1
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
2
|
Jin X, Li X, Guan F, Zhang J. Human Endogenous Retroviruses and Toll-Like Receptors. Viral Immunol 2023; 36:73-82. [PMID: 36251943 DOI: 10.1089/vim.2022.0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are estimated to comprise ∼8% of the entire human genome, but the vast majority of them remain transcriptionally silent in most normal tissues due to accumulated mutations. However, HERVs can be frequently activated and detected in various tissues under certain conditions. Nucleic acids or proteins produced by HERVs can bind to pattern recognition receptors of immune cells or other cells and initiate an innate immune response, which may be involved in some pathogenesis of diseases, especially cancer and autoimmune diseases. In this review, we collect studies of the interaction between HERV elements and Toll-like receptors and attempt to provide an overview of their role in the immunopathological mechanisms of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Jin
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Xueyuan Li
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Fang Guan
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Jianhua Zhang
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| |
Collapse
|
3
|
Salavatiha Z, Soleimani-Jelodar R, Jalilvand S. The role of endogenous retroviruses-K in human cancer. Rev Med Virol 2020; 30:1-13. [PMID: 32734655 DOI: 10.1002/rmv.2142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
It is known that human endogenous retroviruses (HERVs) constitute almost 8% of the human genome. Although the expression of HERVs from the human genome is tightly regulated, different exogenous and endogenous factors could trigger HERV activation. Aberrant expression of different HERVs may potentially cause a variety of diseases such as neurological and autoimmune diseases as well as cancer. It is suggested that HERV-K can induce cancer through different mechanisms that are discussed. The interplay between some tumor viruses and HERV-K seems to be a key player in progression of viral-associated cancers because elevated levels of Rec and Np9 proteins are observed in several cancers. The frequent over expression of HERV proteins and some specific antibodies in cancer cells could be considered as suitable prognostic and therapeutic biomarkers in diagnosis and treatment of cancers. The expression of HERV proteins in cancers and development of immune responses against them may also be used as targets for cancer immunotherapy. Further studies are warranted to evaluate the role of HERVs in cancer formation and use of different HERV proteins in developing new diagnostic and therapeutic approaches for cancer treatments.
Collapse
Affiliation(s)
- Zahra Salavatiha
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Soleimani-Jelodar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mommert M, Tabone O, Guichard A, Oriol G, Cerrato E, Denizot M, Cheynet V, Pachot A, Lepape A, Monneret G, Venet F, Brengel-Pesce K, Textoris J, Mallet F. Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:96. [PMID: 32188504 PMCID: PMC7081582 DOI: 10.1186/s13054-020-2788-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Numerous studies have explored the complex and dynamic transcriptome modulations observed in sepsis patients, but a large fraction of the transcriptome remains unexplored. This fraction could provide information to better understand sepsis pathophysiology. Multiple levels of interaction between human endogenous retroviruses (HERV) and the immune response have led us to hypothesize that sepsis is associated with HERV transcription and that HERVs may contribute to a signature among septic patients allowing stratification and personalized management. METHODS We used a high-density microarray and RT-qPCR to evaluate the HERV and Mammalian Apparent Long Terminal Repeat retrotransposons (MaLR) transcriptome in a pilot study that included 20 selected septic shock patients, stratified on mHLA-DR expression, with samples collected on day 1 and day 3 after inclusion. We validated the results in an unselected, independent cohort that included 100 septic shock patients on day 3 after inclusion. We compared septic shock patients, according to their immune status, to describe the transcriptional HERV/MaLR and conventional gene expression. For differential expression analyses, moderated t tests were performed and Wilcoxon signed-rank tests were used to analyze RT-qPCR results. RESULTS We showed that 6.9% of the HERV/MaLR repertoire was transcribed in the whole blood, and septic shock was associated with an early modulation of a few thousand of these loci, in comparison to healthy volunteers. We provided evidence that a subset of HERV/MaLR and conventional genes were differentially expressed in septic shock patients, according to their immune status, using monocyte HLA-DR (mHLA-DR) expression as a proxy. A group of 193 differentially expressed HERV/MaLR probesets, tested in an independent septic shock cohort, identified two groups of patients with different immune status and severity features. CONCLUSION We demonstrated that a large, unexplored part of our genome, which codes for HERV/MaLR, may be linked to the host immune response. The identified set of HERV/MaLR probesets should be evaluated on a large scale to assess the relevance of these loci in the stratification of septic shock patients. This may help to address the heterogeneity of these patients.
