1
|
Xiang Y, Liu X, Sun Q, Liao K, Liu X, Zhao Z, Feng L, Liu Y, Wang B. The development of cancers research based on mitochondrial heat shock protein 90. Front Oncol 2023; 13:1296456. [PMID: 38098505 PMCID: PMC10720920 DOI: 10.3389/fonc.2023.1296456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial heat shock protein 90 (mtHsp90), including Tumor necrosis factor receptor-associated protein 1 (TRAP1) and Hsp90 translocated from cytoplasm, modulating cellular metabolism and signaling pathways by altering the conformation, activity, and stability of numerous client proteins, and is highly expressed in tumors. mtHsp90 inhibition results in the destabilization and eventual degradation of its client proteins, leading to interference with various tumor-related pathways and efficient control of cancer cell development. Among these compounds, gamitrinib, a specific mtHsp90 inhibitor, has demonstrated its safety and efficacy in several preclinical investigations and is currently undergoing evaluation in clinical trials. This review aims to provide a comprehensive overview of the present knowledge pertaining to mtHsp90, encompassing its structure and function. Moreover, our main emphasis is on the development of mtHsp90 inhibitors for various cancer therapies, to present a thorough overview of the recent pre-clinical and clinical advancements in this field.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qi Sun
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaohan Liu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Zihui Zhao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Wang C, Cui G, Wang D, Wang M, Chen Q, Wang Y, Lu M, Tang X, Yang B. Crosstalk of Oxidative Phosphorylation-Related Subtypes, Establishment of a Prognostic Signature and Immune Infiltration Characteristics in Colorectal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184503. [PMID: 36139663 PMCID: PMC9496738 DOI: 10.3390/cancers14184503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Oxidative phosphorylation (OXPHOS) plays an important role in the progression of colorectal adenocarcinoma (COAD). The aim of our study was to investigate the expression pattern of OXPHOS-related genes (ORGs), and an OXPHOS-related prognostic signature was constructed to classify COAD patients into high-risk and low-risk groups. Then, we analyzed the relationship between risk scores and tumor microenvironment, somatic mutation, and efficacy of immunotherapy and chemotherapy. Additionally, a nomogram was established by combining clinical features and risk scores, and its predictive ability was verified by receiver operating characteristics and calibration curves. Overall, the OXPHOS-related signature can be used as a reliable prognostic predictor of COAD patients. Abstract Oxidative phosphorylation (OXPHOS) is an emerging target in cancer therapy. However, the prognostic signature of OXPHOS in colorectal adenocarcinoma (COAD) remains non-existent. We comprehensively investigated the expression pattern of OXPHOS-related genes (ORGs) in COAD from public databases. Based on four ORGs, an OXPHOS-related prognostic signature was established in which COAD patients were assigned different risk scores and classified into two different risk groups. It was observed that the low-risk group had a better prognosis but lower immune activities including immune cells and immune-related function in the tumor microenvironment. Combining with relevant clinical features, a nomogram for clinical application was also established. Receiver operating characteristic (ROC) and calibration curves were constructed to demonstrate the predictive ability of this risk signature. Moreover, a higher risk score was significantly positively correlated with higher tumor mutation burden (TMB) and generally higher gene expression of immune checkpoint, N6-methyladenosine (m6A) RNA methylation regulators and mismatch repair (MMR) related proteins. The results also indicated that the high-risk group was more sensitive to immunotherapy and certain chemotherapy drugs. In conclusion, OXPHOS-related prognostic signature can be utilized to better understand the roles of ORGs and offer new perspectives for clinical prognosis and personalized treatment.
Collapse
Affiliation(s)
- Can Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Dan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Min Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Qi Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Yunshan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Mengjie Lu
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Xinyi Tang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Bolin Yang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
- Correspondence:
| |
Collapse
|
3
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
4
|
Lebok P, Schütt K, Kluth M, Witzel I, Wölber L, Paluchowski P, Terracciano L, Wilke C, Heilenkötter U, Müller V, Schmalfeldt B, Simon R, Sauter G, Von Leffern I, Krech T, Krech RH, Jacobsen F, Burandt E. High mitochondrial content is associated with breast cancer aggressiveness. Mol Clin Oncol 2021; 15:203. [PMID: 34462659 PMCID: PMC8375016 DOI: 10.3892/mco.2021.2365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are relevant for cancer initiation and progression. Antibodies against mitochondrially encoded cytochrome c oxidase II (MTCO2), targeting a mitochondria specific epitope, can be used to quantitate the mitochondria content of tumor cells. The present study evaluated the impact of the cellular mitochondrial content on the prognosis of patients with breast cancer using immunohistochemical analysis on 2,197 arrayed breast cancer specimens. Results were compared with histological tumor parameters, patient overall survival, tumor cell proliferation using Ki67 labeling index (Ki67LI) and various other molecular features. Tumor cells exhibited stronger MTCO2 expression than normal breast epithelial cells. MTCO2 immunostaining was largely absent in normal breast epithelium, but was observed in 71.9% of 1,797 analyzable cancer specimens, including 34.6% tumors with weak expression, 22.3% with moderate expression and 15.0% with strong expression. High MTCO2 expression was significantly associated with advanced tumor stage, high Bloom-Richardson-Elston/Nottingham (BRE) grade, nodal metastasis and shorter overall survival (P<0.0001 each). In multivariate analysis, MTCO2 expression did not provide prognostic information independent of BRE grade, pathological tumor and pathological lymph node status. Additionally, significant associations were observed for high MTCO2 expression and various molecular features, including high Ki67LI, amplifications of HER2, MYC, CCND1 and MDM2, deletions of PTEN, 8p21 and 9p, low estrogen receptor expression (P<0.0001 each) and progesterone receptor expression (P<0.0001). The present study demonstrated that high MTCO2 expression was strongly associated with a poor prognosis and unfavorable phenotypical and molecular tumor features in patients with breast cancer. This suggests that the mitochondrial content may have a pivotal role in breast cancer progression.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schütt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, D-25421 Pinneberg, Germany
| | - Luigi Terracciano
- Department of Pathology, Basel University Clinics, 4031 Basel, Switzerland
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, D-25337 Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, D-25524 Itzehoe, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ingo Von Leffern
- Department of Gynecology, Albertinen Clinic Schnelsen, D-22457 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Centre Osnabrück, D-49076 Osnabrück, Germany
| | - Rainer Horst Krech
- Institute of Pathology, Clinical Centre Osnabrück, D-49076 Osnabrück, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
5
|
Masgras I, Laquatra C, Cannino G, Serapian SA, Colombo G, Rasola A. The molecular chaperone TRAP1 in cancer: From the basics of biology to pharmacological targeting. Semin Cancer Biol 2021; 76:45-53. [PMID: 34242740 DOI: 10.1016/j.semcancer.2021.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
TRAP1, the mitochondrial component of the Hsp90 family of molecular chaperones, displays important bioenergetic and proteostatic functions. In tumor cells, TRAP1 contributes to shape metabolism, dynamically tuning it with the changing environmental conditions, and to shield from noxious insults. Hence, TRAP1 activity has profound effects on the capability of neoplastic cells to evolve towards more malignant phenotypes. Here, we discuss our knowledge on the biochemical functions of TRAP1 in the context of a growing tumor mass, and we analyze the possibility of targeting its chaperone functions for developing novel anti-neoplastic approaches.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy; Istituto di Neuroscienze, Consiglio Nazionale Delle Ricerche (CNR), Padova, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Giuseppe Cannino
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | | | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy.
