1
|
Jin R, Ning X, Liu X, Zhao Y, Ye G. Porphyromonas gingivalis-induced periodontitis could contribute to cognitive impairment in Sprague–Dawley rats via the P38 MAPK signaling pathway. Front Cell Neurosci 2023; 17:1141339. [PMID: 37056710 PMCID: PMC10086325 DOI: 10.3389/fncel.2023.1141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPeriodontitis is one of the most common oral diseases and has been shown to be a risk factor for systemic diseases. Our aim was to investigate the relationship between periodontitis and cognitive impairment and to explore the role of the P38 MAPK signaling pathway in this process.MethodsWe established a periodontitis model by ligating the first molars of SD rats with silk thread and injecting Porphyromonas gingivalis (P. gingivalis) or P. gingivalis plus the P38 MAPK inhibitor SB203580 at the same time for ten weeks. We assessed alveolar bone resorption and spatial learning and memory using microcomputed tomography and the Morris water maze test, respectively. We used transcriptome sequencing to explore the genetic differences between the groups. The gingival tissue, peripheral blood and hippocampal tissue were assessed for the cytokines TNF-α, IL-1β, IL-6, IL-8 and C reactive protein (CRP) with enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT–PCR). We observed the presence of P. gingivalis in the hippocampus of rats by paraffin-fluorescence in situ hybridization (FISH). We determined the activation of microglia by immunofluorescence. Finally, Western blot analysis was employed to determine the expression of amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1) and P38MAPK pathway activation.ResultsWe demonstrated that silk ligature-induced periodontitis plus injection of P. gingivalis into subgingival tissue could lead to memory and cognitive impairment. Transcriptome sequencing results suggested that there were neurodegenerative diseases in the P. gingivalis group, and the MWM test showed that periodontitis reduced the spatial learning and memory ability of mild cognitive impairment (MCI) model rats. We found high levels of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) and CRP in the gingiva, peripheral blood and hippocampus, and the expression of APP and BACE1 was upregulated, as was the P38 MAPK pathway activation. Activated microglia and the presence of P. gingivalis were also found in the hippocampus. P38 MAPK inhibitors mitigated all of these changes.ConclusionOur findings strongly suggest that topical application of P. gingivalis increases the inflammatory burden in the peripheral and central nervous systems (CNS) and that neuroinflammation induced by activation of P38 MAPK leads to impaired learning and memory in SD rats. It can also modulate APP processing. Therefore, P38 MAPK may serve as a linking pathway between periodontitis and cognitive impairment.
Collapse
Affiliation(s)
- Ru Jin
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Ning
- The First People’s Hospital of Wanzhou, Chongqing, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Guo Ye
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Guo Ye,
| |
Collapse
|
2
|
Hepcidin in hepatocellular carcinoma. Br J Cancer 2022; 127:185-192. [PMID: 35264787 PMCID: PMC9296449 DOI: 10.1038/s41416-022-01753-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common reasons for cancer-related deaths. Excess iron increases HCC risk. Inevitably, hepcidin, the iron hormone that maintains systemic iron homoeostasis is involved in HCC pathology. Distinct from other cancers that show high hepcidin expression, HCC patients can show low hepcidin levels. Thus, it is of immense clinical benefit to address the regulation and action of hepcidin in HCC as this may help in identifying molecular targets for diagnosis, prognosis, and therapeutics. Accordingly, this review explores hepcidin in HCC. It presents the levels of tissue and serum hepcidin and explains the mechanisms that contribute to hepcidin reduction in HCC. These include downregulation of HAMP, TfR2, HJV, ALK2 and circular RNA circ_0004913, upregulation of matriptase-2 and GDF15, inactivation of RUNX3 and mutation in TP53. The enigmas around mir-122 and the functionalities of two major hepcidin inducers BMP6 and IL6 in relation to hepcidin in HCC are discussed. Effects of hepcidin downregulation are explained, specifically, increased cancer proliferation via activation of CDK1/STAT3 pathway and increased HCC risk due to reduction in a hepcidin-mediated protective effect against hepatic stellate cell activation. Hepcidin–ferroportin axis in HCC is addressed. Finally, the role of hepcidin in the diagnosis, prognosis and therapeutics of HCC is highlighted.
Collapse
|
3
|
Shimamoto Y, Niimi K, Kitamura H, Tsubakishita S, Takahashi E. In situ hybridization study of CYP2D mRNA in the common marmoset brain. Exp Anim 2016; 65:465-471. [PMID: 27356856 PMCID: PMC5111850 DOI: 10.1538/expanim.16-0045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The common marmoset is a non-human primate that has increasingly employed in the
biomedical research including the fields of neuroscience and behavioral studies.
