1
|
He J, Wang Z, Ao C, Tu C, Zhang Y, Chang C, Xiao C, Xiang E, Rao W, Li C, Wu D. A highly sensitive and specific Homo1-based real-time qPCR method for quantification of human umbilical cord mesenchymal stem cells in rats. Biotechnol J 2024; 19:e2300484. [PMID: 38403446 DOI: 10.1002/biot.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo. METHODS We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats. RESULTS We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats. CONCLUSIONS In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhangfan Wang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cuihong Xiao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - E Xiang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
2
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yu F, Abdelwahid E, Xu T, Hu L, Wang M, Li Y, Mogharbel BF, de Carvalho KAT, Guarita-Souza LC, An Y, Li P. The role of mitochondrial fusion and fission in the process of cardiac oxidative stress. Histol Histopathol 2019; 35:541-552. [PMID: 31820815 DOI: 10.14670/hh-18-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the energy suppliers in the cell and undergo constant fusion and fission to meet metabolic demand during the cell life cycle. Well-balanced mitochondrial dynamics are extremely important and necessary for cell survival as well as for tissue homeostasis. Cardiomyocytes contain large numbers of mitochondria to satisfy the high energy demand. It has been established that deregulated processes of mitochondrial dynamics play a major role in myocardial cell death. Currently, cardiac mitochondrial cell death pathways attract great attention in the cell biology and regenerative medicine fields. Importantly, mitochondrial dynamics are tightly linked to oxidative stress-induced cardiac damage. This review summarizes molecular mechanisms of mitochondrial fusion and fission processes and their potential roles in myocardial cell death triggered by oxidative stress. Advances in understanding the effect of both normal and abnormal mitochondrial dynamics on heart protection will lead to significant improvement of therapeutic discoveries.
Collapse
Affiliation(s)
- Fei Yu
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA.
| | - Tao Xu
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Longgang Hu
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yuzhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Bassam Felipe Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | | | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Yi An
- Department of cardiology, Affiliated hospital of Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translation Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Mesenchymal Stem Cells Ameliorate Hepatic Ischemia/Reperfusion Injury via Inhibition of Neutrophil Recruitment. J Immunol Res 2018; 2018:7283703. [PMID: 30622980 PMCID: PMC6304871 DOI: 10.1155/2018/7283703] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/23/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a major problem in organ transplantation, which represents the main cause of graft dysfunction posttransplantation. Hepatic IRI is characterized by an excessive inflammatory response within the liver. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory cells and have the therapeutic action on IRI in several organs. However, the mechanism of regulatory effect of MSCs on IRI remains unclear. In the present study, we examined the impact of MSCs on hepatic inflammatory response such as neutrophil influx and liver damage in a rat model of 70% hepatic IRI. Treatment with MSCs protected rat against hepatic IRI, with significantly decreased serum levels of liver enzymes, attenuated hepatic neutrophil infiltration, reduced expression of apoptosis-associated proteins, and ameliorated liver pathological injury. MSCs also significantly enhanced the intracellular activation of p38 MAPK phosphorylation, which led to decreased expression of CXCR2 on the surface of neutrophils. In addition, MSCs significantly diminished neutrophil chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation in macrophages. These results demonstrate that MSCs significantly ameliorate hepatic IRI predominantly through its inhibitory effect on hepatic neutrophil migration and infiltration.
