1
|
Santosa SM, Guo K, Yamakawa M, Ivakhnitskaia E, Chawla N, Nguyen T, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Simultaneous fluorescence imaging of distinct nerve and blood vessel patterns in dual Thy1-YFP and Flt1-DsRed transgenic mice. Angiogenesis 2020; 23:459-477. [PMID: 32372335 DOI: 10.1007/s10456-020-09724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Blood vessels and nerve tissues are critical to the development and functionality of many vital organs. However, little is currently known about their interdependency during development and after injury. In this study, dual fluorescence transgenic reporter mice were utilized to observe blood vessels and nervous tissues in organs postnatally. Thy1-YFP and Flt1-DsRed (TYFD) mice were interbred to achieve dual fluorescence in the offspring, with Thy1-YFP yellow fluorescence expressed primarily in nerves, and Flt1-DsRed fluorescence expressed selectively in blood vessels. Using this dual fluorescent mouse strain, we were able to visualize the networks of nervous and vascular tissue simultaneously in various organ systems both in the physiological state and after injury. Using ex vivo high-resolution imaging in this dual fluorescent strain, we characterized the organizational patterns of both nervous and vascular systems in a diverse set of organs and tissues. In the cornea, we also observed the dynamic patterns of nerve and blood vessel networks following epithelial debridement injury. These findings highlight the versatility of this dual fluorescent strain for characterizing the relationship between nerve and blood vessel growth and organization.
Collapse
Affiliation(s)
- Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Gooch A, Zhang P, Hu Z, Loy Son N, Avila N, Fischer J, Roberts G, Sellon R, Westenfelder C. Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using "Neo-Islets," aggregates of adipose stem and pancreatic islet cells (INAD 012-776). PLoS One 2019; 14:e0218688. [PMID: 31536503 PMCID: PMC6752848 DOI: 10.1371/journal.pone.0218688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported that allogeneic, intraperitoneally administered “Neo-Islets,” composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012–776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively.
Collapse
Affiliation(s)
- Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Natasha Loy Son
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Nicole Avila
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Julie Fischer
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Gregory Roberts
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rance Sellon
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
3
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus - Focus on mesenchymal stem cells. Metabolism 2019; 90:1-15. [PMID: 30342065 DOI: 10.1016/j.metabol.2018.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 1 and type 2 have become a global epidemic with dramatically increasing incidences. Poorly controlled diabetes is associated with severe life-threatening complications. Beside traditional treatment with insulin and oral anti-diabetic drugs, clinicians try to improve patient's care by cell therapies using embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and adult mesenchymal stem cells (MSC). ESC display a virtually unlimited plasticity, including the differentiation into insulin producing β-cells, but they raise ethical concerns and bear, like iPSC, the risk of tumours. IPSC may further inherit somatic mutations and remaining somatic transcriptional memory upon incomplete re-programming, but allow the generation of patient/disease-specific cell lines. MSC avoid such issues but have not been successfully differentiated into β-cells. Instead, MSC and their pericyte phenotypes outside the bone marrow have been recognized to secrete numerous immunomodulatory and tissue regenerative factors. On this account, the term 'medicinal signaling cells' has been proposed to define the new conception of a 'drug store' for injured tissues and to stay with the MSC nomenclature. This review presents the biological background and the resulting clinical potential and limitations of ESC, iPSC and MSC, and summarizes the current status quo of cell therapeutic concepts and trials.
Collapse
Affiliation(s)
- Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
4
|
Tsuchiya H, Sakata N, Yoshimatsu G, Fukase M, Aoki T, Ishida M, Katayose Y, Egawa S, Unno M. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation. PLoS One 2015; 10:e0140910. [PMID: 26473955 PMCID: PMC4608691 DOI: 10.1371/journal.pone.0140910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Methods Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Results Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. Conclusions The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.
Collapse
Affiliation(s)
| | - Naoaki Sakata
- Department of Surgery, Tohoku University, Sendai, Japan
- * E-mail:
| | | | | | - Takeshi Aoki
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Yu Katayose
- Department of Surgery, Tohoku University, Sendai, Japan
- Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Mediscine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Nerve Growth Factor Improves Survival and Function of Transplanted Islets Via TrkA-mediated β Cell Proliferation and Revascularization. Transplantation 2015; 99:1132-43. [PMID: 25806408 DOI: 10.1097/tp.0000000000000655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Nerve growth factor (NGF), which plays important roles in promoting growth and differentiation of nerve cells, has recently been reported as a regulator in pancreatic β cells in terms of insulin releasing function. In this study, we examined whether NGF stimulation would promote islet graft survival and function in islet transplantation. METHODS We found that supplementation of cultured islets with NGF improved the viability of islet cells and induced the production of insulin, vascular endothelial growth factor, and cellular proliferative markers. Because a specific inhibitor of TrkA, K252a, blocked all these effects, we propose that the TrkA receptor is the mediator of NGF stimulation. RESULTS After transplantation to the kidney subcapsule and liver of syngenic diabetic mice, a higher rate of normoglycemic achievement, increased serum insulin, and improved glucose tolerance were observed in the mice transplanted with NGF-pretreated islet grafts. Histological analysis revealed higher expression of insulin and vascular endothelial growth factor, an increase in proliferative β cells, and revascularization in NGF-pretreated islet grafts without activation of any inflammatory cells. CONCLUSIONS The NGF treatment can therefore serve as a new and promising therapeutic tool for improving islet graft viability and function in islet transplantation.
