1
|
Samban SS, Hari A, Nair B, Kumar AR, Meyer BS, Valsan A, Vijayakurup V, Nath LR. An Insight Into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma. Mol Biotechnol 2024; 66:2697-2709. [PMID: 37782430 DOI: 10.1007/s12033-023-00890-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary malignancy of hepatocytes and the second most common cause of cancer-related mortality across the globe. Despite significant advancements in screening, diagnosis, and treatment modalities for HCC, the mortality-to-incidence ratio remain unacceptably high. A recent study indicates that a minor population of HCCs are AFP negative or express the normal range of AFP levels. Although it is a gold standard and a more reliable biomarker in the advanced stage of HCC and poorly differentiated tumors, it does not serve as a suitable means for screening HCC. AFP plays a significant role in the development and progression of HCC and understanding its role is crucial. By examining the molecular mechanisms involved in AFP-mediated tumorigenesis, we can better understand HCC pathogenesis and identify potential therapeutic targets. This article details the role of alpha-fetoprotein (AFP) in the carcinogenic transformation of hepatocytes. The article also focuses on information about the structure, biosynthesis, and regulation of AFP at the gene level. Additionally, it discusses the immune evasion, metastasis, and control of gene expression that AFP mediates during HCC.
Collapse
Affiliation(s)
- Swathy S Samban
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Aparna Hari
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Benjamin S Meyer
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Valsan
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Science, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, India
| | - Vinod Vijayakurup
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India.
| |
Collapse
|
2
|
Wang J, Zhang X, Ma X, Chen D, Cai M, Xiao L, Li J, Huang Z, Huang Y, Lian Y. Blockage of CacyBP inhibits macrophage recruitment and improves anti-PD-1 therapy in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:303. [PMID: 37968706 PMCID: PMC10652496 DOI: 10.1186/s13046-023-02885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Despite remarkable advancements in cancer immunotherapy, the overall response rate to anti-programmed cell death-1 (anti-PD-1) therapy in hepatocellular carcinoma (HCC) patients remains low. Our previous study has demonstrated the critical role of CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) as a regulator of HCC development and progression. However, the possible impact of CacyBP on the tumor immune microenvironment has not yet been clarified. METHODS The expressions of CacyBP and Myd88 in HCC cell lines and tissues was detected by bioinformatics analysis, real-time quantitative PCR, western blotting and immunohistochemistry. The interaction between CacyBP and Myd88 was measured using co-immunoprecipitation and immunofluorescence. In vitro and in vivo assays were used to investigate the regulation of CacyBP on tumor-associated macrophages (TAMs). RESULTS We identified that CacyBP was positively correlated with Myd88, a master regulator of innate immunity, and Myd88 was a novel binding substrate downstream of CacyBP in HCC. Additionally, CacyBP protected Myd88 from Siah-1-mediated proteasome-dependent degradation by competitively binding to its Toll/interleukin-1 receptor (TIR) domain. Inhibition of CacyBP-Myd88 signaling subsequently diminished HDAC1-mediated H3K9ac and H3K27ac modifications on the CX3CL1 promoter and reduced its transcription and secretion in HCC cells. Moreover, by using in vitro and in vivo strategies, we demonstrated that depletion of CacyBP impaired the infiltration of TAMs and the immunosuppressive state of the tumor microenvironment, further sensitizing HCC-bearing anti-PD-1 therapy. CONCLUSIONS Our findings suggest that targeting CacyBP may be a novel treatment strategy for improving the efficacy of anti-PD-1 immunotherapy in HCC.
Collapse
Affiliation(s)
- Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xiaoyu Zhang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xinyi Ma
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Meina Cai
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Lexin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Yuehua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| |
Collapse
|
3
|
Sun Y. A systematic pan-cancer analysis reveals the clinical prognosis and immunotherapy value of C-X3-C motif ligand 1 (CX3CL1). Front Genet 2023; 14:1183795. [PMID: 37153002 PMCID: PMC10157490 DOI: 10.3389/fgene.2023.1183795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
It is now widely known that C-X3-C motif ligand 1 (CX3CL1) plays an essential part in the process of regulating pro-inflammatory cells migration across a wide range of inflammatory disorders, including a number of malignancies. However, there has been no comprehensive study on the correlation between CX3CL1 and cancers on the basis of clinical features. In order to investigate the potential function of CX3CL1 in the clinical prognosis and immunotherapy, I evaluated the expression of CX3CL1 in numerous cancer types, methylation levels and genetic alterations. I found CX3CL1 was differentially expressed in numerous cancer types, which indicated CX3CL1 may plays a potential role in tumor progression. Furthermore, CX3CL1 was variably expressed in methylation levels and gene alterations in most cancers according to The Cancer Genome Atlas (TCGA). CX3CL1 was robustly associated with clinical characteristics and pathological stages, suggesting that it was related to the degree of tumor malignancy and the physical function of patients. As determined by the Kaplan-Meier method of estimating survival, high CX3CL1 expression was associated with either favorable or unfavorable outcomes depending on the different types of cancer. It suggests the correlation between CX3CL1 and tumor prognosis. Significant positive correlations of CX3CL1 expression with CD4+ T cells, M1 macrophage cells and activated mast cells have been established in the majority of TCGA malignancies. Which indicates CX3CL1 plays an important role in tumor immune microenvironment. Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the chemokine signaling pathway may shed light on the pathway for CX3CL1 to exert function. In a conclusion, our study comprehensively summarizes the potential role of CX3CL1 in clinical prognosis and immunotherapy, suggesting that CX3CL1 may represent a promising pharmacological treatment target of tumors.
Collapse
Affiliation(s)
- Yidi Sun
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Shahini E, Pasculli G, Solimando AG, Tiribelli C, Cozzolongo R, Giannelli G. Updating the Clinical Application of Blood Biomarkers and Their Algorithms in the Diagnosis and Surveillance of Hepatocellular Carcinoma: A Critical Review. Int J Mol Sci 2023; 24:ijms24054286. [PMID: 36901717 PMCID: PMC10001986 DOI: 10.3390/ijms24054286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most common primary liver cancer is hepatocellular carcinoma (HCC), and its mortality rate is increasing globally. The overall 5-year survival of patients with liver cancer is currently 10-20%. Moreover, because early diagnosis can significantly improve prognosis, which is highly correlated with tumor stage, early detection of HCC is critical. International guidelines advise using α-FP biomarker with/without ultrasonography for HCC surveillance in patients with advanced liver disease. However, traditional biomarkers are sub-optimal for risk stratification of HCC development in high-risk populations, early diagnosis, prognostication, and treatment response prediction. Since about 20% of HCCs do not produce α-FP due to its biological diversity, combining α-FP with novel biomarkers can enhance HCC detection sensitivity. There is a chance to offer promising cancer management methods in high-risk populations by utilizing HCC screening strategies derived from new tumor biomarkers and prognostic scores created by combining biomarkers with distinct clinical parameters. Despite numerous efforts to identify molecules as potential biomarkers, there is no single ideal marker in HCC. When combined with other clinical parameters, the detection of some biomarkers has higher sensitivity and specificity in comparison with a single biomarker. Therefore, newer biomarkers and models, such as the Lens culinaris agglutinin-reactive fraction of Alpha-fetoprotein (α-FP), α-FP-L3, Des-γ-carboxy-prothrombin (DCP or PIVKA-II), and the GALAD score, are being used more frequently in the diagnosis and prognosis of HCC. Notably, the GALAD algorithm was effective in HCC prevention, particularly for cirrhotic patients, regardless of the cause of their liver disease. Although the role of these biomarkers in surveillance is still being researched, they may provide a more practical alternative to traditional imaging-based surveillance. Finally, looking for new diagnostic/surveillance tools may help improve patients' survival. This review discusses the current roles of the most used biomarkers and prognostic scores that may aid in the clinical management of HCC patients.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
- Correspondence: ; Tel.: +39-0804994249
| | - Giuseppe Pasculli
- National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Director, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
5
|
Xia Y, Zhou L, Yang HC, Yu CW. Chemokine CCL5 immune subtypes of human liver cancer with prognostic significance. Int Immunopharmacol 2022; 113:109372. [DOI: 10.1016/j.intimp.2022.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
6
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
7
|
Zajkowska M, Mroczko B. Chemokines in Primary Liver Cancer. Int J Mol Sci 2022; 23:ijms23168846. [PMID: 36012108 PMCID: PMC9408270 DOI: 10.3390/ijms23168846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is responsible for extremely important functions in the human body. In the liver’s structure, we distinguish between connective tissue (stroma) and parenchyma, the latter of which is formed from the basic structural and functional units of the liver—hepatocytes. There are many factors, that negatively affect the liver cells, contributing to their damage. This may lead to fibrosis, liver failure and, in consequence, primary liver cancer, which is the sixth most commonly diagnosed malignancy and the fourth leading cause of cancer death worldwide. Chemokines are a large family of secreted proteins. Their main role is to direct the recruitment and migration of cells to sites of inflammation or injury. Some authors suggest that these proteins might play a potential role in the development of many malignancies, including primary liver cancer. The aim of this study was to evaluate and summarize the knowledge regarding liver diseases, especially primary liver cancer (HCC) and the participation of chemokines in the development of this malignancy. Chemokines involved in the initiation of this type of tumor belong mainly to the CC and CXC chemokines. Their significant role in the course of hepatocellular carcinoma proves their usefulness in detecting and monitoring the course and treatment in patients with this disease.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: ; Tel.: +48-686-5168; Fax: +48-686-5169
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Dobroch J, Bojczuk K, Kołakowski A, Baczewska M, Knapp P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022; 27:2041. [PMID: 35408440 PMCID: PMC9000631 DOI: 10.3390/molecules27072041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a characteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC cases present an atypical course with rapid progression and poor prognosis. There have been multiple studies conducted on molecular profiling of EC in order to improve diagnostics and introduce personalized treatment. Chemokines-a protein family that contributes to inflammatory processes that may promote carcinogenesis-constitute an area of interest. Some chemokines and their receptors present alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of epidermal-mesenchymal transition. The CCL2-CCR2 axis additionally plays a pivotal role in EC with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells. Another axis, CXCL10-CXCR3, affects the function of NK-cells and, interestingly, presents different roles in various types of tumors. This review article consists of analysis of studies that included the roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are described, and possible applications of drugs targeting chemokines are reviewed.
