analysis showed significantly greater transcript expression of cathepsin B and cathepsin D, compared to cathepsin G. WB confirmed expression of cathepsin B and cathepsin D proteins, while cathepsin G was below detectable levels. Enzyme activity assays showed functional activity of cathepsin B and cathepsin D. Conclusion Our study demonstrated novel finding of the expression of cathepsin B, cathepsin D, and possibly cathepsin G by the putative CSC subpopulations within LMCA.
Collapse
Affiliation(s)
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Reginald W Marsh
- Gillies McIndoe Research Institute, Wellington, New Zealand.,University of Auckland, Auckland, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
12
|
Oh BY, Cho J, Hong HK, Bae JS, Park WY, Joung JG, Cho YB. Exome and transcriptome sequencing identifies loss of PDLIM2 in metastatic colorectal cancers. Cancer Manag Res 2017; 9:581-589. [PMID: 29184442 PMCID: PMC5685135 DOI: 10.2147/cmar.s149002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Understanding the genomic determinants associated with metastasis in colorectal cancers (CRCs) provides crucial clues for improving patient care. Patients and methods In this study, we performed whole-exome sequencing as well as RNA sequencing analyses on five pairs of primary and liver metastasized samples from CRC patients together with blood/normal control samples for each pair. Results We identified genomic deletions in the region of 8p21-23 (q value <0.01) from analysis of recurrent regions with copy number variations in both primary and matched metastatic lesions. Consistent with this result, we found significantly decreased expression levels of all 12 genes (ADAMDEC1, C8orf80, CLDN23, EPHX2, GFRA2, NEFL, NEFM, PDLIM2, PTK2B, SCARA5, SLC18A1 and STMN4) located within this region (adjusted P<0.01). Notably, the mRNA levels of PDLIM2, a key regulator of well-known cancer-associated genes including the proto-oncogene c-MYC, an early response gene IER3, and regulators of apoptosis such as BCL2, FAS, and FASLG, were highly downregulated in tumors compared to normal tissues. Conclusion Taken together, our findings uncovered various genomic alterations potentially leading to metastasis in CRC and provide important insights into the development of potential therapeutic targets for preventing metastatic progression of CRC.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, College of Medicine, Ewha Womans University, Seoul
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University
| |
Collapse
|
13
|
Bocuk D, Wolff A, Krause P, Salinas G, Bleckmann A, Hackl C, Beissbarth T, Koenig S. The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model. BMC Cancer 2017; 17:342. [PMID: 28525976 PMCID: PMC5437520 DOI: 10.1186/s12885-017-3342-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second leading cause of cancer-related death in men and women. Systemic disease with metastatic spread to distant sites such as the liver reduces the survival rate considerably. The aim of this study was to investigate the changes in gene expression that occur on invasion and expansion of CRC cells when forming metastases in the liver. Methods The livers of syngeneic C57BL/6NCrl mice were inoculated with 1 million CRC cells (CMT-93) via the portal vein, leading to the stable formation of metastases within 4 weeks. RNA sequencing performed on the Illumina platform was employed to evaluate the expression profiles of more than 14,000 genes, utilizing the RNA of the cell line cells and liver metastases as well as from corresponding tumour-free liver. Results A total of 3329 differentially expressed genes (DEGs) were identified when cultured CMT-93 cells propagated as metastases in the liver. Hierarchical clustering on heat maps demonstrated the clear changes in gene expression of CMT-93 cells on propagation in the liver. Gene ontology analysis determined inflammation, angiogenesis, and signal transduction as the top three relevant biological processes involved. Using a selection list, matrix metallopeptidases 2, 7, and 9, wnt inhibitory factor, and chemokine receptor 4 were the top five significantly dysregulated genes. Conclusion Bioinformatics assists in elucidating the factors and processes involved in CRC liver metastasis. Our results support the notion of an invasion-metastasis cascade involving CRC cells forming metastases on successful invasion and expansion within the liver. Furthermore, we identified a gene expression signature correlating strongly with invasiveness and migration. Our findings may guide future research on novel therapeutic targets in the treatment of CRC liver metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3342-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Derya Bocuk
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Alexander Wolff
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Petra Krause
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Annalen Bleckmann
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany.,Department of Haematology and Medical Oncology, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Tim Beissbarth
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany
| | - Sarah Koenig
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg - August - University Goettingen, Göttingen, Germany. .,Medical Teaching and Medical Education Research, University Hospital Wuerzburg, Julius-Maximilians-University Wuerzburg, Josef-Schneider-Str. 2/D6, 97080, Wuerzburg, Germany.