| |
Collapse
|
6
|
Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, Yin L, Tang D, Xu Y, Dai Y. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med 2021; 19:273. [PMID: 34174878 PMCID: PMC8236205 DOI: 10.1186/s12967-021-02939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liewen Lin
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Ligang Xia
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, 78721, USA
| | - Chang Zou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518028, China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
7
|
Wang X, Zhang Y, Fei S, Awais MM, Zheng H, Feng M, Sun J. Heat Shock Protein 75 (TRAP1) facilitate the proliferation of the Bombyx mori nucleopolyhedrovirus. Int J Biol Macromol 2021; 175:372-378. [PMID: 33549665 DOI: 10.1016/j.ijbiomac.2021.01.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
The viruses utilize multiple cellular proteins to facilitate their proliferation. The Heat Shock Protein (HSP), the highly conserved protein in eukaryotes and prokaryotes, plays a critical role in facilitating viral proliferation. However, less is known about the role of the HSPs in the life cycles of the Baculoviruses. We constructed recombinant Bombyx mori nucleopolyhedrovirus and discovered the Heat Shock Protein 75 (TRAP1) in the B. mori ovary (BmN) cells by the co-immunoprecipitation experiment using the GP64 (glycoprotein 64) as the bait protein. Tissue expression profile analysis of B. mori indicated that the TRAP1 gene has higher expression levels in the ovary, midgut, and hemolymph. Down-regulation of TRAP1 via RNA interference (RNAi) and geldanamycin (GA, a TRAP1 inhibitor) treatment can reduce the expression level of the major capsid protein VP39 (viral protein 39) of BmNPV. In contrast, the up-regulation of TRAP1 via overexpression can increase the expression level of the VP39. These results indicated that the TRAP1 of B. mori could facilitate the proliferation of the BmNPV. This study provided new insights into the function of TRAP1, and the basic mechanisms of the baculoviruses life cycle for disease prevention.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yinong Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Hao Zheng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Min Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients. BMC Cancer 2020; 20:1135. [PMID: 33228590 PMCID: PMC7686680 DOI: 10.1186/s12885-020-07615-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) plays a pivotal role in various physiological processes, such as embryonic development, tissue morphogenesis, and wound healing. EMT also plays an important role in cancer invasion, metastasis, and chemoresistance. Additionally, EMT is partially responsible for chemoresistance in colorectal cancer (CRC). The aim of this research is to develop an EMT-based prognostic signature in CRC. Methods RNA-seq and microarray data, together with clinical information, were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A total of 244 differentially expressed EMT-related genes (ERGs) were obtained by comparing the expression between normal and tumor tissues. An EMT-related signature of 11 genes was identified as crucially related to the overall survival (OS) of patients through univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and Cox regression analysis. Finally, we established a clinical nomogram to predict the survival possibility of CRC patients by integrating clinical characteristics and the EMT-related gene signature. Results Two hundred and forty-four differentially expressed ERGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that EMT-related signaling pathway genes were highly related to CRC. Kaplan-Meier analysis revealed that the 11-EMT signature could significantly distinguish high- and low-risk patients in both TCGA and GEO CRC cohorts. In addition, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusion We developed a novel EMT-related gene signature for the prognosis prediction of CRC patients, which could improve the individualized outcome prediction in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07615-5.
Collapse
|
9
|
Li X, Zhang Q, Zhao L, Jiang L, Qi A, Wei Q, Song X, Wang L, Zhang L, Zhao Y, Lv X, Wei M, Zhao L. A Combined four-mRNA Signature Associated with Lymphatic Metastasis for Prognosis of Colorectal Cancer. J Cancer 2020; 11:2139-2149. [PMID: 32127941 PMCID: PMC7052913 DOI: 10.7150/jca.38796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Lymph node metastasis (LNM) is a common mode of metastasis of CRC. However, the combined mRNA biomarkers associated with LNM of CRC that can effectively predict CRC prognosis have not been reported yet. Methods: To identify biomarkers that are associated with LNM, we collected data from the The Cancer Genome Atlas (TCGA) database. The edgeR package was searched to seek LNM-related genes by comparisons between cancer samples and normal colorectal tissues and between LNM and non-LNM (NLNM) of CRC. Univariate and multivariate regression analysis of genes in the intersection to build gene signature associated with independent prognosis of CRC, and then verified by Kaplan-Meier curve and log-rank test, receiver operating characteristic (ROC) curve was used to determine the efficiency of survival prediction of our four-mRNA signature. Finally, the potential molecular mechanisms and properties of these gene signature were also explored with functional and pathway enrichment analysis. Results: 329 mRNAs were up-regulated in CRC tissues with LNM, and 8461 mRNAs were up-regulated in CRC tissues, the intersection is 100 mRNAs. After univariate and multivariate Cox regression analysis of 100 mRNAs, a novel four LNM related mRNAs (EPHA8, KRT85, GABRA3, and CLPSL1) were screened as independent prognostic indicators of CRC. Surprisingly, the four-mRNA signature can predict the prognosis of CRC patients independently of clinical factors andthe area under the curve (AUC) of the ROC is 0.730. The novel four-mRNA signature was used to identify high and low-risk groups. Stratified analysis indicated the risk score based on four-mRNA signature was an independent prognostic indicator for female, T3+T4, N1+N2 ,stage III+IV and patients with no new tumor event. Functional annotation of this risk model in high-risk patients revealed that pathways associated with neuroactive ligand-receptor interaction, estrogen signaling pathway, and steroid hormone biosynthesis. Conclusions: By conducting TCGA data mining, our study demonstrated that a four-mRNA signature associated with LNM can be used as a combined biomarker for independent prognosis of CRC.