Collapse
|
5
|
Newell C, Sabouny R, Hittel DS, Shutt TE, Khan A, Klein MS, Shearer J. Mesenchymal Stem Cells Shift Mitochondrial Dynamics and Enhance Oxidative Phosphorylation in Recipient Cells. Front Physiol 2018; 9:1572. [PMID: 30555336 PMCID: PMC6282049 DOI: 10.3389/fphys.2018.01572] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the most commonly used cells in tissue engineering and regenerative medicine. MSCs can promote host tissue repair through several different mechanisms including donor cell engraftment, release of cell signaling factors, and the transfer of healthy organelles to the host. In the present study, we examine the specific impacts of MSCs on mitochondrial morphology and function in host tissues. Employing in vitro cell culture of inherited mitochondrial disease and an in vivo animal experimental model of low-grade inflammation (high fat feeding), we show human-derived MSCs to alter mitochondrial function. MSC co-culture with skin fibroblasts from mitochondrial disease patients rescued aberrant mitochondrial morphology from a fission state to a more fused appearance indicating an effect of MSC co-culture on host cell mitochondrial network formation. In vivo experiments confirmed mitochondrial abundance and mitochondrial oxygen consumption rates were elevated in host tissues following MSC treatment. Furthermore, microarray profiling identified 226 genes with differential expression in the liver of animals treated with MSC, with cellular signaling, and actin cytoskeleton regulation as key upregulated processes. Collectively, our data indicate that MSC therapy rescues impaired mitochondrial morphology, enhances host metabolic capacity, and induces widespread host gene shifting. These results highlight the potential of MSCs to modulate mitochondria in both inherited and pathological disease states.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dustin S Hittel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthias S Klein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Jane Shearer
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC, Shi XL. Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther 2017; 8:70. [PMID: 28320485 PMCID: PMC5359839 DOI: 10.1186/s13287-017-0524-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/07/2017] [Accepted: 02/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been studied for the treatment of acute liver failure (ALF) for several years. MSCs may exert their effect via complex paracrine mechanisms. Heme oxygenase (HO) 1, a rate-limiting enzyme in heme metabolism, exerts a wide range of anti-inflammatory, anti-apoptotic and immunoregulatory effects in a variety of diseases. However, the relationship between MSCs and HO-1 in the treatment of ALF is still unclear. We investigated the preventive and therapeutic potential of intravenously administered BMSCs. METHODS Bone marrow-derived mesenchymal stem cells (BMSCs) obtained from Sprague-Dawley rats were isolated and cultured. We employed BMSCs, hemin (a HO-1 inducer) and zinc protoporphyrin (ZnPP, the HO-1 activity inhibitor) in D-galactosamine (D-Gal)/lipopolysaccharides (LPS)-induced ALF rats. Rats were sacrificed at days 1, 3, 5, and 7 post-transfusion, respectively. Blood samples and liver tissues were collected. Hepatic injury, HO-1 activity, chemokines, inflammatory cytokines, the number and oxidative activity of neutrophils, ki67, and TUNEL-positive cells were evaluated. RESULTS HO-1 induction or BMSCs transplantation attenuated D-galactosamine/lipopolysaccharide-induced increases in alanine aminotransferase, aspartate aminotransferase, total bilirubin (TBIL), ammonia, and inflammatory cytokines. Treatment with hemin or BMSCs also inhibited neutrophil infiltration, oxidative activity, and hepatocyte apoptosis. The protective effect of BMSCs was partially neutralized by ZnPP, suggesting the key role of HO-1 in the process. CONCLUSIONS These findings may correlate with inhibition of nuclear factor-κ B activation. BMSCs ameliorated ALF by increasing the HO-1 expression, which reduced PMN infiltration and function, and played an important anti-inflammatory and anti-apoptotic role. Proposed mechanism by which BMSCs reduce inflammation, neutrophil activation, and hepatocyte apoptosis and promote hepatocyte proliferation via HO-1. BMSCs increase HO-1 expression in liver via Nrf2. HO-1 protects against LPS/D-Gal-induced ALF by inhibiting neutrophil infiltration and inflammatory burst, and hepatocyte apoptosis and necrosis. HO-1 also promotes hepatocyte proliferation.
Collapse
Affiliation(s)
- Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Hu-Cheng Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
7
|
Molecular Imaging of Stem Cell Transplantation for Liver Diseases: Monitoring, Clinical Translation, and Theranostics. Stem Cells Int 2016; 2016:4058656. [PMID: 28070195 PMCID: PMC5192340 DOI: 10.1155/2016/4058656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation has been investigated to rescue experimental liver failure and is promising to offer an alternative therapy to liver transplantation for liver diseases treatment. Several clinical studies in this field have been carried out, but the therapeutic benefit of this treatment is still controversial. A major obstacle to developing stem cell therapies in clinic is being able to visualize the cells in vivo. Imaging modalities allow optimization of delivery, detecting cell survival and functionality by in vivo monitoring these transplanted graft cells. Moreover, theranostic imaging is a brand new field that utilizes nanometer-scale materials to glean diagnostic insight for simultaneous treatment, which is very promising to improve stem cell-based therapy for treatment of liver diseases. The aim of this review was to summarize the various imaging tools that have been explored with advanced molecular imaging probes. We also outline some recent progress of preclinical and clinical studies of liver stem cells transplantation. Finally, we discuss theranostic imaging for stem cells transplantation for liver dysfunction and future opportunities afforded by theranostic imaging.