| |
Collapse
|
14
|
Ma J, Zhao J, Lu J, Wang P, Feng H, Zong Y, Ou B, Zheng M, Lu A. Cadherin-12 enhances proliferation in colorectal cancer cells and increases progression by promoting EMT. Tumour Biol 2016; 37:9077-88. [PMID: 26762412 PMCID: PMC4990612 DOI: 10.1007/s13277-015-4555-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
Cadherin-12 (CDH12) is a subtype of N-cadherin family. In this study, we investigated the expression of CDH12 and the role of CDH12 in prognosis of colorectal cancer (CRC) patients. In addition, we observed the influence of CDH12 on proliferation and progression of CRC cell lines. By using immunohistochemical staining, we analyzed CRC samples and adjacent non-tumor tissues collected from 78 patients who underwent laparoscopic surgery in Shanghai Minimally Invasive Center, China. Statistical analyses were used to analyze relationship between CDH12 and tumor features. Kaplan-Meier method was used to analyze patients' survival. Proliferation ability of CRC cells was tested by CCK-8 assay, and transwell assays were performed to detect migration and invasion ability. Western blot assay was performed to investigate epithelial-mesenchymal transition (EMT) variants. We found that expression of CDH12 in tumor tissue was higher than in adjacent normal tissue. High expression of CDH12 was associated with tumor invasion depth and predicts poor prognosis of CRC patients. Ectopic/repressing expression of CDH12 increased/decreased the proliferation and migration ability of CRC cells. CDH12 is able to increase cancer cell migration and invasion via promoting EMT by targeting transcriptional factor Snail. These findings may conclude that CDH12 may act as a predictor in CRC patients' prognosis and an oncogene in CRC cell proliferation and migration. CDH12 may influence CRC cell progression through promoting EMT by targeting Snail. In addition, CDH12 is promoted by MCP1 through induction of MCPIP.
Collapse
Affiliation(s)
- Junjun Ma
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jingkun Zhao
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Jun Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Puxiongzhi Wang
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Hao Feng
- Department of Surgery, Munich University, Munich, Germany
| | - Yaping Zong
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Baochi Ou
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Shanghai, People's Republic of China
| | - Minhua Zheng
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Aiguo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Liu M, Xu A, Yuan X, Zhang Q, Fang T, Wang W, Li C. Downregulation of microRNA-409-3p promotes aggressiveness and metastasis in colorectal cancer: an indication for personalized medicine. J Transl Med 2015; 13:195. [PMID: 26084278 PMCID: PMC4472171 DOI: 10.1186/s12967-015-0533-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND MicroRNAs play an essential role in colorectal cancer development and progression. Aberrant miR-409-3p expression has been reported in several cancers. However, the clinical significance and functions of miR-409-3p in human CRC were not entirely clear. METHODS miR-409-3p expression levels were determined in 45 pairs of primary CRC and their corresponding adjacent non-tumor tissues by qPCR. The effects of ectopic expression of miR-409-3p on CRC cells proliferation, wound healing, metastasis were investigated by CCK-8, transwell assay and peritoneal spreading nude mice model. RESULTS Statistical analysis of clinical cases revealed that low miR-409-3p expression had inclinations towards lager tumor size and local invasion. Ectopic expression of miRNA mimics suggested that miR-409-3p could inhibits the abilities of proliferation, wound healing, metastasis and invasion in CRC cells. Notably, we found the NLK could be a potential target of miR-409-3p. CONCLUSION Our results suggest that miR-409-3p functions as a tumor suppressor by inhibiting the development and metastasis of CRC, suggesting that miR-409-3p is expected to become a new diagnostic marker and a new target of the treatment of CRC.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China.
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Qiao Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China.
| | - Taotao Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China.
