Du QW, Xiao F, Zheng L, Chen RD, Dong LN, Liu FY, Cheng ZG, Yu J, Liang P. Importance of the enhanced cooling system for more spherical ablation zones: Numerical simulation, ex vivo and in vivo validation.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024;
257:108383. [PMID:
39260163 DOI:
10.1016/j.cmpb.2024.108383]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION
This study aimed to investigate the efficacy of a small-gauge microwave ablation antenna (MWA) with an enhanced cooling system (ECS) for generating more spherical ablation zones.
METHODS
A comparison was made between two types of microwave ablation antennas, one with ECS and the other with a conventional cooling system (CCS). The finite element method was used to simulate in vivo ablation. Two types of antennas were used to create MWA zones for 5, 8, 10 min at 50, 60, and 80 W in ex vivo bovine livers (n = 6) and 5 min at 60 W in vivo porcine livers (n = 16). The overtreatment ratio, ablation aspect ratio, carbonization area, and other characteristcs of antennas were measured and compared using numerical simulation and gross pathologic examination.
RESULTS
In numerical simulation, the ECS antenna demonstrated a lower overtreatment ratio than the CCS antenna (1.38 vs 1.43 at 50 W 5 min, 1.19 vs 1.35 at 50 W 8 min, 1.13 vs 1.32 at 50 W 10 min, 1.28 vs 1.38 at 60 W 5 min, 1.14 vs 1.32 at 60 W 8 min, 1.10 vs 1.30 at 60 W 10 min). The experiments revealed that the ECS antenna generated ablation zones with a more significant aspect ratio (0.92 ± 0.03 vs 0.72 ± 0.01 at 50 W 5 min, 0.95 ± 0.02 vs 0.70 ± 0.01 at 50 W 8 min, 0.96 ± 0.01 vs 0.71 ± 0.04 at 50 W 10 min, 0.96 ± 0.01 vs 0.73 ± 0.02 at 60 W 5 min, 0.94 ± 0.03 vs 0.71 ± 0.03 at 60 W 8 min, 0.96 ± 0.02 vs 0.69 ± 0.04 at 60 W 10 min) and a smaller carbonization area (0.00 ± 0.00 cm2 vs 0.54 ± 0.06 cm2 at 50 W 5 min, 0.13 ± 0.03 cm2 vs 0.61 ± 0.09 cm2 at 50 W 8 min, 0.23 ± 0.05 cm2 vs 0.73 ± 0.05 m2 at 50 W 10 min, 0.00 ± 0.00 cm2 vs 1.59 ± 0.41 cm2 at 60 W 5 min, 0.23 ± 0.22 cm2 vs 2.11 ± 0.63 cm2 at 60 W 8 min, 0.57 ± 0.09 cm2 vs 2.55 ± 0.51 cm2 at 60 W 10 min). Intraoperative ultrasound images revealed a hypoechoic area instead of a hyperechoic area near the antenna. Hematoxylin-eosin staining of the dissected tissue revealed a correlation between the edge of the ablation zone and that of the hypoechoic area.
CONCLUSIONS
The ECS antenna can produce more spherical ablation zones with less charring and a clearer intraoperative ultrasound image of the ablation area than the CCS antenna.
Collapse