1
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
2
|
Kalinichenko SV, Korobko IV, Shepelev MV. Combination of ARE and HRE cis-Regulatory Elements Elevates the Activity of Tumor-Specific hTERT Promoter. Mol Biol 2021. [DOI: 10.1134/s0026893321030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
4
|
Abstract
Gastrointestinal malignancies are challenging cancers with considerable economic and societal impacts on health care systems worldwide. While advances in surgical approaches have provided benefits to a proportion of patients, only modest improvements have been attained in the treatment of patients with advanced disease, resulting in limited improvement in survival rates in these patients. Oncolytic adenoviruses are being developed to address gastrointestinal malignancies. Each platform has evolved to maximize tumor-cell killing potency while minimizing toxicities. Tumor-specific bioengineered adenoviruses using chimeric promoters, prodrug convertase enzymes, lethal genes, tumor suppressor genes, and pseudo-typed capsids can provide the innovations for eventual success of oncolytic virotherapy. This article will review the developments in adenoviral platforms in the context of specific gastrointestinal cancers. From the bench to the implementation of clinical trials, this review aims to highlight advances in the field from its early days to the current state of affairs as it pertains to the application of adenoviral oncolytic therapy to gastrointestinal cancers.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
| | - Bolni M Nagalo
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
- Mayo Clinic Cancer Center, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
5
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2017; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Abstract
Hepatocellular carcinoma, one of the most common solid tumors worldwide, is poorly responsive to available chemotherapeutic approaches. While systemic chemotherapy is of limited benefit, intra-arterial delivery of doxorubicin to the tumor frequently produces tumor shrinkage. Its utility is limited, in part, by the frequent emergence of doxorubicin resistance. The mechanisms of this resistance include increased expression of multidrug resistance efflux pumps, alterations of the drug target, topoisomerase, and modulation of programmed cell death pathways. Many of these effects result from changes in miRNA expression and are particularly prominent in tumor cells with a stem cell phenotype. This review will summarize the current knowledge on the mechanisms of doxorubicin resistance of hepatocellular carcinoma and the potential for approaches toward therapeutic chemosensitization.
Collapse
Affiliation(s)
- Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Ye X, Guo Y, Zhang Q, Chen W, Hua X, Liu W, Yang Y, Chen G. βKlotho suppresses tumor growth in hepatocellular carcinoma by regulating Akt/GSK-3β/cyclin D1 signaling pathway. PLoS One 2013; 8:e55615. [PMID: 23383245 PMCID: PMC3559476 DOI: 10.1371/journal.pone.0055615] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/03/2013] [Indexed: 01/25/2023] Open
Abstract
βKlotho is a regulator in multiple metabolic processes, while its role in cancer remains unclear. We found the expression of βKlotho was down-regulated in human hepatocellular carcinoma tissues compared with that in paired adjacent non-tumourous liver tissues. Hepatoma cells also showed decreased expression of βKlotho compared with normal hepatocyte cells. Reintroduction of βKlotho into hepatoma cells inhibited their proliferation. The anti-proliferative effect of βKlotho might be linked with G1 to S phase arrest, which was mediated by Akt/GSK-3β/cyclin D1 signaling, since forced expression βKlotho reduced the phosphorylation level of Akt and GSK-3β and induced down-regulation of cyclin D1. Furthermore, βKlotho overexpression could inhibit tumorgenesis, while constitutively activated Akt could override the suppressive effects of βKlotho in vivo. These data suggest βKlotho suppresses tumor growth in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaoming Ye
- Department of General Surgery, Lingnan Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu Guo
- Department of General Surgery, Lingnan Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenjie Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuefeng Hua
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
| | - Wei Liu
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of General Surgery, Lingnan Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (GC) (YY); (YY) (GC)