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
16
|
Zhao H, Huang A, Li P, Quan Y, Feng B, Chen X, Mao Z, Zhu Z, Zheng M. E2A suppresses invasion and migration by targeting YAP in colorectal cancer cells. J Transl Med 2013; 11:317. [PMID: 24369055 PMCID: PMC3879192 DOI: 10.1186/1479-5876-11-317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023] Open
Abstract
Background E2A gene, which encodes two basic helix–loop–helix (bHLH) transcription factors E12 and E47, has been identified as regulator of B lymphoid hematopoiesis and suppressor of lymphoma. E47 protein was found to decrease E-cadherin expression and induce epithelial-mesenchymal transition (EMT). However, the role of E2A in colorectal cancer (CRC) metastasis is still elusive. Methods qRT-PCR and semi-qRT-PCR were performed to determine mRNA level of E2A in CRC specimens and colorectal cancer cells. RNAi was employed to downregulate E2A expression and subsequent protein level change was evaluated by immunoblot. Cell invasion and migration capacity were detected by transwell assay using cell culture inserts with or without basement membrane matrix, respectively. Results E2A expression was decreased in metastatic CRC tissues. Invasion and migration assays showed downregulation of E2A increased metastatic capacity of CRC cells while forced expression of E12 or E47 could offset this effect. Both E12 and E47 suppressed EMT induced by E2A downregulation. Moreover, Yes-Associated Protein (YAP) was a downstream target of E2A and suppression of YAP inhibited the pro-migration/invasion of E2A deficiency. Conclusion Our results suggest that E2A suppresses CRC cell metastasis, at least partially if not all, by inhibiting YAP expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhihai Mao
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Rd, Shanghai 200025, People's Republic of China.
| | | | | |
Collapse
|
17
|
Zhao H, Dong T, Zhou H, Wang L, Huang A, Feng B, Quan Y, Jin R, Zhang W, Sun J, Zhang D, Zheng M. miR-320a suppresses colorectal cancer progression by targeting Rac1. Carcinogenesis 2013; 35:886-95. [PMID: 24265291 DOI: 10.1093/carcin/bgt378] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical epigenetic regulators involved in cancer progression. miR-320a has been identified to be a novel tumour suppressive miRNA in colorectal cancer (CRC). However, the detailed molecular mechanisms are not fully understood. Here, we reported that miR-320a inversely associated with CRC aggressiveness in both cell lines and clinical specimens. Functional studies demonstrated that miR-320a significantly decreased the capability of cell migration/invasion and induced G0/G1 growth arrest in vitro and in vivo. Furthermore, Rac1 was identified as one of the direct downstream targets of miR-320a and miR-320a specifically binds to the conserved 8-mer at position 1140-1147 of Rac1 3'-untranslated region to regulate Rac1 protein expression. Over-expression of miR-320a in SW620 cells inhibited Rac1 expression, whereas reduction of miR-320a by anti-miR-320a in SW480 cells enhanced Rac1 expression. Re-expression of Rac1 in the SW620/miR-320a cells restored the cell migration/invasion inhibited by miR-320a, whereas knockdown of Rac1 in the SW480/anti-miR-320a cells repressed these cellular functions elevated by anti-miR-320a. Conclusively, our results demonstrate that miR-320a functions as a tumour-suppressive miRNA through targeting Rac1 in CRC.
Collapse
Affiliation(s)
- Hongchao Zhao
- Shanghai Key Laboratory of Gastric Neoplasms, Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sinclair P, Singh A, Riaz AA, Amin A. An unsolved conundrum: the ideal follow-up strategy after curative surgery for colorectal cancer. Gastrointest Endosc 2012; 75:1072-9. [PMID: 22520880 DOI: 10.1016/j.gie.2012.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Piriyah Sinclair
- Department of General Surgery, West Hertfordshire NHS Trust, United Kingdom
| | | | | | | |
Collapse
|
19
|
The liver prometastatic reaction of cancer patients: implications for microenvironment-dependent colon cancer gene regulation. CANCER MICROENVIRONMENT 2011; 4:163-80. [PMID: 21870094 DOI: 10.1007/s12307-011-0084-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Colon cancer frequently metastasizes to the liver but the genetic and phenotypic properties of specific cancer cells able to implant and grow in this organ have not yet been established. The contribution of the patient's genetic, physiologic and pathologic backgrounds to the incidence and development of hepatic colon cancer metastases is also presently misunderstood. At a transcriptional level, hepatic metastasis development is in part associated with marked changes in gene expression of colon cancer cells that may originate in the primary tumor. Other changes occur in the liver and are regulated by hepatic cells, which represent the new microenvironment for metastatic colon cancer cells. However, hepatic parenchymal and non-parenchymal cell functions are also affected by both tumor-derived factors and systemic host factors, which suggests that the hepatic metastasis microenvironment is a functional linkage between the hepatic pathophysiology of the colon cancer patient and the biology of its cancer cells. Therefore, together with metastasis-related gene profiles suggesting the existence of liver metastasis potential in primary tumors, new biomarkers of the prometastatic microenvironment supported by the liver reaction to colon cancer factors may be helpful for the individual assessment of hepatic metastasis risk in colon cancer patients. In addition, knowledge on hepatic metastasis gene regulation by the hepatic microenvironment may open multiple opportunities for therapeutic intervention during colon cancer metastasis at both subclinical and advanced stages.