Collapse
Affiliation(s)
- Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
10
|
Gene Copy Number and Post-Transductional Mechanisms Regulate TRAP1 Expression in Human Colorectal Carcinomas. Int J Mol Sci 2019; 21:ijms21010145. [PMID: 31878280 PMCID: PMC6981705 DOI: 10.3390/ijms21010145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone overexpressed in 60-70% human colorectal carcinomas (CRCs) and the co-upregulation of TRAP1 and associated 6-related proteins identifies metastatic CRCs with poor prognosis. Since the molecular mechanisms responsible for TRAP1 regulation are still unknown, the significance of TRAP1 gene copy number (CN) and the role of post-transductional protein modifications were addressed. TRAP1 gene aneuploidy accounted for 34.5% of cases in a cohort of 58 human CRCs and TRAP1 CN correlated with its mRNA and protein expression, suggesting that transcriptional mechanisms are responsible for TRAP1 upregulation. Furthermore, the analysis of the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium/The Cancer Genome Atlas (CPTAC/TCGA) CRC database showed that TRAP1 polysomy significantly correlates with lymph node involvement. However, a subgroup of tumors showed TRAP1 protein levels independent from its CN. Of note, a direct correlation was observed between TRAP1 protein levels and the expression of S-nitrosoglutathione reductase (GSNOR), a denitrosylase involved in the regulation of protein S-nitrosylation. Furthermore, CRC cell lines exposed to hypoxia or dichloroacetate treatment showed the downregulation of TRAP1 upon GSNOR silencing and this resulted in increased TRAP1 mono/polyubiquitination. These data suggest that transcriptional and post-transductional mechanisms account for TRAP1 expression in human CRCs and GSNOR protects TRAP1 from S-nitrosylation and consequent proteasome degradation mostly in conditions of stress.
Collapse
|
11
|
Kind S, Jaretzke A, Büscheck F, Möller K, Dum D, Höflmayer D, Hinsch A, Weidemann S, Fraune C, Möller-Koop C, Hube-Magg C, Simon R, Wilczak W, Lebok P, Witzel I, Müller V, Schmalfeldt B, Paluchowski P, Wilke C, Heilenkötter U, von Leffern I, Krech T, Krech RH, von der Assen A, Bawahab AA, Burandt E. A shift from membranous and stromal syndecan-1 (CD138) expression to cytoplasmic CD138 expression is associated with poor prognosis in breast cancer. Mol Carcinog 2019; 58:2306-2315. [PMID: 31545001 DOI: 10.1002/mc.23119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in normal and malignant tissues. It is of interest because of a possible prognostic effect in tumors and as a target for Indatuximab, a monoclonal antibody coupled to a cytotoxic agent. To assess the prognostic role of CD138 expression in breast cancer (BCa), a tissue microarray containing 1535 BCa specimens was analyzed by immunohistochemistry. Cytoplasmic, membranous, and stromal CD138 staining was separately analyzed. In normal breast tissue, CD138 staining was limited to epithelial cell membranes. In cancers, membranous staining tended to become weaker or even disappeared (38.3% of cancers with absence of membranous staining) but cytoplasmic and stromal staining newly appeared in 29.7% and 58.1% of cancers. Loss of membranous epithelial CD138 staining as well as presence of cytoplasmic and stromal CD138 positivity were-to a variable degree-associated with high pT, high grade, nodal metastasis, estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor 2+, and poor overall patient survival. A combined analysis of epithelial and stromal CD138 expression revealed a link to overall patient survival (P < .0001) with best prognosis for patients with stromal positivity and absence of cytoplasmic staining, the worst prognosis for cancers with cytoplasmic staining and stromal negativity and intermediate prognosis for patients having either cytoplasmic staining or stromal negativity. In multivariate analyses, CD138 was not independent of established prognostic features. In summary, these data reveal a compartment depending prognostic effect of CD138 expression in BCa with cytoplasmic positivity being linked to aggressive cancer and stromal CD138 being linked to a more favorable prognosis.
Collapse
Affiliation(s)
- Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jaretzke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany
| | - Ingo von Leffern
- Department of Gynecology, Albertinen Clinic Schnelsen, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | - Rainer H Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | | | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Zhang X, Zhong Z, Li W. Downregulation of TRAP1 aggravates injury of H9c2 cardiomyocytes in a hyperglycemic state. Exp Ther Med 2019; 18:2681-2686. [PMID: 31572516 DOI: 10.3892/etm.2019.7847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and is one of the major causes of death in patients with diabetes. The present study investigated the expression and function of tumor necrosis factor receptor-associated protein 1 (TRAP1) in cardiomyocytes in a hyperglycemic state. For the in vitro study, H9c2 cells (rat cardiomyoblasts) were treated with normal glucose, high glucose. TRAP1 expression was determined by reverse transcription-quantitative PCR and western blot analysis. Viability of cardiomyocytes was detected using the CellTiter 96® AQueous One Solution assay. The intracellular reactive oxygen species (ROS) content was detected using a fluorescent 2',7'-dichlorodihydrofluorescein diacetate probe, and the change in mitochondrial membrane potential was detected by JC-1 fluorescent staining. Changes in cell viability, ROS content and mitochondrial membrane potential were determined following small interfering (si) RNA-mediated knockdown of TRAP1. Results demonstrated that compared with the normal control group, the expression of TRAP1 in H9c2 cells decreased in the high glucose group which was accompanied by a reduction in mitochondrial membrane potential and cell viability, and increased intracellular ROS production. TRAP1 expression was significantly decreased following TRAP1-siRNA transfection which was accompanied by enhanced ROS production, lower mitochondrial membrane potential and impaired cell viability. In conclusion, the present findings suggested that the decrease in cardiomyocyte TRAP1 expression under high glucose conditions was associated with myocardial injury. It was hypothesized that TRAP1 may have a protective role on cardiomyocytes under high glucose surroundings.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhen Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
13
|
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F, Landriscina M. Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol 2019; 35:25-37. [PMID: 31322279 DOI: 10.14670/hh-18-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
14
|
Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated Antigen, TRAP1, on cancer therapy. Vaccine X 2019; 1:100017. [PMID: 31384738 PMCID: PMC6668235 DOI: 10.1016/j.jvacx.2019.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
The tumor necrosis factor receptor associated protein 1 (TRAP1) is a mitochondria chaperon protein that has been previously implicated as a target for cancer therapy due to its expression level is linked to tumor progression. In this study, an immunodominant phosphopeptide of TRAP1 was identified from an HLA-A2 gene transfected mouse cancer cell line using mass spectrometry, and a synthetic phosphopeptide was generated to evaluate the potency on cancer immunotherapy. In the transporter associated with antigen processing (TAP) deficient cell, the conjugated phosphate group plays a critical role to enhance the binding affinity of phosphopeptide with HLA-A2 molecule. On the basis of immunological assay, immunization of synthetic phosphopeptide could induce a high frequency of IFN-γ-secreting CD8+ T cells in HLA-A2 transgenic mice, and the stimulated cytotoxic T lymphocytes showed a high target specificity to lysis the epitope-pulsed splenocytes in vivo and the human lung cancer cell in vitro. In a tumor challenge assay, vaccination of the HLA-A2 restricted phosphopeptide appeared to suppress the tumor growth and prolong the survival period of tumor-bearing mice. These results suggest that novel phosphopeptide is naturally presented as a HLA-A2-restricted CTL epitope and capable of being a potential candidate for the development of therapeutic vaccine against high TRAP1-expressing cancers.