Collapse
Affiliation(s)
- Jakub Dobroch
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Marta Baczewska
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
9
|
EMT and Inflammation: Crossroads in HCC. J Gastrointest Cancer 2022; 54:204-212. [PMID: 35020133 DOI: 10.1007/s12029-021-00801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
10
|
Koshiol J, Argirion I, Liu Z, Kim Lam T, O'Brien TR, Yu K, McGlynn KA, Petrick JL, Pinto L, Chen CJ, Hildesheim A, Pfeiffer RM, Lee MH, Yang HI. Immunologic markers and risk of hepatocellular carcinoma in hepatitis B virus- and hepatitis C virus-infected individuals. Aliment Pharmacol Ther 2021; 54:833-842. [PMID: 34286851 DOI: 10.1111/apt.16524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clinical and experimental studies suggest immunologic proteins contribute to hepatocellular carcinoma (HCC) development. AIM To evaluate circulating immunologic markers and HCC risk. METHODS From a Taiwanese cohort of chronically hepatitis B virus (HBV)-infected individuals followed over time (REVEAL-HBV), we sampled 175 who developed HCC, 117 cirrhosis only, and 165 non-cirrhotic controls. From a similar Taiwanese cohort of chronically hepatitis C virus (HCV)-infected individuals (REVEAL-HCV), we included 94 individuals who developed HCC, 68 cirrhosis only and 100 non-cirrhotic controls. We compared pre-diagnostic plasma levels of 102 markers in HCC cases to non-cirrhotic and cirrhotic controls using polytomous logistic regression. A priori markers included insulin-like growth factor binding protein-3 (IGFBP-3), intercellular adhesion molecule 1 (ICAM-1) and interleukin 6 (IL-6). P-values for other markers were corrected for multiple testing (false discovery rate = 10%). RESULTS In both REVEAL-HBV and REVEAL-HCV, increasing levels of ICAM-1 were associated with increased risk of HCC compared to non-cirrhotic controls (P-trend 0.02 and 0.001, respectively). In both REVEAL-HBV and REVEAL-HCV, two novel markers [C-X-C motif chemokine 11 (CXCL11) and hepatocyte growth factor (HGF)] were positively associated [strongest odds ratioquartile 4 versus 1 (OR) 4.55 for HGF in HCV], while two [complement factor H related 5 (CFHR5) and stem cell factor (SCF)] were negatively associated (strongest ORQ4vQ1 0.14 for SCF in HCV) with development of HCC compared to non-cirrhotic controls. CONCLUSIONS We confirmed the association for ICAM-1 and identified 4 additional proteins associated with HBV- and HCV-related HCC. These findings highlight the importance of immunologic processes in HBV- and HCV-related HCC.
Collapse
Affiliation(s)
- Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tram Kim Lam
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,School of Medicine, Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Ligia Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos, Biomedical Research, Inc, Frederick, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventative Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mei-Hsuan Lee
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in hepatocellular carcinoma: a meta-analysis. Carcinogenesis 2021; 41:1682-1694. [PMID: 33300549 DOI: 10.1093/carcin/bgaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that chemokines may play an important role in the formation and mediating of the immune microenvironment of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to explore the differences in blood or tissues chemokines concentrations between HCC patients and controls. Online databases, namely PubMed, Web of Science, Embase and Cochrane Library, were systematically searched for relevant articles published on or before 15 January 2020. Standardized mean differences (SMDs) with corresponding 95% confidence intervals of the chemokines concentrations were calculated as group differences between the HCC patients and the controls. Sixty-five studies met the inclusion criteria for the meta-analysis. Altogether they consisted of 26 different chemokines compared between 5828 HCC patients and 4909 controls; and 12 different chemokines receptors compared between 2053 patients and 2285 controls. The results of meta-analysis indicated that concentrations of CCL20, CXCL8 and CXCR4 in the HCC patients were significantly higher than those in the controls (SMD of 6.18, 1.81 and 1.04, respectively). Therefore, higher concentration levels of CCL20, CXCL8 and CXCR4 may indicate the occurrence of HCC Future research should explore the putative mechanisms underlying this linkage. Meanwhile, attempts can be made to replicate the existing findings in prospective cohort populations and explore the cause-and-effect relationships pertaining to this linkage in order to develop new diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
12
|
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y, Peng Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45:809-823. [PMID: 33650640 PMCID: PMC7859922 DOI: 10.3892/or.2020.7906] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Ya Zheng
- Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| |
Collapse
|
13
|
Stock C. Circulating Tumor Cells: Does Ion Transport Contribute to Intravascular Survival, Adhesion, Extravasation, and Metastatic Organotropism? Rev Physiol Biochem Pharmacol 2021; 182:139-175. [DOI: 10.1007/112_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Kadomoto S, Izumi K, Mizokami A. The CCL20-CCR6 Axis in Cancer Progression. Int J Mol Sci 2020; 21:ijms21155186. [PMID: 32707869 PMCID: PMC7432448 DOI: 10.3390/ijms21155186] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chemokines, which are basic proteins that exert their effects via G protein-coupled receptors and a subset of the cytokine family, are mediators deeply involved in leukocyte migration during an inflammatory reaction. Chemokine (C-C motif) ligand 20 (CCL20), also known as macrophage inflammatory protein (MIP)-3α, liver activation regulated chemokine (LARC), and Exodus-1, is a small protein that is physiologically expressed in the liver, colon, and skin, is involved in tissue inflammation and homeostasis, and has a specific receptor C-C chemokine receptor 6 (CCR6). The CCL20-CCR6 axis has long been known to be involved in inflammatory and infectious diseases, such as rheumatoid arthritis and human immunodeficiency virus infections. Recently, however, reports have shown that the CCL20-CCR6 axis is associated with several cancers, including hepatocellular carcinoma, colorectal cancer, breast cancer, pancreatic cancer, cervical cancer, and kidney cancer. The CCL20-CCR6 axis promotes cancer progression directly by enhancing migration and proliferation of cancer cells and indirectly by remodeling the tumor microenvironment through immune cell control. The present article reviewed the role of the CCL20-CCR6 axis in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
15
|
Chen W, Qin Y, Liu S. CCL20 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:53-65. [PMID: 32060846 DOI: 10.1007/978-3-030-36667-4_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CCL20, as a chemokine, plays an important role in rheumatoid arthritis, psoriasis, and other diseases by binding to its receptor CCR6. Recent 10 years' research has demonstrated that CCL20 also contributes to the progression of many cancers, such as liver cancer, colon cancer, breast cancer, pancreatic cancer, and gastric cancer. This article reviews and discusses the previous studies on CCL20 roles in cancers from the aspects of its specific effects on various cancers, its remodeling on tumor microenvironment (TME), its synergistic effects with other cytokines in tumor microenvironment, and the specific mechanisms of CCL20 signal activation, illustrating CCL20 signaling in TME from multiple directions.