Collapse
|
20
|
Burnier JV, Wang N, Michel RP, Hassanain M, Li S, Lu Y, Metrakos P, Antecka E, Burnier MN, Ponton A, Gallinger S, Brodt P. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 2011; 30:3766-83. [PMID: 21478904 DOI: 10.1038/onc.2011.89] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The liver is a major site of metastasis for human malignancies, yet the factors that regulate tumor cell survival and growth in this organ remain elusive. Previously, we reported that M-27(IGF-IR) murine lung carcinoma cells with ectopic insulin-like growth factor-1 (IGF-I) receptor overexpression acquired a site-specific, liver-metastasizing potential. Gene expression profiling and subsequent RNA and protein analyses revealed that this was associated with major changes to the expression of extracellular matrix (ECM) protein-encoding genes including type III, IV and XVIII collagen genes, and these changes were also observed in the respective tumors in vivo. Because type IV collagen was the most prominently altered ECM protein in this model, we further analyzed its functional relevance to liver metastasis. M-27 cells stably overexpressing type IV collagen α1 and α2 chains were generated and their growth and metastatic properties investigated. We found that these cells acquired a site-selective growth advantage in the liver and this was associated with cell rescue from anoikis in a collagen IV/α2 integrin/FAK-dependent manner and increased responsiveness to IGF-I. Conversely, collagen IV or focal adhesion kinase (FAK) silencing by small-interfering RNA in highly metastatic tumor cells enhanced anoikis and decreased liver metastases formation. Moreover, analysis of human surgical specimens revealed uniformly high collagen IV expression in 65/65 hepatic metastases analyzed, regardless of tissue of origin, whereas it was variable and generally low in 50/50 primary colorectal carcinoma specimens examined. The results suggest that collagen IV-conveyed signals are essential cues for liver metastasis in diverse tumor types and identify mediators of collagen IV signaling as potential therapeutic targets in the management of hepatic metastases.
Collapse
Affiliation(s)
- J V Burnier
- Department of Medicine, McGill University and the McGill University Health Center-Royal Victoria Hospital, Montreal Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marchiò S, Arap W, Pasqualini R. Targeting the extracellular signature of metastatic colorectal cancers. Expert Opin Ther Targets 2009; 13:363-79. [PMID: 19236157 DOI: 10.1517/14728220902762910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Colorectal cancer is a leading cause of tumor death, a consequence primarily of the spreading of malignant cells to liver and lung. Despite a range of interventions for liver metastases, the present knowledge of few specific molecular targets may contribute to late diagnosis and poorly effective therapy. OBJECTIVE To review the most innovative methodology employed to profile the signature(s) of metastatic colorectal cancer (mCRC) and to address diagnostic/therapeutic agents. METHODS A broad range Medline search was conducted, with particular attention to the search terms 'liver metastasis signature', in combination with 'targeting' and 'nanotechnology'. RESULTS/CONCLUSIONS Studies aimed at the discovery of molecular signatures of cancers and metastasis are ongoing; the future of cancer/metastasis targeting is nanoparticle-mediated drug delivery.
Collapse
Affiliation(s)
- Serena Marchiò
- Institute for Cancer Research and Treatment, 10060 Candiolo, Italy
| | | | | |
Collapse
|
22
|
Gene expression profiling in colorectal cancer using microarray technologies: Results and perspectives. Cancer Treat Rev 2009; 35:201-9. [DOI: 10.1016/j.ctrv.2008.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 12/21/2022]
|