Collapse
|
15
|
Kim K, Lee HW, Lee EH, Park MI, Lee JS, Kim MS, Kim K, Roh MS, Pak MG, Oh JE, Kim KM, Lee JW, Kim TG, Nam HY. Differential expression of HSP90 isoforms and their correlations with clinicopathologic factors in patients with colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:978-986. [PMID: 31933908 PMCID: PMC6945153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/23/2018] [Indexed: 06/10/2023]
Abstract
Heat shock protein 90 (HSP90), a molecular chaperone, plays critical roles in cellular protection against various stressful stimuli and in the regulation of cellular growth and apoptosis. HSP90 has four human isoforms; HSP90α, HSP90β, glucose related protein 94 (GRP94), and tumor necrosis factor (TNF) receptor-associated protein 1 (TRAP1). We evaluated the differential expression of these HSP90 isoforms in colorectal cancer (CRC) and correlated their expression levels with clinicopathological factors and patient survival rates. We performed immunohistochemical staining for HSP90α, HSP90β, GRP94, and TRAP1 in 129 CRC tumor samples and found that HSP90α expression was significantly associated with advanced pT stage (P = 0.011) and shorter recurrence-free survival (RFS) (P = 0.010), whereas GRP94 expression was correlated with low grade (P = 0.029) and better RFS (P < 0.001). HSP90β and TRAP1 had no prognostic impact, although HSP90β expression was positively correlated with tumor size (P = 0.008). Based on our results, HSP90α and GRP94 are potential prognostic biomarkers of CRC. In addition, the differences in expression and functional activities among four HSP90 isoforms imply that isoform selectivity should be seriously considered when HSP90 inhibitors are studied or adopted for the treatment of CRC.
Collapse
Affiliation(s)
- Kisu Kim
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Moon-Il Park
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Mee-Seon Kim
- Department of Pathology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan UniversitySeoul, Korea
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of MedicineBusan, South Korea
| | - Min Gyoung Pak
- Department of Pathology, Dong-A University College of MedicineBusan, South Korea
| | - Ji Eun Oh
- Division of Gastroenterology, Department of Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Kwang Min Kim
- Division of Gastroenterology, Department of Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Jung Won Lee
- Division of Gastroenterology, Department of Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan UniversityChangwon, South Korea
| |
Collapse
|
16
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
17
|
Gao C, Li M, Jiang AL, Sun R, Jin HL, Gui HW, Xiao F, Ding XW, Fu ZM, Feng JP. Overexpression of the mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 is associated with the poor prognosis of patients with colorectal cancer. Oncol Lett 2018; 15:5451-5458. [PMID: 29552185 PMCID: PMC5840608 DOI: 10.3892/ol.2018.8042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/26/2017] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor receptor-associated protein-1 (TRAP-1), a mitochondrial chaperone, contributes significantly to the progression of cancer. However, the understanding of its involvement in the clinicopathological characteristics and prognosis of colorectal cancer (CRC) remains limited. The aim of the present study was to assess the significance of TRAP-1 expression in CRC. The expression of TRAP-1 was evaluated in corresponding cancerous, paracancerous, lymph node and distant metastatic tissues of 256 cases of CRC by immunohistochemistry. The associations between TRAP-1 expression and the clinicopathological parameters and survival rates of patients was assessed. Out of 256 patients with CRC, TRAP-1 expression was detected in 203 (79.3%). TRAP-1 expression was significantly increased in cancerous tissue compared with that in corresponding paracancerous tissues (P<0.001). Overexpression of TRAP-1 was significantly associated with differentiation (P=0.011), depth of invasion (P=0.006), lymph node metastasis (P<0.001) and tumor-node-metastasis stage (P<0.001). In patients with high TRAP-1 expression, the 5-year overall survival (OS) rate was 38.0%, in contrast to 56.5% in patients with low TRAP-1 expression (P=0.003). Similarly, the 5-year progression-free survival (PFS) was 26.6% for patients with high TRAP-1 expression and 53.3% for patients with low TRAP-1 expression (P<0.001). Multivariate analyses indicated the TRAP-1 expression is an independent prognostic factor for poorer OS [P=0.015; hazard ratio (HR), 1.914] and PFS (P<0.001; HR, 2.534). Thus, TRAP-1 may serve as a potential biomarker for predicting the prognosis of patients with CRC. Specifically, overexpression of TRAP-1 may predict progression and poor survival in cases of CRC.
Collapse
Affiliation(s)
- Chang Gao
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Min Li
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - An-Li Jiang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Rui Sun
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Hong-Lin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hua-Wei Gui
- Department of Pathology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Fei Xiao
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Xiang-Wu Ding
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Zhen-Ming Fu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jue-Ping Feng
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| |
Collapse
|
18
|
Maddalena F, Simeon V, Vita G, Bochicchio A, Possidente L, Sisinni L, Lettini G, Condelli V, Matassa DS, Li Bergolis V, Fersini A, Romito S, Aieta M, Ambrosi A, Esposito F, Landriscina M. TRAP1 protein signature predicts outcome in human metastatic colorectal carcinoma. Oncotarget 2017; 8:21229-21240. [PMID: 28177905 PMCID: PMC5400579 DOI: 10.18632/oncotarget.15070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022] Open
Abstract
TRAP1 is a HSP90 molecular chaperone upregulated in colorectal carcinomas and involved in control of intracellular signaling, cell cycle, apoptosis and drug resistance, stemness and bioenergetics through co-traslational regulation of a network of client proteins. Thus, the clinical significance of TRAP1 protein network was analyzed in human colorectal cancers. TRAP1 and/or its client proteins were quantified, by immunoblot analysis, in 60 surgical specimens of colorectal carcinomas at different stages and, by immunohistochemistry, in 9 colorectal adenomatous polyps, 11 in situ carcinomas and 55 metastatic colorectal tumors. TRAP1 is upregulated at the transition between low- and high-grade adenomas, in in situ carcinomas and in about 60% of human colorectal carcinomas, being downregulated only in a small cohort of tumors. The analysis of TCGA database showed that a subgroup of colorectal tumors is characterized by gain/loss of TRAP1 copy number, this correlating with its mRNA and protein expression. Interestingly, TRAP1 is co-expressed with the majority of its client proteins and hierarchical cluster analysis showed that the upregulation of TRAP1 and associated 6-protein signature (i.e., IF2α, eF1A, TBP7, MAD2, CDK1 and βCatenin) identifies a cohort of metastatic colorectal carcinomas with a significantly shorter overall survival (HR 5.4; 95% C.I. 1.1-26.6; p=0.037). Consistently, the prognostic relevance of TRAP1 was confirmed in a cohort of 55 metastatic colorectal tumors. Finally, TRAP1 positive expression and its prognostic value are more evident in left colon cancers. These data suggest that TRAP1 protein network may provide a prognostic signature in human metastatic colorectal carcinomas.