Collapse
Affiliation(s)
- Weilong Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuanyuan Qin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China. .,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China. .,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
16
|
Liu W, Wang W, Wang X, Xu C, Zhang N, Di W. Cisplatin-stimulated macrophages promote ovarian cancer migration via the CCL20-CCR6 axis. Cancer Lett 2019; 472:59-69. [PMID: 31866467 DOI: 10.1016/j.canlet.2019.12.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Despite the high response rate after surgery and platinum-combination chemotherapy, treatment of ovarian cancer remains challenging due to tumor recurrence and metastasis. Tumor-associated macrophages (TAMs) have been linked to cancer progression and metastasis. However, the impact of the crosstalk between chemotherapy and TAMs on ovarian cancer progression remains unclear. Here, we demonstrated that cisplatin-stimulated classically activated macrophages (CAMs) promote ovarian cancer cell migration by increasing CCL20 production, which activates its receptor CCR6 on ovarian cancer cells, triggering epithelial-to-mesenchymal transition. In clinical ovarian cancer samples, high CCR6 expression on ovarian cancer cells positively correlates with cancer metastasis, leading to poor prognosis. Pharmacological blockage of CCL20 on cisplatin-stimulated CAMs and siRNA-mediated inactivation of CCR6 on cancer cells effectively abrogated ovarian cancer cell migration induced by cisplatin-stimulated CAMs. Collectively, our results reveal a novel pro-migration mechanism driven by the crosstalk between cisplatin and CAMs, and implicate the CCL20-CCR6 axis as a potential therapeutic target to reduce chemotherapy-induced metastasis in advanced stage ovarian cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Cong Xu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
17
|
Sulaiman SA, Abu N, Ab-Mutalib NS, Low TY, Jamal R. Signatures of gene expression, DNA methylation and microRNAs of hepatocellular carcinoma with vascular invasion. Future Oncol 2019; 15:2603-2617. [PMID: 31339048 DOI: 10.2217/fon-2018-0909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Micro and macro vascular invasion (VI) are known as independent predictors of tumor recurrence and poor survival after surgical treatment of hepatocellular carcinoma (HCC). Here, we aimed to re-analyze The Cancer Genome Atlas of liver hepatocellular carcinoma datasets to identify the VI-expression signatures. Materials & methods: We filtered The Cancer Genome Atlas liver hepatocellular carcinoma (LIHC) datasets into three groups: no VI (NVI = 198); micro VI (MIVI = 89) and macro VI (MAVI = 16). We performed differential gene expression, methylation and microRNA analyses. Results & conclusion: We identified 12 differentially expressed genes and 55 differentially methylated genes in MAVI compared with no VI. The GPD1L gene appeared in all of the comparative analyses. Higher GPD1L expression was associated with VI and poor outcomes in the HCC patients.
Collapse
Affiliation(s)
- Siti A Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa'cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa'cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab-Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa'cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa'cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa'cob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Guo W, Li H, Liu H, Ma X, Yang S, Wang Z. DEPDC1 drives hepatocellular carcinoma cell proliferation, invasion and angiogenesis by regulating the CCL20/CCR6 signaling pathway. Oncol Rep 2019; 42:1075-1089. [PMID: 31322256 PMCID: PMC6667871 DOI: 10.3892/or.2019.7221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) functions as an oncogene in hepatocellular carcinoma (HCC). However, the underlying mechanism of DEPDC1 remains largely unknown. The present study revealed that DEPDC1 knockdown inhibited HCC cell proliferation, colony formation and invasion in vitro and suppressed the growth of HCC xenografts in vivo. Furthermore, DEPDC1 overexpression promoted HCC cell proliferation, colony formation and invasion. DNA microarray, reverse transcription-quantitative-PCR and western blotting results demonstrated that DEPDC1 knockdown in Huh-7 significantly inhibited the expression of chemokine (C-C motif) ligand 20 (CCL20) and chemokine (C-C motif) receptor 6 (CCR6). In addition, the expression of CCL20 and CCR6 were upregulated in HCC tissues and cell lines, and were positively correlated with DEPDC1 expression. CCL20 or CCR6 knockdown via small interfering RNA reversed the effects of DEPDC1 overexpression in HCC cells. Furthermore, it was revealed that conditioned medium from DEPDC1 upregulated Li-7 and Hep3B cells led to angiogenesis in vitro, whereas CCL20 knockdown in Li-7 and Hep3B cells or CCR6 knockdown in human umbilical vein endothelial cells reversed the angiogenic effect of DEPDC1 overexpression. In conclusion, DEPDC1 facilitated cell proliferation, invasion and angiogenesis via the CCL20/CCR6 pathway in HCC.
Collapse
Affiliation(s)
- Wubin Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Huan Liu
- Research Laboratory of Biomedical Engineering, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Ma
- Department of General Surgery, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sijin Yang
- Department of Cardiovascular Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
19
|
Jiao X, Shu G, Liu H, Zhang Q, Ma Z, Ren C, Guo H, Shi J, Liu J, Zhang C, Wang Y, Gao Y. The Diagnostic Value of Chemokine/Chemokine Receptor Pairs in Hepatocellular Carcinoma and Colorectal Liver Metastasis. J Histochem Cytochem 2019; 67:299-308. [PMID: 30633620 DOI: 10.1369/0022155418824274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemokines and their receptors have been proposed to play important roles in tumor progression and metastasis. To investigate their roles in the progression of primary and metastatic malignant liver tumors and their prognosis, we compared expression profiles of CXCL12/CXCR4, CCL20/CCR6, and CCL21/CCR7 in hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM). Immunohistochemistry was used to analyze the expression levels of the chemokine/chemokine receptor pairs in 29 HCC and 11 CRLM specimens and adjacent non-cancerous tissues, and correlations with clinicopathological variables and overall survival were determined. CCL20/CCR6 expression was higher in HCC than in adjacent non-cancerous tissues. High CCR6 expression in HCC was negatively associated with 5-year survival rate and was an independent prognostic factor for overall survival of HCC patients, whereas differences were not observed between CRLM and adjacent tissues. Furthermore, significantly higher expression of CCL21/CCR7 was found in CRLM than in HCC. In summary, the CCL20/CCR6 axis was elevated in HCC but not in CRLM, whereas the CCL21/CCR7 axis was elevated in CRLM but not in HCC.
Collapse
Affiliation(s)
- Xiaolei Jiao
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Guiming Shu
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Zhe Ma
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Hongsheng Guo
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Jingxiang Shi
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Junguo Liu
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Chuanshan Zhang
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Yingtang Gao
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
20
|
Han J, Liu S, Zhang Y, Xu Y, Jiang Y, Zhang C, Li C, Li X. MiRSEA: Discovering the pathways regulated by dysfunctional MicroRNAs. Oncotarget 2018; 7:55012-55025. [PMID: 27474169 PMCID: PMC5342398 DOI: 10.18632/oncotarget.10839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that dysfunctional microRNAs (miRNAs) are involved in the progression of various cancers. Dysfunctional miRNAs may jointly regulate their target genes and further alter the activities of canonical biological pathways. Identification of the pathways regulated by a group of dysfunctional miRNAs could help uncover the pathogenic mechanisms of cancer and facilitate development of new drug targets. Current miRNA-pathway analyses mainly use differentially-expressed miRNAs to predict the shared pathways on which they act. However, these methods fail to consider the level of differential expression level, which could improve our understanding of miRNA function. We propose a novel computational method, MicroRNA Set Enrichment Analysis (MiRSEA), to identify the pathways regulated by dysfunctional miRNAs. MiRSEA integrates the differential expression levels of miRNAs with the strength of miRNA pathway associations to perform direct enrichment analysis using miRNA expression data. We describe the MiRSEA methodology and illustrate its effectiveness through analysis of data from hepatocellular cancer, gastric cancer and lung cancer. With these analyses, we show that MiRSEA can successfully detect latent biological pathways regulated by dysfunctional miRNAs. We have implemented MiRSEA as a freely available R-based package on CRAN (https://cran.r-project.org/web/packages/MiRSEA/).