Cytochrome P450 (CYP) 2D has been speculated to be involved in psycho-neurologic actions
in the human brain. In the present study, to clarify the role of CYP2D in the marmoset
brain, we investigated the expression patterns of CYP2D mRNA in the brain
using in situ hybridization (ISH). In addition, to identify the gene
location of CYP2D19, a well-studied CYP2D isoform in the common marmoset,
a fluorescence in situ hybridization (FISH) study was performed.
Consistent with findings for the human brain, CYP2D mRNA was localized in
the neuronal cells of different brain regions; e.g., the cerebral cortex, hippocampus,
substantia nigra, and cerebellum. FISH analysis showed that the CYP2D19
gene was located on chromosome 1q, which is homologous to human chromosome 22 on which the
CYP2D6 gene exists. These results suggest that CYP2D in the marmoset
brain may play the same role as human CYP2D6 in terms of brain actions, and that the
CYP2D19 gene is conserved in a syntenic manner. Taken together, these
findings suggest that the common marmoset is a useful model for studying psychiatric
disorders related to CYP2D dysfunction in the brain.
Collapse
Affiliation(s)
- Yoshinori Shimamoto
- Laboratory of Animal Therapeutics, Department of Veterinary Science, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|
4
|
Kim TY, Maki T, Zhou Y, Sakai K, Mizuno Y, Ishikawa A, Tanaka R, Niimi K, Li W, Nagano N, Takahashi E. Absence-like seizures and their pharmacological profile in tottering-6j mice. Biochem Biophys Res Commun 2015; 463:148-53. [PMID: 26002462 DOI: 10.1016/j.bbrc.2015.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
We previously showed that recessive ataxic tottering-6j mice carried a base substitution (C-to-A) in the consensus splice acceptor sequence linked to exon 5 of the α1 subunit of the Cav2.1 channel gene (Cacna1a), resulting in the skipping of exon 5 and deletion of part of the S4-S5 linker, S5, and part of the S5-S6 linker in domain I of the α1 subunit of the Cav2.1 channel. However, the electrophysiological and pharmacological consequences of this mutation have not previously been investigated. Upon whole-cell patch recording of the recombinant Cav2.1 channel in heterologous reconstitution expression systems, the mutant-type channel exhibited a lower recovery time after inactivation of Ca(2+) channel current, without any change in peak current density or the current-voltage relationship. Tottering-6j mice exhibited absence-like seizures, characterized by bilateral and synchronous 5-8 Hz spike-and-wave discharges on cortical and hippocampal electroencephalograms, concomitant with sudden immobility and staring. The pharmacological profile of the seizures was similar to that of human absence epilepsy; the seizures were inhibited by ethosuximide and valproic acid, but not by phenytoin. Thus, the tottering-6j mouse is a useful model for studying Cav2.1 channel functions and Cacna1a-related diseases, including absence epilepsy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Takehiro Maki
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Keita Sakai
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Yuri Mizuno
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Akiyoshi Ishikawa
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Ryo Tanaka
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Kimie Niimi
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Norihiro Nagano
- Sleep Science Laboratories, HAMRI Co. Ltd., Ibaraki, 306-0128, Japan
| | - Eiki Takahashi
- Research Resources Center, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
5
|
Abstract
The classic piebald mutation in the endothelin receptor type B (Ednrb) gene was found on rolling Nagoya genetic background (PROD-s/s) mice with white coat spotting. To examine whether genetic background influenced the phenotype in the piebald mutant mice, we generated a congenic strain (B6.PROD-s/s), produced by repeated backcrosses to the C57BL/6J (B6) strain. Although B6.PROD-s/s mice showed white coat spotting, 7% of B6.PROD-s/s mice died between 2 and 5 weeks after birth due to megacolon. The PROD-s/s, s/s and Japanese fancy mouse 1 (JF1) strains, which also have piebald mutations on different genetic backgrounds with B6, showed only pigmentation defects without megacolon. In expression analyses, rectums of B6.PROD-s/s
with megacolon mice showed ~5% of the level of Ednrb gene expression versus B6 mice. In histological analyses, aganglionosis was detected in the rectum of megacolon animals. The aganglionic rectum was thought to lead to severe constipation and intestinal blockage, resulting in megacolon. We also observed an abnormal intestinal flora, including a marked increase in Bacteroidaceae and Erysipelotrichaceae and a marked decrease in Lactobacillus and Clostridiales, likely inducing endotoxin production and a failure of the mucosal barrier system, leading ultimately to death. These results indicate that the genetic background plays a key role in the development of enteric ganglion neurons, controlled by the Ednrb gene, and that B6 has modifier gene (s) regarding aganglionosis.