Collapse
Affiliation(s)
- Francesca Maddalena
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vittorio Simeon
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giulia Vita
- Pathology, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Annamaria Bochicchio
- Medical Oncology Units, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Luciana Possidente
- Pathology, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Lorenza Sisinni
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Valeria Li Bergolis
- Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Alberto Fersini
- General Surgery Units, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Sante Romito
- Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michele Aieta
- Medical Oncology Units, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Antonio Ambrosi
- General Surgery Units, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Matteo Landriscina
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.,Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
19
|
Lettini G, Maddalena F, Sisinni L, Condelli V, Matassa DS, Costi MP, Simoni D, Esposito F, Landriscina M. TRAP1: a viable therapeutic target for future cancer treatments? Expert Opin Ther Targets 2017; 21:805-815. [PMID: 28664757 DOI: 10.1080/14728222.2017.1349755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION HSP90 molecular chaperones (i.e., HSP90α, HSP90β, GRP94 and TRAP1) are potential therapeutic targets to design novel anticancer agents. However, despite numerous designed HSP90 inhibitors, most of them have failed due to unfavorable toxicity profiles and lack of specificity toward different HSP90 paralogs. Indeed, a major limitation in this field is the high structural homology between different HSP90 chaperones, which significantly limits our capacity to design paralog-specific inhibitors. Area covered: This review examines the relevance of TRAP1 in tumor development and progression, with an emphasis on its oncogenic/oncosuppressive role in specific human malignancies and its multifaceted and context-dependent functions in cancer cells. Herein, we discuss the rationale for considering TRAP1 as a potential molecular target and the strategies used to date, to achieve its compartmentalized inhibition directly in mitochondria. Expert opinion: TRAP1 targeting may represent a promising strategy for cancer therapy, based on the increasing and compelling evidence supporting TRAP1 involvement in human carcinogenesis. However, considering the complexity of TRAP1 biology, future strategies of drug discovery need to improve selectivity and specificity toward TRAP1 respect to other HSP90 paralogs. The characterization of specific human malignancies suitable for TRAP1 targeting is also mandatory.
Collapse
Affiliation(s)
- Giacomo Lettini
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Francesca Maddalena
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Lorenza Sisinni
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Valentina Condelli
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Danilo Swann Matassa
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Napoli , Italy
| | - Maria Paola Costi
- c Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Daniele Simoni
- d Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Franca Esposito
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Napoli , Italy
| | - Matteo Landriscina
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy.,e Medical Oncology Unit, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| |
Collapse
|
20
|
Masgras I, Sanchez-Martin C, Colombo G, Rasola A. The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front Oncol 2017; 7:58. [PMID: 28405578 PMCID: PMC5370238 DOI: 10.3389/fonc.2017.00058] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria can receive, integrate, and transmit a variety of signals to shape many biochemical activities of the cell. In the process of tumor onset and growth, mitochondria contribute to the capability of cells of escaping death insults, handling changes in ROS levels, rewiring metabolism, and reprograming gene expression. Therefore, mitochondria can tune the bioenergetic and anabolic needs of neoplastic cells in a rapid and flexible way, and these adaptations are required for cell survival and proliferation in the fluctuating environment of a rapidly growing tumor mass. The molecular bases of pro-neoplastic mitochondrial adaptations are complex and only partially understood. Recently, the mitochondrial molecular chaperone TRAP1 (tumor necrosis factor receptor associated protein 1) was identified as a key regulator of mitochondrial bioenergetics in tumor cells, with a profound impact on neoplastic growth. In this review, we analyze these findings and discuss the possibility that targeting TRAP1 constitutes a new antitumor approach.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche (CNR) , Milano , Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| |
Collapse
|
21
|
Pak MG, Koh HJ, Roh MS. Clinicopathologic significance of TRAP1 expression in colorectal cancer: a large scale study of human colorectal adenocarcinoma tissues. Diagn Pathol 2017; 12:6. [PMID: 28088229 PMCID: PMC5237536 DOI: 10.1186/s13000-017-0598-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023] Open
Abstract
Background Colorectal cancer is the major cause of cancer mortality, despite development of therapeutic strategies. The novel marker tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein that has been related to drug resistance and protection from apoptosis in colorectal cancer. This study aims to delineate the clinicopathologic significance of TRAP1 expression in colorectal cancer. Methods Seven-hundred and fourteen FFPE tissues were collected from colorectal cancer patients who underwent surgery from February 2002 to July 2011 at Dong-A University Medical Center, Busan, South Korea. We performed TRAP1 immunohistochemistry using tissue microarray, and divided into two groups, TRAP1 high expression group and low expression group. Statistical analysis was utilized to evaluate the association of TRAP1 with clinicopathologic characteristics and disease-specific survival of patients. Results High TRAP1 expression was observed in 564 cases (79%) and low expression was 150 cases (21%). TRAP1 expression was significantly increased in colorectal cancer with advanced pathologic T-stage compared with that in early T-stage (p = 0.008). By univariate survival analysis, high TRAP1 expression was significantly associated with worse disease-specific survival (p = 0.01). But, TRAP1 expression was marginally associated with lymph node involvement and tumor differentiation (p = 0.085, p = 0.082, respectively). Multivariate analysis indicated that TRAP1 expression (hazard ratio, 1.947; 95% CI, 1.270 to 2.984; p = 0.002), and pathologic T stage (hazard ratio, 3.190; 95% CI, 1.275 to 7.983; p = 0.013) were independent prognostic factors for colorectal adenocarcinomas. Conclusions Here, we found that overexpression of TRAP1 might contribute to tumor cell local invasion of colorectal cancer. The association between TRAP1 overexpression and worse disease-specific survival also suggested that TRAP1 protein expression might have oncogenic role. Consequently, our data demonstrated that TRAP1 expression was a good prognostic biomarker for depth of invasion and disease-specific survival in colorectal cancer.
Collapse
Affiliation(s)
- Min Gyoung Pak
- Department of Pathology, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, South Korea
| | - Hyong Jong Koh
- Department of Parmacology, Dong-A University College of Medicine, Busan, South Korea
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, South Korea.
| |
Collapse
|
22
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Lu H, Sisinni L, Lettini G, Gabra H, Landriscina M, Esposito F. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis 2016; 7:e2522. [PMID: 27977010 PMCID: PMC5260997 DOI: 10.1038/cddis.2016.400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer (OC) is the second leading cause of gynecological cancer death worldwide. Although the list of biomarkers is still growing, molecular mechanisms involved in OC development and progression remain elusive. We recently demonstrated that lower expression of the molecular chaperone TRAP1 in OC patients correlates with higher tumor grade and stage, and platinum resistance. Herein we show that TRAP1 is often deleted in high-grade serous OC patients (N=579), and that TRAP1 expression is correlated with the copy number, suggesting this could be one of the driving mechanisms for the loss of TRAP1 expression in OC. At molecular level, downregulation of TRAP1 associates with higher expression of p70S6K, a kinase frequently active in OC with emerging roles in cell migration and tumor metastasis. Indeed, TRAP1 silencing in different OC cells induces upregulation of p70S6K expression and activity, enhancement of cell motility and epithelial-mesenchymal transition (EMT). Consistently, in a large cohort of OC patients, TRAP1 expression is reduced in tumor metastases and directly correlates with the epithelial marker E-Cadherin, whereas it inversely correlates with the transcription factor Slug and the matrix metallopeptidases 2 and 9. Strikingly, pharmacological inhibition of p70S6K reverts the high motility phenotype of TRAP1 knock-down cells. However, although p70S6K inhibition or silencing reduces the expression of the transcription factors Snail and Slug, thus inducing upregulation of E-Cadherin expression, it is unable to revert EMT induced by TRAP1 silencing; furthermore, p70S6K did not show any significant correlation with EMT genes in patients, nor with overall survival or tumor stage, suggesting an independent and predominant role for TRAP1 in OC progression. Altogether, these results may provide novel approaches in OC with reduced TRAP1 expression, which could be resistant to therapeutic strategies based on the inhibition of the p70S6K pathway, with potential future intervention in OC invasion and metastasis.