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Harbin, 150081, PR China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
21
|
Abstract
Liver transplantation is the most effective treatment for selected patients with hepatocellular carcinoma. However, cancer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of hepatic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recurrence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury. The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling pathways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tumor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth, migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia reperfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.
Collapse
|
22
|
He B, He Y, Shi W, Gong S, Chen X, Xiao J, Gu J, Ding W, Wang Y. Bioinformatics analysis of gene expression alterations in microRNA‑122 knockout mice with hepatocellular carcinoma. Mol Med Rep 2017; 15:3681-3689. [PMID: 28393247 PMCID: PMC5436154 DOI: 10.3892/mmr.2017.6445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Reduced microRNA (miR)‑122 expression levels are frequently observed in hepatocellular carcinoma (HCC). The present study was conducted to investigate potential targets of miR‑122 and determine the underlying regulatory mechanisms of miR‑122 in HCC development. The public dataset GSE31731 was utilized, consisting of 8 miR‑122 knockout (KO) mice (miR‑122 KO) and 8 age‑matched wild‑type mice (WT group). Following data preprocessing, the differentially expressed genes (DEGs) were selected, followed by enrichment analysis. A protein‑protein interaction (PPI) network was established, and a module network was further extracted. Combining the DEGs with microRNA targeting databases permitted the screening of the overlapping targets of miR‑122. Furthermore, previously reported genes were screened out by literature mining. Transcription factors (TFs) of the targets were subsequently investigated. DEGs between miR‑122 KO and WT groups were selected, including 713 upregulated and 395 downregulated genes. Of these, upregulated genes were enriched in cell cycle‑associated processes [including nucleolar and spindle associated protein 1 (NUSAP1)], the cytokine‑cytokine receptor interaction pathway [including C‑X‑C motif chemokine receptor 4 (CXCR4) and C‑C motif chemokine receptor 2 (CCR2)], and the extracellular matrix‑receptor interaction pathway [including integrin subunit alpha V (ITGAV)]. In addition, multiple overlapping targets were highlighted in the PPI network, including NUSAP1, CXCR4, CCR2 and ITGAV. Notably, CXCR4 and CCR2 were linked in module C, enriched in the cytokine‑cytokine receptor interaction pathway. Furthermore, upregulated sex determining region Y‑box 4 (SOX4) was identified as a TF. The results of the present study may provide a theoretical basis for further studies on the mechanisms of miR‑122 in the development of HCC.
Collapse
Affiliation(s)
- Bosheng He
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ying He
- Department of Ultrasound, The Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Weixiang Shi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shenchu Gong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaohong Chen
- Department of Ultrasound, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Xiao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jinhua Gu
- Department of Pathophysiology, Nantong University Medical School, Nantong, Jiangsu 226001, P.R. China
| | - Wenbin Ding
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yilang Wang
- Department of Oncology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Lin SS, Li FF, Sun L, Fan W, Gu M, Zhang LY, Qin S, Yuan ST. Marsdenia tenacissima extract suppresses A549 cell migration through regulation of CCR5-CCL5 axis, Rho C, and phosphorylated FAK. Chin J Nat Med 2016; 14:203-9. [PMID: 27025367 DOI: 10.1016/s1875-5364(16)30017-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Marsdenia tenacissima, a traditional Chinese medicine, is long been used to treat various diseases including asthma, cancer, trachitis, tonsillitis, pharyngitis, cystitis, and pneumonia. Although Marsdenia tenacissima has been demonstrated to have strong anti-tumor effects against primary tumors, its effect on cancer metastasis remains to be defined, and the molecular mechanism underlying the anti-metastatic effect is unknown. In the present study, we investigated the effects of XAP (an extract of Marsdenia tenacissima) on A549 lung cancer cell migration and explored the role of CCR5-CCL5 axis in the anti-metastatic effects of XAP. Our resutls showed that XAP inhibited A549 lung cancer cell migration and invasion in a dose-dependent manner. The protein levels of CCR5, but not CCR9 and CXCR4, were decreased by XAP. The secretion of CCL5, the ligand of CCR5, was reduced by XAP. XAP down-regulated Rho C expression and FAK phosphorylation. In conclusion, XAP inhibited A549 cell migration and invasion through down-regulation of CCR5-CCL5 axis, Rho C, and FAK.
Collapse
Affiliation(s)
- Sen-Sen Lin
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China
| | - Fang-Fang Li
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Fan
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Gu
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China
| | - Song Qin
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, 210046, China
| | - Sheng-Tao Yuan
- New Drug Screen Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Han KQ, Han H, He XQ, Wang L, Guo XD, Zhang XM, Chen J, Zhu QG, Nian H, Zhai XF, Jiang MW. Chemokine CXCL1 may serve as a potential molecular target for hepatocellular carcinoma. Cancer Med 2016; 5:2861-2871. [PMID: 27682863 PMCID: PMC5083740 DOI: 10.1002/cam4.843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to screen for changes in chemokine and chemokine‐related genes that are expressed in hepatocellular carcinoma (HCC) as potential markers of HCC progression. Total RNA was extracted from tumor and peritumor tissues from mice with HCC and analyzed using a PCR microarray comprising 98 genes. Changes in gene expression of threefold or more were screened and subsequently confirmed by immunohistochemical analyses and western blotting. Furthermore, whether chemokine knockdown by RNA interference (RNAi) could significantly suppress tumor growth in vivo was also evaluated. Finally, total serum samples were collected from HCC patients with HBV/cirrhosis (n = 16) or liver cirrhosis (n = 16) and from healthy controls (n = 16). The serum mRNA and protein expression levels of CXCL1 in primary liver cancer patients were detected by qRT‐PCR and western blot analysis, respectively. Several genes were up‐regulated in tumor tissues during the progression period, including CXCL1, CXCL2, CXCL3, and IL‐1β, while CXCR1 expression was down‐regulated. CBRH‐7919 cells carrying CXCL1 siRNA resulted in decreased tumor growth in nude mice. The differences in serum CXCL1 mRNA and protein levels among the HCC, hepatic sclerosis (HS), and control groups were significant (P < 0.001). The mRNA and protein levels of CXCL1 in the HCC group were up‐regulated compared with the HS group or the control group (P < 0.001). Several chemokine genes were identified that might play important roles in the tumor microenvironment of HCC. These results provide new insights into human HCC and may ultimately facilitate early HCC diagnosis and lead to the discovery of innovative therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Ke-Qi Han
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hui Han
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xue-Qun He
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lei Wang
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Dong Guo
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xue-Ming Zhang
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jie Chen
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Quan-Gang Zhu
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Nian
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Feng Zhai
- Department of Traditional Chinese Medicine, Changhai Hosptail of Second Military Medical University, Shanghai, 200433, China
| | - Ma-Wei Jiang
- Department of Oncology, Xin-Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
25
|
Martínez-Iglesias O, Alonso-Merino E, Aranda A. Tumor suppressive actions of the nuclear receptor corepressor 1. Pharmacol Res 2016; 108:75-79. [PMID: 27149915 DOI: 10.1016/j.phrs.2016.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 02/09/2023]
Abstract
Nuclear Receptor Corepressor 1 (NCoR) is an important transcriptional regulator that interacts with nuclear receptors and other transcription factors. Recent results have shown the presence of inactivating mutations or deletions of the NCoR gene in human tumors. NCoR has a strong tumor suppressor activity, inhibiting invasion, metastasis formation and tumor growth in xenograft mouse models. These changes are associated to transcriptional inhibition of genes linked to bad prognosis and increased metastasis in cancer patients. NCoR loss causes a long-term repression of NCoR gene transcription, suggesting that NCoR deficiency in the cancer cell could be propagated playing a role in tumor progression in the absence of NCoR gene mutations. The thyroid hormone receptor TRβ increases NCoR expression and this induction is essential in mediating the anti-metastatic and tumor suppressive actions of the receptor. Since metastasis is the main cause of cancer-related deaths, these results define NCoR as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Elvira Alonso-Merino
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
26
|
Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc Natl Acad Sci U S A 2016; 113:E328-37. [PMID: 26729869 DOI: 10.1073/pnas.1520469113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear corepressor 1 (NCoR) associates with nuclear receptors and other transcription factors leading to transcriptional repression. We show here that NCoR depletion enhances cancer cell invasion and increases tumor growth and metastatic potential in nude mice. These changes are related to repressed transcription of genes associated with increased metastasis and poor prognosis in patients. Strikingly, transient NCoR silencing leads to heterochromatinization and stable silencing of the NCoR gene, suggesting that NCoR loss can be propagated, contributing to tumor progression even in the absence of NCoR gene mutations. Down-regulation of the thyroid hormone receptor β1 (TRβ) appears to be associated with cancer onset and progression. We found that expression of TRβ increases NCoR levels and that this induction is essential in mediating inhibition of tumor growth and metastasis by this receptor. Moreover, NCoR is down-regulated in human hepatocarcinomas and in the more aggressive breast cancer tumors, and its expression correlates positively with that of TRβ. These data provide a molecular basis for the anticancer actions of this corepressor and identify NCoR as a potential molecular target for development of novel cancer therapies.