Collapse
Affiliation(s)
- Sanae Fukushima
- Research Resources Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | |
Collapse
|
6
|
Kim TY, Yoshimoto T, Aoyama Y, Niimi K, Takahashi E, Itakura C. Age-dependent kainate sensitivity in heterozygous rolling Nagoya Cav2.1 channel mutant mice. Pharmacol Biochem Behav 2014; 124:250-9. [DOI: 10.1016/j.pbb.2014.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
|
7
|
Disordered hepcidin-ferroportin signaling promotes breast cancer growth. Cell Signal 2014; 26:2539-50. [PMID: 25093806 DOI: 10.1016/j.cellsig.2014.07.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Iron homeostasis is strictly governed in mammals; however, disordered iron metabolism (such as excess iron burden) is recognized as a risk factor for various types of diseases including cancers. Burgeoning evidence indicates that the central signaling of iron homeostasis, the hepcidin-ferroportin axis, is misregulated in cancers. Nonetheless, the mechanisms of misregulated expression of iron-related genes along this signaling in cancers remain largely unknown. In the current study, we found increased levels of serum hepcidin in breast cancer patients. Reduction of hepatic hepcidin through administration of heparin restrained tumorigenic properties of breast tumor cells. Mechanistic investigation revealed that increased iron, bone morphogenetic protein-6 (BMP6) and interleukin-6 (IL-6) jointly promoted the synthesis of hepatic hepcidin. Tumor hepcidin expression was marginally increased in breast tumors relative to adjacent tissues. In contrast, tumor ferroportin concentration was greatly reduced in breast tumors, especially in malignant tumors, compared to adjacent tissues. Elevation of ferroportin concentration inhibited cell proliferation in vitro and in vivo by knocking down tumor hepcidin expression. Additionally, increased IL-6 was demonstrated to jointly enhance the tumorigenic effects of iron through enforcing cell growth. Our combined data overall deciphered the machinery that altered the hepcidin-ferroportin signaling in breast cancers. Thus, targeting the hepcidin-ferroportin signaling would represent a promising therapeutics to restrain breast cancer growth.
Collapse
|
8
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
9
|
Yoshimoto T, Aoyama Y, Kim TY, Niimi K, Takahashi E, Itakura C. Rolling Nagoya mouse strain (PROD-rol/rol) with classic piebald mutation. J Vet Med Sci 2014; 76:1093-8. [PMID: 24758835 PMCID: PMC4155188 DOI: 10.1292/jvms.14-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ataxic
rolling Nagoya (PROD-rol/rol) mice,
which carry a mutation in the α1 subunit of the Cav2.1 channel
(Cacna1a) gene, were discovered in 1969. They show white spots on
agouti coat and have a mutation in the piebald spotting (s) locus.
However, mutation analysis of the s locus encoding the endothelin
receptor type B (Ednrb) gene in
PROD-rol/rol mice had not been performed. Here, we
examined the genomic and mRNA sequences of the Ednrb gene in
PROD-rol/rol and wild-type rolling
Nagoya (PROD-s/s) and studied the expression patterns of
Ednrb and Cacna1a genes in these mice in comparison
with C57BL/6J mice. Polymerase chain reaction analyses revealed two silent nucleotide
substitutions in the coding region and insertion of a retroposon-like element in intron 1
of the Ednrb gene. Expression analyses demonstrated similar localizations
and levels of Ednrb and Cacna1a expression in the colon
between PROD-rol/rol and
PROD-s/s mice, but the expression levels of both genes
were diminished compared with C57BL/6J mice. Microsatellite genotyping showed that at
least particular regions of chromosome 14 proximal to the Ednrb locus of
the PROD strain were derived from Japanese fancy piebald mice. These results indicated
that PROD-rol/rol mice have two mutant genes,
Ednrb and Cacna1a. As no PROD strain had an intact
Ednrb gene, using congenic rolling mice would better serve to examine
rolling Nagoya-type Cav2.1 channel dysfunctions.
Collapse
Affiliation(s)
- Takuro Yoshimoto
- Research Resources Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Analysis of ischemic neuronal injury in CaV2.1 channel α1 subunit mutant mice. Biochem Biophys Res Commun 2013; 434:60-4. [DOI: 10.1016/j.bbrc.2013.03.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
|