Collapse
Affiliation(s)
- Maria R Amoroso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Danilo S Matassa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Ilenia Agliarulo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Rosario Avolio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Haonan Lu
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - Lorenza Sisinni
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Matteo Landriscina
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy.,Dipartimento di Scienze Mediche e Chirurgiche, Università Degli Studi di Foggia, Foggia, Italy
| | - Franca Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
23
|
Zhang B, Wang J, Huang Z, Wei P, Liu Y, Hao J, Zhao L, Zhang F, Tu Y, Wei T. Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer. Oncotarget 2016; 6:44495-508. [PMID: 26517089 PMCID: PMC4792571 DOI: 10.18632/oncotarget.6252] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is abnormally expressed in many cancers. In this study, we showed that TRAP1 is aberrantly upregulated in breast tumors compared to control tissues. TRAP1 knockdown downregulates mitochondrial aerobic respiratory, sensitizes cells to lethal stimuli, and inhibited tumor growth in MDA-MB-231 and MCF-7 breast cancer cells in vivo. TRAP1 overexpression, however, enhances the capacity to cope with stress conditions. These evidences suggested that TRAP1 is required for tumorigenesis. We also found that TRAP1 regulates the mitochondrial morphology. Relatively lower TRAP1 levels are associated with the rod-shaped mitochondrial phenotype in invasive and metastatic MDA-MB-231 breast cancer cells; on the contrary, higher TRAP1 levels are associated with the tubular network-shaped mitochondrial phenotype in non-invasive MCF-7 cells. Interestingly, the expression of TRAP1 in human breast cancer specimens inversely correlates with tumor grade. Overexpression of TRAP1 in MDA-MB-231 cells causes mitochondrial fusion, triggers mitochondria to form tubular networks, and suppresses cell migration and invasion in vitro and in vivo. These data link TRAP1-regulated mitochondrial dynamics and function with tumorigenesis of breast cancer and suggested that TRAP1 may therefore be a potential target for breast cancer drug development.
Collapse
Affiliation(s)
- Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen Huang
- Department of Breast Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Junfeng Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijing Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fenglin Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Lettini G, Sisinni L, Condelli V, Matassa DS, Simeon V, Maddalena F, Gemei M, Lopes E, Vita G, Del Vecchio L, Esposito F, Landriscina M. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ 2016; 23:1792-1803. [PMID: 27662365 DOI: 10.1038/cdd.2016.67] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Marica Gemei
- CEINGE, Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Elvira Lopes
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giulia Vita
- Pathology Unit, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Luigi Del Vecchio
- CEINGE, Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
25
|
Expression of TRAP1 in gastric cancer tissue and its correlation with malignant biology. ASIAN PAC J TROP MED 2016; 9:67-71. [DOI: 10.1016/j.apjtm.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
|
26
|
Thiyagarajan D, Rekvig OP, Seredkina N. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form. PLoS One 2015; 10:e0129485. [PMID: 26065428 PMCID: PMC4465975 DOI: 10.1371/journal.pone.0129485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that the renal endonuclease DNaseI is up-regulated in mesangial nephritis while down-regulated during progression of the disease. To determine the basis for these reciprocal DNaseI expression profiles we analyse processes accounting for an early increase in renal DNaseI expression. Main hypotheses were that i. the mesangial inflammation and secreted pro-inflammatory cytokines directly increase DNaseI protein expression in tubular cells, ii. the anti-apoptotic protein tumor necrosis factor receptor-associated protein 1 (Trap 1) is down-regulated by increased expression of DNaseI due to transcriptional interference, and iii. pro-inflammatory cytokines promote nuclear translocation of a variant of DNaseI. The latter hypothesis emerges from the fact that anti-DNaseI antibodies stained tubular cell nuclei in murine and human lupus nephritis. The present study was performed on human tubular epithelial cells stimulated with pro-inflammatory cytokines. Expression of the DNaseI and Trap 1 genes was determined by qPCR, confocal microscopy, gel zymography, western blot and by immune electron microscopy. Results from in vitro cell culture experiments were analysed for biological relevance in kidneys from (NZBxNZW)F1 mice and human patients with lupus nephritis. Central data indicate that stimulating the tubular cells with TNFα promoted increased DNaseI and reduced Trap 1 expression, while TNFα and IL-1β stimulation induced nuclear translocation of the DNaseI. TNFα-stimulation resulted in 3 distinct effects; increased DNaseI and IL-1β gene expression, and nuclear translocation of DNaseI. IL-1β-stimulation solely induced nuclear DNaseI translocation. Tubular cells stimulated with TNFα and simultaneously transfected with IL-1β siRNA resulted in increased DNaseI expression but no nuclear translocation. This demonstrates that IL-1β promotes nuclear translocation of a cytoplasmic variant of DNaseI since translocation clearly was not dependent on DNaseI gene activation. Nuclear translocated DNaseI is shown to be enzymatically inactive, which may point at a new, yet unknown function of renal DNaseI.
Collapse
Affiliation(s)
- Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Rasola A, Bernardi P. Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells". Cell Calcium 2015; 58:18-26. [PMID: 25828565 DOI: 10.1016/j.ceca.2015.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) – a key effector in the mitochondrial pathways to cell death – and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
28
|
Chen R, Pan S, Lai K, Lai LA, Crispin DA, Bronner MP, Brentnall TA. Up-regulation of mitochondrial chaperone TRAP1 in ulcerative colitis associated colorectal cancer. World J Gastroenterol 2014; 20:17037-17048. [PMID: 25493016 PMCID: PMC4258572 DOI: 10.3748/wjg.v20.i45.17037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/21/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize tumor necrosis factor receptor-associated protein 1 (TRAP1) expression in the progression of ulcerative colitis (UC)-associated colorectal cancer.