Collapse
|
27
|
HERC5 is a prognostic biomarker for post-liver transplant recurrent human hepatocellular carcinoma. J Transl Med 2015; 13:379. [PMID: 26653219 PMCID: PMC4676172 DOI: 10.1186/s12967-015-0743-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Orthotopic liver transplantation (OLT) can be an effective treatment option for certain patients with early stage hepatocellular carcinoma (HCC) meeting Milan, UCSF, or Hangzhou criteria. However, HCC recurrence rates post-OLT range from 20 to 40 %, with limited follow-up options. Elucidating genetic drivers common to primary and post-OLT recurrent tumors may further our understanding and help identify predictive biomarkers of recurrence-both to ultimately help manage clinical decisions for patients undergoing OLT. METHODS Whole exome and RNA sequencing in matched primary and recurrent tumors, normal adjacent tissues, and blood from four Chinese HCC patients was conducted. SiRNA knockdown and both qRT-PCR and Western assays were performed on PLCPRF5, SNU449 and HEPG2 cell lines; immunohistochemistry and RNA Sequencing were conducted on the primary tumors of Chinese HCC patients who experienced tumor recurrence post-OLT (n = 9) or did not experience tumor recurrence (n = 12). RESULTS In three independent HCC studies of patients undergoing transplantation (n = 21) or surgical resection (n = 242, n = 44) of primary tumors (total n = 307), HERC5 mRNA under-expression correlated with shorter: time to tumor recurrence (p = 0.007 and 0.02) and overall survival (p = 0.0063 and 0.023), even after adjustment for relevant clinical variables. HERC5 loss drives CCL20 mRNA and protein over-expression and associates with regulatory T cell infiltration as measured by FOXP3 expression. Further, matched primary and recurrent tumors from the 4 HCC patients indicated clonal selection advantage of Wnt signaling activation and CDKN2A inactivation. CONCLUSIONS HERC5 plays a crucial role in HCC immune evasion and has clinical relevance as a reproducible prognostic marker for risk of tumor recurrence and survival in patients.
Collapse
|
28
|
Nonalcoholic Steatohepatitis: Involvement of the Telomerase and Proinflammatory Mediators. BIOMED RESEARCH INTERNATIONAL 2015; 2015:850246. [PMID: 26273651 PMCID: PMC4529930 DOI: 10.1155/2015/850246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Abstract
Nonalcoholic steatohepatitis or NASH is an excessive accumulation of fat in hepatocytes accompanied by inflammation and hepatic injury. Proinflammatory molecules such as IL-17, CCL20, S100A8, S100A9, and S100A8/A9 have been shown to be implicated in many types of cancer. Telomerase activity has been found to be associated with chronic inflammation and cancer. NASH can progress to fibrosis then cirrhosis and finally to hepatocellular carcinoma (HCC). Our objective is to try to find a relation between inflammation and the progression of NASH into HCC. We found that there was a significant elevation in the telomerase activity, detected by real-time PCR, between NASH and fibrotic NASH in the liver biopsies of patients. The expression of S100A8, S100A9, S100A8/A9, CCL20, and IL-17, detected by ELISA, is significantly increased in NASH patients with fibrosis in comparison with controls. But, in NASH patients, S100A9, S100A8/A9, and IL-17 only are significantly elevated in comparison with controls. The same, on the mRNA level, expression of IL-17, detected by RT-PCR, is significantly elevated in NASH patients in comparison with controls. Therefore, there is a direct link between the expression of IL-17, CCL20, telomerase, S100A8, and S100A9 in the fibrotic condition and the progression towards cancer.
Collapse
|
29
|
The Effect of C-X-C Motif Chemokine 13 on Hepatocellular Carcinoma Associates with Wnt Signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:345413. [PMID: 26161394 PMCID: PMC4486493 DOI: 10.1155/2015/345413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
Objects. To investigate the effect of CXCL13 (C-X-C motif chemokine 13) on hepatocellular carcinoma and clarify the potential mechanisms. Methods. 32 patients with hepatocellular carcinoma and 12 healthy controls were recruited for analyzing the expression of CXCL13 by RT-PCR (reverse transcription-polymerase chain reaction). ELISA (enzyme-linked immune-sorbent assay) was used to test the concentration of serum CXCL13. The interaction between CXCL13 and Wnt signaling was analyzed by western blot. In vitro PBMCs cultured with HepG2 supernatant, the levels of IL-12, IL4, IL-6, and IL-17, and four IgG subclasses were detected by ELISA. Results. The rate of high expression CXCL13 was 63.4% in advanced HCC patients, and the serum CXCL13 was also at a high level in stage IV HCC patients. Meanwhile CXCL13 level was positively correlated with serum ALT (Alanine Transaminase) and AST (Aspartate Aminotransferase). CXCL13 and Wnt/β-catenin signaling shared a positive feedback loop. Furthermore, CXCL13 could obviously promote the expressions of IL-12 and IL-17, and induce IgG4 secreted by B cells. Conclusions. The effect of CXCL13 on promoting liver cancer is related to the activation of Wnt/β-catenin pathway and the facilitation of IL-12, IL-17 and IgG4. CXCL13 plays an important role in the progression of HCC, and it may act as a potential target for the diagnosis and treatment of HCC.
Collapse
|
30
|
CrkL meditates CCL20/CCR6-induced EMT in gastric cancer. Cytokine 2015; 76:163-169. [PMID: 26044596 DOI: 10.1016/j.cyto.2015.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND In recent years, Crk-like adapter protein (CrkL) has been identified as a key regulator in the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms underlying the CC chemokine receptor 6 (CCR6) and chemokine (C-C motif) ligand 20 (CCL20)-induced EMT in gastric cancer are still unclear. METHODS We conducted the immunohistochemistry and immunoblotting to detect the expression of CCR6 and CrkL in 90 cases of gastric cancer tissues and five kinds of cell lines. And then, gastric cancer cells were subjected to small interfering RNA (siRNA) treatment and in vitro assay. RESULTS Both CCR6 and CrkL were aberrantly expressed in gastric cancer specimens and closely correlated with differentiation of cell lines. The expression of CCR6 and CrkL was also significantly associated with metastasis, stage, and poor prognosis of gastric cancer. In addition, we validated CCL20 activated the expression of p-CrkL, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 in MGC803 cells in a dose-dependent manner. However, si-CrkL abrogated the CCL20-induced p-Erk1/2, vimentin, N-cadherin and MMP2 expression. Most importantly, the knockdown of CrkL decreased migration and invasion of MGC803 cells. CONCLUSIONS CrkL mediates CCL20/CCR6-induced EMT via Akt pathway, instead of Erk1/2 pathway in development of gastric cancer, which indicated CCL20/CCR6-CrkL-Erk1/2-EMT pathway may be targeted to antagonize the progression of gastric cancer.