Collapse
|
8
|
Sang JF, Shi XL, Han B, Huang T, Huang X, Ren HZ, Ding YT. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat Dis Int 2016; 15:602-611. [PMID: 27919849 DOI: 10.1016/s1499-3872(16)60141-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs transplantation route in a swine ALF model. METHODS The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), peripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs transplantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS The average survival time of each group was 10.7+/-1.6 days (InP), 6.0+/-0.9 days (AH), 4.7+/-1.4 days (PV), 4.3+/-0.8 days (IH), respectively, when compared with the average survival time of 3.8+/-0.8 days in the D-Gal group. The survival rates between the InP group and D-Gal group revealed a statistically significant difference (P<0.01). Pathological and biochemical analysis showed that liver damage was the worst in the D-Gal group, while less injury in the InP group. Histopathological scores revealed a significant decrease in the InP group (3.17+/-1.04, P<0.01) and AH group (8.17+/-0.76, P<0.05) as compared with that in the D-Gal group (11.50+/-1.32). The apoptosis rate in the InP group (25.0%+/-3.4%, P<0.01) and AH group (40.5%+/-1.0%, P<0.05) was lower than that in the D-Gal group (70.6%+/-8.5%). The expression of active caspase-3 was inhibited, while the expression of survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) was elevated in the InP group. CONCLUSIONS Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC transplantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.
Collapse
Affiliation(s)
- Jian-Feng Sang
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Heissig B, Dhahri D, Eiamboonsert S, Salama Y, Shimazu H, Munakata S, Hattori K. Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cell Mol Life Sci 2015; 72:4759-70. [PMID: 26350342 PMCID: PMC11113371 DOI: 10.1007/s00018-015-2035-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Tissue regeneration during wound healing or cancer growth and progression depends on the establishment of a cellular microenvironment. Mesenchymal stem cells (MSC) are part of this cellular microenvironment, where they functionally modulate cell homing, angiogenesis, and immune modulation. MSC recruitment involves detachment of these cells from their niche, and finally MSC migration into their preferred niches; the wounded area, the tumor bed, and the BM, just to name a few. During this recruitment phase, focal proteolysis disrupts the extracellular matrix (ECM) architecture, breaks cell-matrix interactions with receptors, and integrins, and causes the release of bioactive fragments from ECM molecules. MSC produce a broad array of proteases, promoting remodeling of the surrounding ECM through proteolytic mechanisms. The fibrinolytic system, with its main player plasmin, plays a crucial role in cell migration, growth factor bioavailability, and the regulation of other protease systems during inflammation, tissue regeneration, and cancer. Key components of the fibrinolytic cascade, including the urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1), are expressed in MSC. This review will introduce general functional properties of the fibrinolytic system, which go beyond its known function of fibrin clot dissolution (fibrinolysis). We will focus on the role of the fibrinolytic system for MSC biology, summarizing our current understanding of the role of the fibrinolytic system for MSC recruitment and the functional consequences for tissue regeneration and cancer. Aspects of MSC origin, maintenance, and the mechanisms by which these cells contribute to altered protease activity in the microenvironment under normal and pathological conditions will also be discussed.