METHODS: Chronic UC is an inflammatory bowel disease that predisposes to colorectal cancer. Immunohistochemical analysis was used to evaluate TRAP1 expression on tissue microarrays containing colonic tissues from 42 UC progressors (patients with cancer or dysplasia) and 38 non-progressors (dysplasia/cancer free patients). Statistical analyses of the TRAP1 immunohistochemistry staining were performed using GraphPad Prism. Differences in the TRAP1 level between non-progressors and progressors were tested for statistical significance using the Mann-Whitney test. Receiver operating characteristic curve method was used to quantify marker performance in distinguishing diseased cases from controls.
RESULTS: TRAP1 was up-regulated in the colon tissues from UC progressors, but not in the colon tissues from UC non-progressors. Moreover, up-regulation of TRAP1 preceded the neoplastic changes: it was present in both the dysplastic and non-dysplastic tissues of UC progressors. When TRAP1 staining in rectal tissue was used as a diagnostic marker, it could distinguish progressors from non-progressors with 59% sensitivity and 80% specificity. Our study further showed that the increase of TRAP1 expression positively correlated with the degree of inflammation in the colorectal cancer tissues, which could be related to the increased oxidation present in the colonic mucosa from UC progressors. We then investigated the cellular proteome changes underlying oxidative stress, and found that oxidative stress could induce up-regulation of TRAP1 along with several other negative modulators of apoptosis.
CONCLUSION: These results suggest that oxidative stress in long standing UC could lead to the increase of cytoprotective protein TRAP1, which in turn could promote cancer progression by preventing or protecting the oxidative damaged epithelial cells from undergoing apoptosis. TRAP1 could be a potential diagnostic marker for UC associated colorectal cancer.
Collapse
|
29
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium 2014; 56:437-45. [PMID: 25454774 PMCID: PMC4274314 DOI: 10.1016/j.ceca.2014.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) - a key effector in the mitochondrial pathways to cell death - and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
30
|
Ou Y, Liu L, Xue L, Zhou W, Zhao Z, Xu B, Song Y, Zhan Q. TRAP1 Shows Clinical Significance and Promotes Cellular Migration and Invasion through STAT3/MMP2 Pathway in Human Esophageal Squamous Cell Cancer. J Genet Genomics 2014; 41:529-37. [DOI: 10.1016/j.jgg.2014.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 02/07/2023]
|
31
|
Amoroso MR, Matassa DS, Sisinni L, Lettini G, Landriscina M, Esposito F. TRAP1 revisited: novel localizations and functions of a 'next-generation' biomarker (review). Int J Oncol 2014; 45:969-77. [PMID: 24990602 DOI: 10.3892/ijo.2014.2530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 11/06/2022] Open
Abstract
In the last decade, the identification and characterization of novel molecular mechanisms and pathways involving the heat shock protein TRAP1/HSP75 in cancers and other diseases enhanced the scientific interest. Recent reports have shown that TRAP1 stays at the crossroad of multiple crucial processes in the onset of neoplastic transformation. In fact, TRAP1: i) contributes to the tumor's switch to aerobic glycolysis through the inhibition of succinate dehydrogenase, the complex II of the mitochondrial respiratory chain; ii) is part of a pro-survival signaling pathway aimed at evading the toxic effects of oxidants and anticancer drugs and protects mitochondria against damaging stimuli via a decrease of ROS generation; iii) controls protein homeostasis through a direct involvement in the regulation of protein synthesis and protein co-translational degradation. Therefore, TRAP1 seems to be a central regulatory protein with balancing functions at the intersection of different metabolic processes during the neoplastic transformation. For this reason, it can be considered at the same time an attractive target for the development of novel anticancer strategies and a promising study model to understand the biology of tumor cells at a systemic level. This review summarizes the most recent advances in TRAP1 biology and proposes a new comprehensive view of its functions.
Collapse
Affiliation(s)
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Centre of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Centre of Basilicata, Rionero in Vulture, PZ, Italy
| | - Matteo Landriscina
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Park HK, Lee JE, Lim J, Kang BH. Mitochondrial Hsp90s suppress calcium-mediated stress signals propagating from mitochondria to the ER in cancer cells. Mol Cancer 2014; 13:148. [PMID: 24924916 PMCID: PMC4070406 DOI: 10.1186/1476-4598-13-148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to cell death in the presence of stressful stimuli is one of the hallmarks of cancer cells acquired during multistep tumorigenesis, and knowledge of the molecular mechanism of stress adaptation can be exploited to develop cancer-selective therapeutics. Mitochondria and the endoplasmic reticulum (ER) are physically interconnected organelles that can sense and exchange various stress signals. Although there have been many studies on stress propagation from the ER to mitochondria, reverse stress signals originating from mitochondria have not been well reported. METHODS After inactivation of the proteins by pharmacologic and genetic methods, the signal pathways were analyzed by fluorescence microscopy, flow cytometry, MTT assay, and western blotting. A mouse xenograft model was used to examine synergistic anticancer activity and the action mechanism of drugs in vivo. RESULTS We show in this study that mitochondrial heat shock protein 90 (Hsp90) suppresses mitochondria-initiated calcium-mediated stress signals propagating into the ER in cancer cells. Mitochondrial Hsp90 inhibition triggers the calcium signal by opening the mitochondrial permeability transition pore and, in turn, the ER ryanodine receptor, via calcium-induced calcium release. Subsequent depletion of ER calcium activates unfolded protein responses in the ER lumen, thereby increasing the expression of a pro-apoptotic transcription factor, CEBP homologous protein (CHOP). Combined treatment with the ER stressor thapsigargin and the mitochondrial Hsp90 inhibitor gamitrinib augmented interorganelle stress signaling by elevating CHOP expression, and showed synergistic cytotoxic activity exclusively in cancer cells in vitro and in vivo. CONCLUSIONS Collectively, mitochondrial Hsp90s confer cell death resistance to cancer cells by suppressing the mitochondria-initiated calcium-mediated interorganelle stress response.
Collapse
Affiliation(s)
| | | | | | - Byoung Heon Kang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST St,, Ulsan 689-798, South Korea.