Collapse
|
31
|
Differential Expression of CX3CL1 in Hepatitis B Virus-Replicating Hepatoma Cells Can Affect the Migration Activity of CX3CR1+ Immune Cells. J Virol 2015; 89:7016-27. [PMID: 25926643 DOI: 10.1128/jvi.00716-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In addition to stellate cells and immune cells, inflamed hepatocytes and hepatoma cells express various kinds of chemokines that attract various kinds of immune cells. Previously, we reported that hepatitis B virus (HBV) replication can induce physiological stress. The aim of this study was to analyze the effect of chemokines produced by HBV-infected hepatocytes and hepatoma cells. A real-time PCR array targeting genes related to chemokines and enzyme-linked immunosorbent assay (ELISA) were carried out to detect the specific chemokines produced by Huh7 cells and HepG2 cells infected with various HBV genotypes. A migration assay, flow cytometry analysis, and immunohistochemistry were carried out to analyze the candidate immune cells that can affect the immunopathogenesis of HBV infection. The expressions of CX3CL1 mRNA and protein were significantly different among HBV genotypes A, B, and C and control cells (mock) (P < 0.05). CD56(+) NK cells and CD8(+) T cells migrated to the hepatoma cells with HBV replication. Moreover, the migration activity of both immune cells was partially cancelled after the treatment of CX3CL1 neutralizing antibody. The expression level of NKG2D on CX3CR1(+) NK cells in HCC with HBV infection was significantly lower than that in hepatocellular carcinoma (HCC) with HCV infection and chronic hepatitis B and C patients (P < 0.05). On the other hand, the frequency of PD-1(high) CX3CR1(+) CD8(+) T cells in HCC with HBV infection was significantly higher than that in HCC with HCV infection and chronic hepatitis B and C (P < 0.05). The expression of CX3CL1 in HBV-replicating hepatocytes and hepatoma cells could contribute to the immunopathogenesis of HBV infection. IMPORTANCE The progressions of the disease are significantly different among HBV genotypes. However, it has not been clear that how different HBV genotypes could induce different inflammatory responses. Here, we first report that the levels of expression of CX3CL1 mRNA and protein were significantly different among HBV genotypes A, B, and C and mock. Not only the differential expression of CX3CL1 among the genotypes but also the phenotype of CX3CR1(+) NK cells and T cells were gradually changed during the progression of the disease status. In addition to in vitro study, the analysis of immunohistochemistry with human samples and NOG mice with human lymphocytes and hepatoma cells supports this phenomenon. The quantification of CX3CL1 could contribute to better understanding of the disease status of HBV infection. Moreover, modifying CX3CL1 might induce an immune response appropriate to the disease status of HBV infection.
Collapse
|
32
|
Solinas A, Calvisi DF. Lessons from rare tumors: Hepatic lymphoepithelioma-like carcinomas. World J Gastroenterol 2015; 21:3472-3479. [PMID: 25834311 PMCID: PMC4375568 DOI: 10.3748/wjg.v21.i12.3472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/11/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
In this review we focus on lymphoepithelioma-like hepatocellular carcinomas (LEL-HCC) and lymphoepithelioma-like cholangiocarcinomas (LEL-ICC). Despite their rarity, these tumors are of general interest because of their epidemiological and clinical features, and because they represent a distinct model of interaction between the immune system and neoplastic cells. Approximately half of LEL-HCC arise in the context of chronic hepatitis C virus (HCV) infection and have been described both in Eastern and Western patients. By contrast, LEL-ICC is associated in almost all cases with Epstein-Barr virus (EBV) infection and exhibits the same epidemiological features of EBV related malignancies. Compared with classical hepatocellular carcinoma and intrahepatic cholangiocarcinoma of corresponding stage, both LEL-HCC and LEL-ICC are characterized by lower rates of recurrence after surgery and better overall survival. How this behavior is related to distinct genetic alterations and tumor microenvironment is unclear. The pathophysiological mechanisms of lymphoid infiltrations seem to be different among the two groups of tumors. In fact, LEL-HCC frequently arises in the context of inflammatory changes driven by HCV infection, and has been recognized as a variant of classical hepatocellular carcinoma. At variance, lymphocyte recruitment of LEL-ICC is similar to that described in nasopharyngeal carcinoma and gastric LEL, and possibly depends on the expression pattern of latent EBV infection.
Collapse
|
33
|
Qiu W, Wang G, Sun X, Ye J, Wei F, Shi X, Lv G. The involvement of cell surface nucleolin in the initiation of CCR6 signaling in human hepatocellular carcinoma. Med Oncol 2015; 32:75. [PMID: 25698534 DOI: 10.1007/s12032-015-0530-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023]
Abstract
In recent years, the chemokine CC receptor 6 (CCR6) and its ligand CCL20 were reported to play an essential role in hepatocellular carcinoma (HCC). However, the role of cell surface nucleolin in the CCR6 pathway of HCC is not well featured. Using immunohistochemistry, Western blotting, siRNA, wound healing and transwell assay, we investigated the relationships of cell surface nucleolin and CCR6 signaling in HCC. In the present study, our findings identified that cell surface nucleolin and CCR6 protein were stained in most of HCC tissues (64, 68 %, respectively) and differently expressed in HCC cell lines; meanwhile, both expression has an association with advanced stage, lymph node metastasis and poor 5-year prognosis. According to in vitro assays, we found that the silencing of either cell surface nucleolin or CCR6 inhibited the protein expression of p-ERK, p-AKT, MMP2, MMP9 and ICAM-1 in the CCL20-stimulated HCCLM6 cells. Functional analysis revealed that cell surface nucleolin or CCR6 silencing significantly hampered HCCLM6 cell motility and invasiveness ability, when compared with control. In conclusion, this work suggests that cell surface nucleolin participates in the initiation of CCR6 pathway and biological behaviors of HCC, leading to HCC cell adhesion, migration and invasive behavior. In the clinical practice, cell surface nucleolin and CCR6 are recommended to predict poor prognosis and be used as a useful target for HCC patients.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen Q, Sun W, Liao Y, Zeng H, Shan L, Yin F, Wang Z, Zhou Z, Hua Y, Cai Z. Monocyte chemotactic protein-1 promotes the proliferation and invasion of osteosarcoma cells and upregulates the expression of AKT. Mol Med Rep 2015; 12:219-25. [PMID: 25695619 PMCID: PMC4438931 DOI: 10.3892/mmr.2015.3375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
Monocyte chemotactic protein-1 (MCP-1/CCL2) is an important immune factor, which may be important in cancer progression by promoting proliferation, invasion, metastasis and the tumor microenvironment. Previous studies have demonstrated that CCL2 affects the proliferation of osteosarcoma cells via the RANKL signaling pathway. However, the underlying mechanisms remain to be elucidated. To investigate the role of CCL2 in osteosarcoma cells, MTT, spheroid forming, wound healing and transwell assays were performed to examine the proliferation and invasion abilities of the osteosarcoma cells. It was revealed that the high-grade osteosarcoma cells exhibited increased expression levels of CCL2 compared with the low-grade osteosarcoma cells (P<0.001). Furthermore, knockdown of CCL2 decreased the proliferation and invasion abilities of the osteosarcoma cells (P<0.01). These results suggested that the expression of CCL2 is high in high-grade osteosarcoma cells and promotes the proliferation and invasion of osteosarcoma cells.
Collapse
Affiliation(s)
- Quanchi Chen
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Wei Sun
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yuxin Liao
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Hui Zeng
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Liancheng Shan
- Department of Orthopedics, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Fei Yin
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Zhuoying Wang
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Zifei Zhou
- Department of Orthopedics, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yingqi Hua
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Zhengdong Cai
- Department of Orthopedics, First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
35
|
Ansari AWW, Schmidt RE, Shankar EM, Kamarulzaman A. Immuno-pathomechanism of liver fibrosis: targeting chemokine CCL2-mediated HIV:HCV nexus. J Transl Med 2014; 12:341. [PMID: 25528160 PMCID: PMC4272802 DOI: 10.1186/s12967-014-0341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
Even in the era of successful combination antiretroviral therapy (cART), co-infection of Hepatitis C virus (HCV) remains one of the leading causes of non-AIDS-related mortality and morbidity among HIV-positive individuals as a consequence of accelerated liver fibrosis and end-stage liver disease (ESLD). The perturbed liver microenvironment and induction of host pro-inflammatory mediators in response to HIV and HCV infections, play a pivotal role in orchestrating the disease pathogenesis and clinical outcomes. How these viruses communicate each other via chemokine CCL2 and exploit the liver specific cellular environment to exacerbate liver fibrosis in HIV/HCV co-infection setting is a topic of intense discussion. Herein, we provide recent views and insights on potential mechanisms of CCL2 mediated immuno-pathogenesis, and HIV-HCV cross-talk in driving liver inflammation. We believe CCL2 may potentially serve an attractive target of anti-fibrotic intervention against HIV/HCV co-infection associated co-morbidities.