Collapse
Affiliation(s)
- Beate Heissig
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Atopy (Allergy) Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Douaa Dhahri
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Salita Eiamboonsert
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yousef Salama
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Shimazu
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shinya Munakata
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Koichi Hattori
- Division of Stem Cell Regulation, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Center for Genome and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
10
|
Abouzaripour M, Ragerdi Kashani I, Pasbakhsh P, Atlasy N. Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus. Avicenna J Med Biotechnol 2015; 7:22-31. [PMID: 25926949 PMCID: PMC4388887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/01/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), simply known as diabetes, refers to a group of metabolic diseases in which there are high blood sugar levels over a prolonged period. In this study, the feasibility and safety of intravenous transplantation of Very Small Embryonic Like stem cells (VSELs) were investigated for diabetes repair, and finally the migration and distribution of these cells in hosts were observed. METHODS Mouse bone marrow VSELs were isolated by Fluorescent Activating Cell Sorting (FACS) method by using fluorescent antibodies against CD45, CXCR4 and Sca1 markers. Sorted cells were analyzed for expression of oct4 and SSEA1 markers with immunocytochemistry staining method. To determine multilineage differentiation, sorted cells were differentiated to Schwann, osteocyte and beta cells. Ten days after the establishment of a mouse model of pancreas necrosis, DiI-labeled VSELs were injected into these mice via tail vein. Pancreases were harvested 4 weeks after transplantation and the sections of these tissues were observed under fluorescent microscope. RESULTS It was proved that CD45-, CXCR4+, and Sca1+ sorted cells express oct4 and SSEA1. Our results revealed that intravenously implanted VSELs could migrate into the pancreas of hosts and survive in the diabetic pancreas. In treated groups, blood glucose decreased significantly for at least two month and the weights of mice increased gradually. CONCLUSION This study provides a strategy for using VSELs for curing diabetes and other regenerative diseases, and the strategy is considered an alternative for other stem cell types.
Collapse
Affiliation(s)
| | - Iraj Ragerdi Kashani
- Corresponding author: Iraj Ragerdi Kashani, Ph.D., Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98 9127019141, Fax: +98 21 66419072. E-mail:
| | | | | |
Collapse
|
11
|
Fan J, Tan Y, Jie L, Wu X, Yu R, Zhang M. Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells. Stem Cell Res Ther 2013; 4:44. [PMID: 23618360 PMCID: PMC3706947 DOI: 10.1186/scrt191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 04/12/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction No comparative study of adipose-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) by using superparamagnetic iron oxide nanoparticles (SPIOs)-labeling and magnetic resonance imaging (MRI) has been performed. Methods We studied the biological activity and MRI of ADSCs by labeling them with SPIOs and comparing them with BMSCs. After incubating the cells in culture medium with different levels of SPIOs (control group: 0 μg/ml; Groups 1 to 3: 25, 50, and 100 μg/ml) for 24 hours, we compared ADSCs with BMSCs in terms of intracellular iron content, labeling efficiency, and cell viability. Stem cells in the culture medium containing 50 μg/ml SPIOs were induced into osteoblasts and fat cells. Adipogenic and osteogenic differentiation potentials were compared. R2* values of MRI in vitro were compared. Results The results showed that labeling efficiency was highest in Group 2. Intracellular iron content and R2* values increased with increasing concentrations of SPIOs, whereas cell viability decreased with increasing concentrations of SPIOs, and adipogenic and osteogenic differentiation potentials decreased. However, we found no significant difference between the two kinds of cells for any of these indexes. Conclusions ADSCs can be labeled and traced as easily as BMSCs in vitro. Given their abundance and higher proliferative capacity, as was previously shown, ADSCs may be better suited to stem cell therapy than are BMSCs.
Collapse
|
12
|
Puppi J, Modo M, Dhawan A, Lehec SC, Mitry RR, Hughes RD. Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant 2013; 23:329-43. [PMID: 23394812 DOI: 10.3727/096368913x663596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte transplantation is being evaluated as an alternative to liver transplantation. However, the fate of hepatocytes after transplantation is not well defined. The aims of the study were to improve hepatocyte labeling in vitro using superparamagnetic iron oxide nanoparticles (SPIOs) and to perform in vivo experiments on tracking labeled cells by magnetic resonance imaging (MRI). Human and rat hepatocytes were labeled in vitro for 16 h with clinically approved SPIOs (12.5 µg Fe/ml) and protamine sulfate (3 µg/ml) as a transfection agent. Increased cellular iron uptake was obtained, and cell viability and function were shown not to be affected by labeling. Labeled cells (2,000/µl) could be detected on T2-weighted images in vitro using a 7T MR scanner. In a rat model of acute liver failure (ALF), female recipients received intrasplenic transplantation of 2 × 10(7) male rat hepatocytes 28-30 h after intraperitoneal injection of d-galactosamine (1.2 g/kg). There were four groups (n = 4 each): vehicle injection, injection of freshly isolated cells labeled with CM-DiI, injection of cultured cells labeled with CM-DiI, and injection of cultured cells labeled with both SPIOs and CM-DiI. Ex vivo T2*-weighted gradient-echo images at 7T MRI were acquired at day 7 post-ALF induction. Six days after transplantation, SPIOs were detected in the rat liver as a decrease in the MRI signal intensity in the surviving animals. Histologically, most of the SPIOs were located in Kupffer cells, indicating clearance of labeled hepatocytes. Furthermore, labeled cells could not be detected in the liver by the fluorescent dye or by PCR for the Y-chromosome (Sry-2 gene). In conclusion, optimum conditions to label human hepatocytes with SPIOs were established and did not affect cell viability or metabolic function and were sufficient for in vitro MRI detection. However, the clearance of hepatocytes after transplantation limits the value of MRI for assessing long-term hepatocyte engraftment.