| |
Collapse
|
33
|
Rasola A, Neckers L, Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol 2014; 24:455-63. [PMID: 24731398 DOI: 10.1016/j.tcb.2014.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Many tumors undergo a dramatic metabolic shift known as the Warburg effect in which glucose utilization is favored and oxidative phosphorylation is downregulated, even when oxygen availability is plentiful. However, the mechanistic basis for this switch has remained unclear. Recently several independent groups identified tumor necrosis factor receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone of the heat shock protein 90 (Hsp90) family, as a key modulator of mitochondrial respiration. Although all reports agree that this activity of TRAP1 has important implications for neoplastic progression, data from the different groups only partially overlap, suggesting that TRAP1 may have complex and possibly contextual effects on tumorigenesis. In this review we analyze these recent findings and attempt to reconcile these observations.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience, University of Padova, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Didier Picard
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Agorreta J, Hu J, Liu D, Delia D, Turley H, Ferguson DJP, Iborra F, Pajares MJ, Larrayoz M, Zudaire I, Pio R, Montuenga LM, Harris AL, Gatter K, Pezzella F. TRAP1 regulates proliferation, mitochondrial function, and has prognostic significance in NSCLC. Mol Cancer Res 2014; 12:660-9. [PMID: 24567527 DOI: 10.1158/1541-7786.mcr-13-0481] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED The TNF receptor-associated protein 1 (TRAP1) is a mitochondrial HSP that has been related to drug resistance and protection from apoptosis in colorectal and prostate cancer. Here, the effect of TRAP1 ablation on cell proliferation, survival, apoptosis, and mitochondrial function was determined in non-small cell lung cancer (NSCLC). In addition, the prognostic value of TRAP1 was evaluated in patients with NSCLC. These results demonstrate that TRAP1 knockdown reduces cell growth and clonogenic cell survival. Moreover, TRAP1 downregulation impairs mitochondrial functions such as ATP production and mitochondrial membrane potential as measured by TMRM (tetramethylrhodamine methylester) uptake, but it does not affect mitochondrial density or mitochondrial morphology. The effect of TRAP1 silencing on apoptosis, analyzed by flow cytometry and immunoblot expression (cleaved PARP, caspase-9, and caspase-3) was cell line and context dependent. Finally, the prognostic potential of TRAP1 expression in NSCLC was ascertained via immunohistochemical analysis which revealed that high TRAP1 expression was associated with increased risk of disease recurrence (univariate analysis, P = 0.008; multivariate analysis, HR: 2.554; 95% confidence interval, 1.085-6.012; P = 0.03). In conclusion, these results demonstrate that TRAP1 impacts the viability of NSCLC cells, and that its expression is prognostic in NSCLC. IMPLICATIONS TRAP1 controls NSCLC proliferation, apoptosis, and mitochondrial function, and its status has prognostic potential in NSCLC.
Collapse
Affiliation(s)
- Jackeline Agorreta
- Authors' Affiliations: Oncology Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona; 2Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; 3Nuffield Department of Clinical Laboratory Sciences; 4Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital; 5Department of Medical Oncology, University of Oxford, The Churchill Hospital, Oxford, United Kingdom; 6Department of Rheumatology and Immunology, Shandong Provincial Hospital, Shandong University, Jinan, China; and 7Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grupp K, Jedrzejewska K, Tsourlakis MC, Koop C, Wilczak W, Adam M, Quaas A, Sauter G, Simon R, Izbicki JR, Graefen M, Huland H, Schlomm T, Minner S, Steurer S. High mitochondria content is associated with prostate cancer disease progression. Mol Cancer 2013; 12:145. [PMID: 24261794 PMCID: PMC3842770 DOI: 10.1186/1476-4598-12-145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/15/2013] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondria are suggested to be important organelles for cancer initiation and promotion. This study was designed to evaluate the prognostic value of MTC02, a marker for mitochondrial content, in prostate cancer. Methods Immunohistochemistry of using an antibody against MTC02 was performed on a tissue microarray (TMA) containing 11,152 prostate cancer specimens. Results were compared to histological phenotype, biochemical recurrence, ERG status and other genomic deletions by using our TMA attached molecular information. Results Tumor cells showed stronger MTC02 expression than normal prostate epithelium. MTC02 immunostaining was found in 96.5% of 8,412 analyzable prostate cancers, including 15.4% tumors with weak, 34.6% with moderate, and 46.5% with strong expression. MTC02 expression was associated with advanced pathological tumor stage, high Gleason score, nodal metastases (p < 0.0001 each), positive surgical margins (p = 0.0005), and early PSA recurrence (p < 0.0001) if all cancers were jointly analyzed. Tumors harboring ERG fusion showed higher expression levels than those without (p < 0.0001). In ERG negative prostate cancers, strong MTC02 immunostaining was linked to deletions of PTEN, 6q15, 5q21, and early biochemical recurrence (p < 0.0001 each). Moreover, multiple scenarios of multivariate analyses suggested an independent association of MTC02 with prognosis in preoperative settings. Conclusions Our study demonstrates high-level MTC02 expression in ERG negative prostate cancers harboring deletions of PTEN, 6q15, and 5q21. Additionally, increased MTC02 expression is a strong predictor of poor clinical outcome in ERG negative cancers, highlighting a potentially important role of elevated mitochondrial content for prostate cancer cell biology.
Collapse
Affiliation(s)
| | | | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Matassa DS, Amoroso MR, Agliarulo I, Maddalena F, Sisinni L, Paladino S, Romano S, Romano MF, Sagar V, Loreni F, Landriscina M, Esposito F. Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1. Cell Death Dis 2013; 4:e851. [PMID: 24113185 PMCID: PMC3824688 DOI: 10.1038/cddis.2013.379] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022]
Abstract
TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- D S Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lou Z, Meng RG, Zhang W, Yu ED, Fu CG. Preoperative carcinoembryonic antibody is predictive of distant metastasis in pathologically T1 colorectal cancer after radical surgery. World J Gastroenterol 2013; 19:389-393. [PMID: 23372362 PMCID: PMC3554824 DOI: 10.3748/wjg.v19.i3.389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/21/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the predictors of distant metastasis in pathologically T1 (pT1) colorectal cancer (CRC) after radical resection.
METHODS: Variables including age, gender, preoperative carcinoembryonic antibody (CEA) level, tumor location, tumor size, lymph node status, and histological grade were recorded. Patients with and without metastasis were compared with regard to age, gender, CEA level and pathologic tumor characteristics using the independent t test or χ2 test, as appropriate. Risk factors were determined by logistic regression analysis.
RESULTS: Metastasis occurred in 6 (3.8%) of the 159 patients during a median follow-up of 67.0 (46.5%) mo. The rates of distant metastasis in patients with pT1 cancer of the colon and rectum were 6.7% and 2.9%, respectively (P < 0.001). The rates of distant metastasis between male and female patients with T1 CRC were 6.25% and 1.27%, respectively (P < 0.001). The most frequent site of distant metastasis was the liver. Age (P = 0.522), gender (P = 0.980), tumor location (P = 0.330), tumor size (P = 0.786), histological grade (P = 0.509), and high serum CEA level (P = 0.262) were not prognostic factors for lymph node metastasis. Univariate analysis revealed that age (P = 0.231), gender (P = 0.137), tumor location (P = 0.386), and tumor size (P = 0.514) were not risk factors for distant metastasis after radical resection for T1 colorectal cancer. Postoperative metastasis was only significantly correlated with high preoperative serum CEA level (P = 0.001). Using multivariate logistic regression analysis, high preoperative serum CEA level (P = 0.004; odds ratio 15.341; 95%CI 2.371-99.275) was an independent predictor for postoperative distant metastasis.
CONCLUSION: The preoperative increased serum CEA level is a predictive risk factor for distant metastasis in CRC patients after radical resection. Adjuvant chemotherapy may be necessary in such patients, even if they have pT1 colorectal cancer.
Collapse
|