Collapse
Affiliation(s)
- A W Wahid Ansari
- Centre of Excellence for Research in AIDS, Faculty of Medicine, University of Malaya, Lambah Pantai 50603, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
36
|
CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cell Mol Immunol 2014; 12:474-82. [PMID: 25363530 PMCID: PMC4496532 DOI: 10.1038/cmi.2014.102] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/22/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with a poor prognosis and limited markers for predicting patient survival. Because chemokines and chemokine receptors play numerous and integral roles in HCC disease progression, the CXCR4–CXCL12–CXCR7 axis was studied in HCC patients. CXCR4 and CXCR7 expression was analyzed by immunohistochemistry in 86 HCC patients (training cohort) and validated in 42 unrelated HCC patients (validation cohort). CXCR4 levels were low in 22.1% of patients, intermediate in 30.2%, and high in 47.7%, whereas CXCR7 levels were low in 9.3% of patients, intermediate in 44.2% and high in 46.5% of the patients in the training cohort. When correlated to patient outcome, only CXCR4 affected overall survival (P=0.03). CXCR4–CXCL12–CXCR7 mRNA levels were examined in 33/86 patients. Interestingly, the common CXCR4–CXCR7 ligand CXCL12 was expressed at significantly lower levels in tumor tissues compared to adjacent normal liver (P=0.032). The expression and function of CXCR4 and CXCR7 was also analyzed in several human HCC cell lines. CXCR4 was expressed in Huh7, Hep3B, SNU398, SNU449 and SNU475 cells, whereas CXCR7 was expressed in HepG2, Huh7, SNU449 and SNU475 cells. Huh7, SNU449 and SNU475 cells migrated toward CXCL12, and this migration was inhibited by AMD3100/anti-CXCR4 and by CCX771/anti-CXCR7. Moreover, SNU449 and Huh7 cells exhibited matrix invasion in the presence of CXCL12 and CXCL11, a ligand exclusive to CXCR7. In conclusion, CXCR4 affects the prognosis of HCC patients but CXCR7 does not. Therefore, the CXCR4–CXCL12–CXCR7 axis plays a role in the interaction of HCC with the surrounding normal tissue and represents a suitable therapeutic target.
Collapse
|
37
|
Sligh J, Janda J, Jandova J. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes. Mutat Res 2014; 769:49-58. [PMID: 25177208 PMCID: PMC4144272 DOI: 10.1016/j.mrfmmm.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF-κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.
Collapse
Affiliation(s)
- James Sligh
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jaroslav Janda
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jana Jandova
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| |
Collapse
|
38
|
Li L, Yan J, Xu J, Liu CQ, Zhen ZJ, Chen HW, Ji Y, Wu ZP, Hu JY, Zheng L, Lau WY. CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLoS One 2014; 9:e110064. [PMID: 25303284 PMCID: PMC4193880 DOI: 10.1371/journal.pone.0110064] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
CXC ligand 17 (CXCL17) is a novel CXC chemokine whose clinical significance remains largely unknown. In the present study, we characterized the prognostic value of CXCL17 in patients with hepatocellular carcinoma (HCC) and evaluated the association of CXCL17 with immune infiltration. We examined CXCL17 expression in 227 HCC tissue specimens by immunohistochemical staining, and correlated CXCL17 expression patterns with clinicopathological features, prognosis, and immune infiltrate density (CD4 T cells, CD8 T cells, B cells, natural killer cells, neutrophils, macrophages). Kaplan-Meier survival analysis showed that both increased intratumoral CXCL17 (P = 0.015 for overall survival [OS], P = 0.003 for recurrence-free survival [RFS]) and peritumoral CXCL17 (P = 0.002 for OS, P<0.001 for RFS) were associated with shorter OS and RFS. Patients in the CXCL17low group had significantly lower 5-year recurrence rate compared with patients in the CXCL17high group (peritumoral: 53.1% vs. 77.7%, P<0.001, intratumoral: 58.6% vs. 73.0%, P = 0.001, respectively). Multivariate Cox proportional hazards analysis identified peritumoral CXCL17 as an independent prognostic factor for both OS (hazard ratio [HR] = 2.066, 95% confidence interval [CI] = 1.296–3.292, P = 0.002) and RFS (HR = 1.844, 95% CI = 1.218–2.793, P = 0.004). Moreover, CXCL17 expression was associated with more CD68 and less CD4 cell infiltration (both P<0.05). The combination of CXCL17 density and immune infiltration could be used to further classify patients into subsets with different prognosis for RFS. Our results provide the first evidence that tumor-infiltrating CXCL17+ cell density is an independent prognostic factor that predicts both OS and RFS in HCC. CXCL17 production correlated with adverse immune infiltration and might be an important target for anti-HCC therapies.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chao-Qun Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zuo-Jun Zhen
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Huan-Wei Chen
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Yong Ji
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Zhi-Peng Wu
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Jian-Yuan Hu
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wan Yee Lau
- Department of Hepatic and Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
39
|
Bishayee A. The role of inflammation and liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:401-35. [PMID: 24818732 DOI: 10.1007/978-3-0348-0837-8_16] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Persistent inflammation is known to promote and exacerbate malignancy. Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example of inflammation-related cancer as more than 90 % of HCCs arise in the context of hepatic injury and inflammation. HCC represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide with about one million new cases diagnosed every year with almost an equal number of deaths. Chronic unresolved inflammation is associated with persistent hepatic injury and concurrent regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually HCC. Irrespective of the intrinsic differences among various etiological factors, a common denominator at the origin of HCC is the perpetuation of a wound-healing response activated by parenchymal cell death and the resulting inflammatory cascade. Hence, the identification of fundamental inflammatory signaling pathways causing transition from chronic liver injury to dysplasia and HCC could depict new predictive biomarkers and targets to identify and treat patients with chronic liver inflammation. This chapter critically discusses the roles of several major cytokines, chemokines, growth factors, transcription factors, and enzymes as well as a distinct network of inflammatory signaling pathways in the development and progression of HCC. It also highlights and analyzes preclinical animal studies showing innovative approaches of targeting inflammatory mediators and signaling by a variety of natural compounds and synthetic agents to achieve effective therapy as well as prevention of hepatic malignancy. Additionally, current limitations and potential challenges associated with the inhibition of inflammatory signaling as well as future directions of research to accelerate clinical development of anti-inflammatory agents to prevent and treat liver cancer are presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, 1600 East Hill Street, Signal Hill, CA, 90755, USA,
| |
Collapse
|
40
|
Orci LA, Lacotte S, Oldani G, Morel P, Mentha G, Toso C. The role of hepatic ischemia-reperfusion injury and liver parenchymal quality on cancer recurrence. Dig Dis Sci 2014; 59:2058-68. [PMID: 24795038 DOI: 10.1007/s10620-014-3182-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/20/2014] [Indexed: 12/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common clinical challenge. Despite accumulating evidence regarding its mechanisms and potential therapeutic approaches, hepatic I/R is still a leading cause of organ dysfunction, morbidity, and resource utilization, especially in those patients with underlying parenchymal abnormalities. In the oncological setting, there are growing concerns regarding the deleterious impact of I/R injury on the risk of post-surgical tumor recurrence. This review aims at giving the last updates regarding the role of hepatic I/R and liver parenchymal quality injury in the setting of oncological liver surgery, using a "bench-to-bedside" approach. Relevant medical literature was identified by searching PubMed and hand scanning of the reference lists of articles considered for inclusion. Numerous preclinical models have depicted the impact of I/R injury and hepatic parenchymal quality (steatosis, age) on increased cancer growth in the injured liver. Putative pathophysiological mechanisms linking I/R injury and liver cancer recurrence include an increased implantation of circulating cancer cells in the ischemic liver and the upregulation of proliferation and angiogenic factors following the ischemic insult. Although limited, there is growing clinical evidence that I/R injury and liver quality are associated with the risk of post-surgical cancer recurrence. In conclusion, on top of its harmful early impact on organ function, I/R injury is linked to increased tumor growth. Therapeutic strategies tackling I/R injury could not only improve post-surgical organ function, but also allow a reduction in the risk of cancer recurrence.