Collapse
|
6
|
Yoshimatsu G, Sakata N, Tsuchiya H, Ishida M, Motoi F, Egawa S, Sumi S, Goto M, Unno M. Development of polyvinyl alcohol bioartificial pancreas with rat islets and mesenchymal stem cells. Transplant Proc 2014; 45:1875-80. [PMID: 23769061 DOI: 10.1016/j.transproceed.2013.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/15/2013] [Indexed: 12/30/2022]
Abstract
To improve the function of the polyvinyl alcohol (PVA) bioartificial pancreas, we focused on bone marrow-derived mesenchymal stem cells (MSCs). We examined whether the function of PVA-encapsulated rat islets could be improved by coencapsulation with syngeneic MSCs. We macroencapsulated 1,500 rat islet equivalents (IEQ) with or without 1 × 10(6) MSCs with the use of 3% PVA solution before implantation intraperitoneally into diabetic BALB/c mice. We evaluated the function of the device in vitro (the residual rate, viability, and insulin-releasing function of the islets) and in vivo assessments (blood glucose and serum C-peptide changes after transplantation and glucose tolerance test). Although cultured islets also were destroyed, the shapes of the islets cocultured with MSCs were preserved but not different from encapsulated islets without MSCs. At 96 hours after culture the residual rates of islet recovery among those cocultured with versus without MSCs were 66% versus 39.5%, respectively, (P = .03). On the other hand, there was no significant difference between encapsulated islets with versus without MSCs. Furthermore, the stimulation index of the islets was improved by coculture with MSCs (2.6 ± 0.6 vs 1.4 ± 0.1; P = .03), but no beneficial effects were observed between islets encapsulated with versus without MSCs. The viability of islets cocultured with MSCs was significantly better than that without MSCs (84.2 ± 2.5 vs 73.3 ± 0.9; P = .037), but MSCs did not improve the viability of encapsulated islets. There were no significant differences in blood glucose or serum C-peptide between islets encapsulated with versus without MSCs. The histologic findings showed many degenerative islets and MSCs soon after transplantation. In conclusion, further studies are necessary to develop a novel PVA bioartificial pancreas that can be used with MSCs.
Collapse
Affiliation(s)
- G Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sakata N, Aoki T, Yoshimatsu G, Tsuchiya H, Hata T, Katayose Y, Egawa S, Unno M. Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev 2014; 30:1-10. [PMID: 24000195 DOI: 10.1002/dmrr.2463] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
Intraportal islet transplantation has a long history as a procedure for clinical islet transplantation. However, many recent studies revealed that the intraportal procedure has some disadvantages in transplant efficiency and safety. Many candidates as an optimal transplant site for islets have been assessed, but further studies and clinical trials are still necessary. Intramuscular and subcutaneous spaces are important candidates, because the transplant and biopsy procedures are simple approaches with minimal invasion and few complications. Although they are sites with hypovascularity and hypoxia, which contribute to the poor transplant efficiency, many experimental trials for improving the outcome in intramuscular and subcutaneous islet transplantations have been performed, focusing on early angiogenesis and scaffolds for engrafting transplanted islets. We review current progress in intramuscular and subcutaneous islet transplantations and discuss ways to develop them as optimal transplant sites for islets.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chhabra P, Brayman KL. Current status of immunomodulatory and cellular therapies in preclinical and clinical islet transplantation. J Transplant 2011; 2011:637692. [PMID: 22046502 PMCID: PMC3199196 DOI: 10.1155/2011/637692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- The Center for Cellular Transplantation and Therapeutics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Vériter S, Aouassar N, Adnet PY, Paridaens MS, Stuckman C, Jordan B, Karroum O, Gallez B, Gianello P, Dufrane D. The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials 2011; 32:5945-56. [DOI: 10.1016/j.biomaterials.2011.02.061] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/28/2011] [Indexed: 01/04/2023]
|