Collapse
Affiliation(s)
- Juliana Puppi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Raschzok N, Morgül MH, Stelter L, Sauer IM. Noninvasive monitoring of liver cell transplantation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
SONG KAI, WU JUNHUA, JIANG CHUNPING. Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells (Review). Oncol Rep 2012; 29:3-12. [DOI: 10.3892/or.2012.2082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023] Open
|
15
|
Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 2012; 3:297. [PMID: 23056000 PMCID: PMC3458305 DOI: 10.3389/fimmu.2012.00297] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/07/2012] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSC) are under investigation as a therapy for a variety of disorders. Although animal models show long term regenerative and immunomodulatory effects of MSC, the fate of MSC after infusion remains to be elucidated. In the present study the localization and viability of MSC was examined by isolation and re-culture of intravenously infused MSC. C57BL/6 MSC (500,000) constitutively expressing DsRed-fluorescent protein and radioactively labeled with Cr-51 were infused via the tail vein in wild-type C57BL/6 mice. After 5 min, 1, 24, or 72 h, mice were sacrificed and blood, lungs, liver, spleen, kidneys, and bone marrow removed. One hour after MSC infusion the majority of Cr-51 was found in the lungs, whereas after 24 h Cr-51 was mainly found in the liver. Tissue cultures demonstrated that viable donor MSC were present in the lungs up to 24 h after infusion, after which they disappeared. No viable MSC were found in the other organs examined at any time. The induction of ischemia-reperfusion injury in the liver did not trigger the migration of viable MSC to the liver. These results demonstrate that MSC are short-lived after i.v. infusion and that viable MSC do not pass the lungs. Cell debris may be transported to the liver. Long term immunomodulatory and regenerative effects of infused MSC must therefore be mediated via other cell types.
Collapse
Affiliation(s)
- E Eggenhofer
- Department of Surgery, University Medical Center Regensburg Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Christ B, Stock P. Mesenchymal stem cell-derived hepatocytes for functional liver replacement. Front Immunol 2012; 3:168. [PMID: 22737154 PMCID: PMC3381218 DOI: 10.3389/fimmu.2012.00168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells represent an alternate cell source to substitute for primary hepatocytes in hepatocyte transplantation because of their multiple differentiation potential and nearly unlimited availability. They may differentiate into hepatocyte-like cells in vitro and maintain specific hepatocyte functions also after transplantation into the regenerating livers of mice or rats both under injury and non-injury conditions. Depending on the underlying liver disease their mode of action is either to replace the diseased liver tissue or to support liver regeneration through their anti-inflammatory and anti-apoptotic as well as their pro-proliferative action.
Collapse
Affiliation(s)
- Bruno Christ
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig Leipzig, Germany
| | | |
Collapse
|
17
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
18
|
Engela AU, Baan CC, Dor FJMF, Weimar W, Hoogduijn MJ. On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front Immunol 2012; 3:126. [PMID: 22629256 PMCID: PMC3355477 DOI: 10.3389/fimmu.2012.00126] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022] Open
Abstract
Experimental studies have established the use of mesenchymal stem cells (MSC) as a candidate immunosuppressive therapy. MSC exert their immunomodulatory function through the inhibition of CD4+ and CD8+ T cell proliferation. It is unknown whether MSC impair the immunosuppressive function of regulatory T cells (Treg). In vitro and in vivo studies suggest that MSC mediate their immunomodulatory effects through the induction of Treg. In this review we will focus on the interactions between MSC and Treg, and evaluate the consequences of these cellular interplays for prospective MSC immunotherapy in organ transplantation.