| | - Guihua Chen
- Department of General Surgery, Lingnan Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, China
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (GC) (YY); (YY) (GC)
| |
Collapse
|
8
|
Yamasaki Y, Tazawa H, Hashimoto Y, Kojima T, Kuroda S, Yano S, Yoshida R, Uno F, Mizuguchi H, Ohtsuru A, Urata Y, Kagawa S, Fujiwara T. A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through E1A-dependent p21 and MDM2 suppression. Eur J Cancer 2012; 48:2282-91. [PMID: 22244827 DOI: 10.1016/j.ejca.2011.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Oncolytic viruses engineered to replicate in tumour cells but not in normal cells could be used as tumour-specific vectors carrying the therapeutic genes. We previously developed a telomerase-specific oncolytic adenovirus, OBP-301, that causes cell death in human cancer cells with telomerase activities. Here, we further modified OBP-301 to express the wild-type p53 tumour suppressor gene (OBP-702), and investigated whether OBP-702 induces stronger antitumour activity than OBP-301. The antitumour effect of OBP-702 was compared to that of OBP-301 on OBP-301-sensitive (H358 and H460) and OBP-301-resistant (T.Tn and HSC4) human cancer cells. OBP-702 suppressed the viability of both OBP-301-sensitive and OBP-301-resistant cancer cells more efficiently than OBP-301. OBP-702 caused increased apoptosis compared to OBP-301 or a replication-deficient adenovirus expressing the p53 gene (Ad-p53) in H358 and T.Tn cells. Adenovirus E1A-mediated p21 and MDM2 downregulation was involved in the apoptosis caused by OBP-702. Moreover, OBP-702 significantly suppressed tumour growth in subcutaneous tumour xenograft models compared to monotherapy with OBP-301 or Ad-p53. Our data demonstrated that OBP-702 infection expressed adenovirus E1A and then inhibited p21 and MDM2 expression, which in turn efficiently induced apoptotic cell death. This novel apoptotic mechanism suggests that the p53-expressing OBP-702 is a promising antitumour reagent for human cancer and could improve the clinical outcome.
Collapse
Affiliation(s)
- Yasumoto Yamasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang P, Ying L, Xu R, Ge S, Mei W, Li F, Dai B, Lu J, Qian G. Tumor-Specific, Hypoxia-Regulated, WW Domain-Containing Oxidoreductase-Expressing Adenovirus Inhibits Human Non-Small Cell Lung Cancer Growth In Vivo. Hum Gene Ther 2010; 21:27-39. [DOI: 10.1089/hum.2009.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ping Zhang
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Ying
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rang Xu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shengfang Ge
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wenhan Mei
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Bingbing Dai
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jian Lu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Winnard PT, Botlagunta M, Kluth JB, Mukadam S, Krishnamachary B, Vesuna F, Raman V. Hypoxia-induced human endonuclease G expression suppresses tumor growth in a xenograft model. Cancer Gene Ther 2008; 15:645-54. [PMID: 18551145 DOI: 10.1038/cgt.2008.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed a hypoxia-inducible gene therapy approach for the expression of the mature form of human endonuclease G to facilitate cell death in hypoxic regions of the tumor. The chimeric therapeutic gene is placed under the control of a hypoxia response element based promoter and contains a translocation motif linked in frame to an oxygen-dependent degradation domain and the endonuclease G gene. Transient expression of the chimeric therapeutic gene in breast and prostate cancer cell lines resulted in efficient cell death under hypoxia-mimetic conditions. Stable MDA-MB-435 cells expressing the chimeric therapeutic gene under 1% O2 showed an increase in stable HIF-1alpha protein levels and synthesis of the endonuclease G protein in a time-dependent manner. In normoxic conditions, these stable transgenic cells exhibited no change in growth rate, invasion and motility when compared to parental cells. Moreover, xenografts generated using the transgenic cells exhibited highly significant suppression of tumor growth in a preclinical cancer model compared to the parental cell line. Thus, the hypoxia-modulated endonuclease G expression has the potential to be used as a gene-based-therapy system to kill malignant cells within hypoxic regions of tumors.
Collapse
Affiliation(s)
- P T Winnard
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|