Collapse
Affiliation(s)
- Lorenzo A Orci
- Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland,
| | | | | | | | | | | |
Collapse
|
41
|
Ghanem I, Riveiro ME, Paradis V, Faivre S, de Parga PMV, Raymond E. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res 2014; 6:340-352. [PMID: 25075251 PMCID: PMC4113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Chemokines, a group of small chemotactic cytokines, and their G-protein-coupled receptors were originally identified for their ability to mediate various pro- and anti-inflammatory responses. Beyond the influence of chemokines and their cognate receptors in several inflammatory diseases, several malignancies have been shown to be dependent of chemokines for progression, tumor growth, cellular migration and invasion, and angiogenesis; those later facilitating the development of distant metastases. In hepatocellular carcinoma (HCC), chemokines were shown to affect leukocyte recruitment, neovascularization and tumor progression. CXCL12 (stromal-derived factor 1 alpha- SDF-1) is the primary ligand for the seven transmembrane G-protein coupled receptor CXCR4. The CXCR4/CXCL12 axis exerts a variety of functions at different steps of HCC tumor progression, using autocrine and/or paracrine mechanisms to sustain tumor cell growth, to induce angiogenesis and to facilitate tumor escape through evasion of immune surveillance. In this review, we have comprehensively described the role of CXCR4/CXCL12 in HCC and also investigated the role of CXCR7, an alternative receptors that also binds CXCL12 with potentially distinct downstream effects. Preclinical data converge to demonstrate that inhibition of the CXCR4/CXCL12 axis may lead to direct inhibition of tumor migration, invasion, and metastases. This pathway is under investigation to identify potential novel treatments in HCC and other cancers. However, one of the major challenges faced in this emerging field targeting the CXCR4/CXCL12 signaling pathway, is the translation of current knowledge into the design and development of effective inhibitors of CXCR4 and/or CXCL12 for cancer therapy.
Collapse
Affiliation(s)
- Ismael Ghanem
- Department of Medical Oncology, La Paz University HospitalMadrid, Spain
| | - Maria E Riveiro
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
- Oncology Therapeutic DevelopmentClichy, France
| | - Valerie Paradis
- INSERM U773 and Anatomopathology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| | - Sandrine Faivre
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| | | | - Eric Raymond
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
42
|
Breunig C, Mueller BJ, Umansky L, Wahl K, Hoffmann K, Lehner F, Manns MP, Bantel H, Falk CS. BRaf and MEK Inhibitors Differentially Regulate Cell Fate and Microenvironment in Human Hepatocellular Carcinoma. Clin Cancer Res 2014; 20:2410-23. [DOI: 10.1158/1078-0432.ccr-13-1635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Ghasemi R, Ghaffari SH, Momeny M, Pirouzpanah S, Yousefi M, Malehmir M, Alimoghaddam K, Ghavamzadeh A. Multitargeting and antimetastatic potentials of silibinin in human HepG-2 and PLC/PRF/5 hepatoma cells. Nutr Cancer 2013; 65:590-9. [PMID: 23659451 DOI: 10.1080/01635581.2013.770043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common sort of primary liver malignancy with poor prognosis. This study aimed at examining the effects of silibinin (a putative antimetastatic agent) on some transcriptional markers mechanistically related to HCC recurrence and metastasis in HepG-2 [hepatitis B virus (HBV)-negative and P53 intact) and PLC/PRF/5 (HBV-positive and P53 mutated) cells. The expression of 27 genes in response to silibinin was evaluated by real-time RT-PCR. The MMP gelatinolytic assay and microculture tetrazolium test (MTT) were tested. Silibinin was capable of suppressing the transcriptional levels of ANGPT2, ATP6L, CAP2, CCR6, CCR7, CLDN-10, cortactin, CXCR4, GLI2, HK2, ID1, KIAA0101, mortalin, PAK1, RHOA, SPINK1, and STMN1 as well as the enzymatic activity of MMP-2 but promoted the transcripts of CREB3L3, DDX3X, and PROX1 in both cells. Some significant differences between the cells in response to silibinin were detected that might be related to the differences of the cells in terms of HBV infection and/or P53 mutation, suggesting the possible influence of silibinin on HCC through biological functions of these 2 prognostic factors. In conclusion, our findings suggest that silibinin could potentially function as a multitargeting antimetastatic agent and might provide new insights for HCC therapy particularly for HBV-related and/or P53-mutated HCCs.
Collapse
Affiliation(s)
- Reza Ghasemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2013; 11:25-40. [PMID: 23954947 DOI: 10.1038/cmi.2013.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.
Collapse
|
45
|
Gene expression signature of human HepG2 cell line. Gene 2013; 518:335-45. [DOI: 10.1016/j.gene.2012.12.106] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 01/12/2023]
|
46
|
Manu KA, Shanmugam MK, Ong TH, Subramaniam A, Siveen KS, Perumal E, Samy RP, Bist P, Lim LHK, Kumar AP, Hui KM, Sethi G. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One 2013; 8:e57015. [PMID: 23472074 PMCID: PMC3589458 DOI: 10.1371/journal.pone.0057015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/21/2013] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tina H. Ong
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Molecular Toxicology Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kodappully Sivaraman Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ekambaram Perumal
- Molecular Toxicology Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ramar Perumal Samy
- Infectious Diseases Programme, Department of Microbiology, National University of Singapore, Singapore, Singapore
| | - Pradeep Bist
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Immunology Program, National University of Singapore, Singapore, Singapore
| | - Lina H. K. Lim
- Infectious Diseases Programme, Department of Microbiology, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Western Australia
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Kam M. Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des 2012; 18:2404-15. [PMID: 22372501 DOI: 10.2174/13816128112092404] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that the interaction between the cancer and the stroma, play a key role in the development of pancreatic cancer. The desmoplasia, which consists of fibroblasts, pancreatic stellate cells, lymphatic and vascular endothelial cells, immune cells, pathologic increased nerves, and the extracellular matrix (ECM), creates a complex tumor microenvironment that promotes pancreatic cancer development, invasion, metastasis, and resistance to chemotherapy. Thus, the potential approach for targeting the components of this desmoplastic reaction or the pancreatic tumor microenvironment might represent a novel therapeutic approach to advanced pancreatic carcinoma. Novel therapies that target on the pancreatic tumor microenvironment should become one of the more effective treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Xuqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
48
|
Zhou Z, Lu X, Zhu P, Zhu W, Mu X, Qu R, Li M. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun 2012; 420:336-42. [DOI: 10.1016/j.bbrc.2012.02.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 02/29/2012] [Indexed: 01/05/2023]
|
49
|
Anson M, Crain-Denoyelle AM, Baud V, Chereau F, Gougelet A, Terris B, Yamagoe S, Colnot S, Viguier M, Perret C, Couty JP. Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Invest 2012; 122:586-99. [PMID: 22251704 DOI: 10.1172/jci43937] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Its pathogenesis is frequently linked to liver inflammation. Gain-of-function mutations in the gene encoding β-catenin are frequent genetic modifications found in human HCCs. Thus, we investigated whether inflammation was a component of β-catenin-induced tumorigenesis using genetically modified mouse models that recapitulated the stages of initiation and progression of this tumoral process. Oncogenic β-catenin signaling was found to induce an inflammatory program in hepatocytes that involved direct transcriptional control by β-catenin and activation of the NF-κB pathway. This led to a specific inflammatory response, the intensity of which determined the degree of tumor aggressiveness. The chemokine-like chemotactic factor leukocyte cell-derived chemotaxin 2 (LECT2) and invariant NKT (iNKT) cells were identified as key interconnected effectors of liver β-catenin-induced inflammation. In genetic deletion models lacking the gene encoding LECT2 or iNKT cells, hepatic β-catenin signaling triggered the formation of highly malignant HCCs with lung metastasis. Thus, our results identify inflammation as a key player in β-catenin-induced liver tumorigenesis. We provide strong evidence that, by activating pro- and antiinflammatory mediators, β-catenin signaling produces an inflammatory microenvironment that has an impact on tumoral development. Our data are consistent with the fact that most β-catenin-activated HCCs are of better prognosis.
Collapse
Affiliation(s)
- Marie Anson
- INSERM, U1016, Institut Cochin, Paris, France. 2CNRS, UMR8104, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Circulating tumor cells measurements in hepatocellular carcinoma. Int J Hepatol 2012; 2012:684802. [PMID: 22690340 PMCID: PMC3368319 DOI: 10.1155/2012/684802] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/24/2012] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.
Collapse
|