Collapse
Affiliation(s)
- Anja U Engela
- Transplantation Laboratory, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
19
|
Shen B, Kezheng W, Xilin S, Lina W. Development of molecular imaging and nanomedicine in China. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:533-44. [PMID: 21850712 DOI: 10.1002/wnan.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid progress of molecular imaging (MI) and the application of nanotechnology in medicine have the potential to advance the foundations of diagnosis, treatment, and prevention of diseases. Although MI and biomedical nanotechnology are still in a formative phase in China, much has been achieved over the last decade. This article provides a commentary on the development and current status of nanomedicine in China, with a selective focus on Chinese nanoparticle synthesis technology, the development of imaging equipment, and the preclinical application of novel MI probes.
Collapse
Affiliation(s)
- Baozhong Shen
- Molecular Imaging Center, Department of Radiology, Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China. ,
| | | | | | | |
Collapse
|
20
|
Li ZH, Liao W, Cui XL, Zhao Q, Liu M, Chen YH, Liu TS, Liu NL, Wang F, Yi Y, Shao NS. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 2011; 8:74-83. [PMID: 21234272 PMCID: PMC3020395 DOI: 10.7150/ijms.8.74] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/01/2011] [Indexed: 01/06/2023] Open
Abstract
In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.
Collapse
Affiliation(s)
- Zhang-hua Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Raschzok N, Teichgräber U, Billecke N, Zielinski A, Steinz K, Kammer NN, Morgul MH, Schmeisser S, Adonopoulou MK, Morawietz L, Hiebl B, Schwartlander R, Rüdinger W, Hamm B, Neuhaus P, Sauer IM. Monitoring of Liver Cell Transplantation in a Preclinical Swine Model Using Magnetic Resonance Imaging. CELL MEDICINE 2010; 1:123-35. [PMID: 27004132 DOI: 10.3727/215517910x551053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver cell transplantation (LCT) is a promising treatment approach for certain liver diseases, but clinical implementation requires methods for noninvasive follow-up. Labeling with superparamagnetic iron oxide particles can enable the detection of cells with magnetic resonance imaging (MRI). We investigated the feasibility of monitoring transplanted liver cells by MRI in a preclinical swine model and used this approach to evaluate different routes for cell application. Liver cells were isolated from landrace piglets and labeled with micron-sized iron oxide particles (MPIO) in adhesion. Labeled cells (n = 10), native cells (n = 3), or pure particles (n = 4) were transplanted to minipigs via intraportal infusion into the liver, direct injection into the splenic parenchyma, or intra-arterial infusion to the spleen. Recipients were investigated by repeated 3.0 Tesla MRI and computed tomography angiography up to 8 weeks after transplantation. Labeling with MPIO, which are known to have a strong effect on the magnetic field, enabled noninvasive detection of cell aggregates by MRI. Following intraportal application, which is commonly applied for clinical LCT, MRI was able to visualize the microembolization of transplanted cells in the liver that were not detected by conventional imaging modalities. Cells directly injected into the spleen were retained, whereas cell infusions intra-arterially into the spleen led to translocation and engraftment of transplanted cells in the liver, with significantly fewer microembolisms compared to intraportal application. These findings demonstrate that MRI can be a valuable tool for noninvasive elucidation of cellular processes of LCT and-if clinically applicable MPIO are available-for monitoring of LCT under clinical conditions. Moreover, the results clarify mechanisms relevant for clinical practice of LCT, suggesting that the intra-arterial route to the spleen deserves further evaluation.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Ulf Teichgräber
- † Radiology, Charité-Campus Mitte, Universitätsmedizin Berlin , Berlin , Germany
| | - Nils Billecke
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Anja Zielinski
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Kirsten Steinz
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Nora N Kammer
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Mehmet H Morgul
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany; ‡Visceral, Transplantation, Thorax, and Vascular Surgery, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Sarah Schmeisser
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Michaela K Adonopoulou
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Lars Morawietz
- § Institute of Pathology, Charité-Campus Mitte, Universitätsmedizin Berlin , Berlin , Germany
| | - Bernhard Hiebl
- ¶ Centre for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Institute for Polymer Research, GKSS Research Centre Geesthacht GmbH , Teltow , Germany
| | | | | | - Bernd Hamm
- † Radiology, Charité-Campus Mitte, Universitätsmedizin Berlin , Berlin , Germany
| | - Peter Neuhaus
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|