Collapse
Affiliation(s)
- Marine Mommert
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.
| | - Olivier Tabone
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Audrey Guichard
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Guy Oriol
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Elisabeth Cerrato
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Mélanie Denizot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Valérie Cheynet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Alexandre Pachot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Alain Lepape
- Intensive Care Unit, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,Emerging Pathogens Laboratory, Epidemiology and International Health, International Center for Infectiology Research (CIRI), Lyon, France.,bioMérieux Joint Research Unit, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Department of Anaesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Université Claude Bernard Lyon 1, Lyon, France
| | - François Mallet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | | | | |
Collapse
|
5
|
Extracellular Vesicles Released by Colorectal Cancer Cell Lines Modulate Innate Immune Response in Zebrafish Model: The Possible Role of Human Endogenous Retroviruses. Int J Mol Sci 2019; 20:ijms20153669. [PMID: 31357477 PMCID: PMC6695895 DOI: 10.3390/ijms20153669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important components of the metastatic niche and are crucial in infiltration, metastasis, and immune tolerance processes during tumorigenesis. We hypothesized that human endogenous retroviruses (HERV) positive EVs derived from tumor cellsmay have a role in modulating the innate immune response. The study was conducted in two different colorectal cancer cell lines, representing different stages of cancer development: Caco-2, derived from a non-metastatic colorectal adenocarcinoma, and SK-CO-1, derived from metastatic colorectal adenocarcinoma (ascites). Both cell lines were treated with decitabine to induce global hypomethylation and to reactivate HERV expression. EVs were quantified by nanoparticle tracking analysis, and HERV-positive EV concentrations were measured by flow cytometry. The effect of EVs isolated from both untreated and decitabine-treated cells on the innate immune response was evaluated by injecting them in zebrafish embryos and then assessing Interleukin 1β (IL1-β), Interleukin 10 (IL-10), and the myeloperoxidase (mpx) expression levels by real-time qPCR. Interestingly, HERV-K positive EVs concentrations were significantly associated with a reduced expression of IL1-β and mpx, supporting our hypothesis that HERV-positive EVs may act as immunomodulators in tumor progression. The obtained results open new perspectives about the modulation of the immune response in cancer therapy.
Collapse
|
6
|
Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. NATURE PLANTS 2019; 5:26-33. [PMID: 30531940 PMCID: PMC6366555 DOI: 10.1038/s41477-018-0320-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 05/02/2023]
Abstract
Retrotransposons have played an important role in the evolution of host genomes1,2. Their impact is mainly deduced from the composition of DNA sequences that have been fixed over evolutionary time2. Such studies provide important 'snapshots' reflecting the historical activities of transposons but do not predict current transposition potential. We previously reported sequence-independent retrotransposon trapping (SIRT) as a method that, by identification of extrachromosomal linear DNA (eclDNA), revealed the presence of active long terminal repeat (LTR) retrotransposons in Arabidopsis3. However, SIRT cannot be applied to large and transposon-rich genomes, as found in crop plants. We have developed an alternative approach named ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for such situations. ALE-seq reveals sequences of 5' LTRs of eclDNAs after two-step amplification: in vitro transcription and subsequent reverse transcription. Using ALE-seq in rice, we detected eclDNAs for a novel Copia family LTR retrotransposon, Go-on, which is activated by heat stress. Sequencing of rice accessions revealed that Go-on has preferentially accumulated in Oryza sativa ssp. indica rice grown at higher temperatures. Furthermore, ALE-seq applied to tomato fruits identified a developmentally regulated Gypsy family of retrotransposons. A bioinformatic pipeline adapted for ALE-seq data analyses is used for the direct and reference-free annotation of new, active retroelements. This pipeline allows assessment of LTR retrotransposon activities in organisms for which genomic sequences and/or reference genomes are either unavailable or of low quality.
Collapse
Affiliation(s)
- Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai, China.
| | - Matthias Benoit
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Matthijs Oosterbeek
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Radachowka 37, Kolbiel, Poland.
| |
Collapse
|
7
|
Grandi N, Tramontano E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front Microbiol 2018; 9:462. [PMID: 29593697 PMCID: PMC5861771 DOI: 10.3389/fmicb.2018.00462] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancient infections accounting for about the 8% of our genome. Despite their persistence in human DNA led to the accumulation of mutations, HERVs are still contributing to the human transcriptome, and a growing number of findings suggests that their expression products may have a role in various diseases. Among HERV products, the envelope proteins (Env) are currently highly investigated for their pathogenic properties, which could likely be participating to several disorders with complex etiology, particularly in the contexts of autoimmunity and cancer. In fact, HERV Env proteins have been shown, on the one side, to trigger both innate and adaptive immunity, prompting inflammatory, cytotoxic and apoptotic reactions; and, on the other side, to prevent the immune response activation, presenting immunosuppressive properties and acting as immune downregulators. In addition, HERV Env proteins have been shown to induce abnormal cell-cell fusion, possibly contributing to tumor development and metastasizing processes. Remarkably, even highly defective HERV env genes and alternative env splicing variants can provide further mechanisms of pathogenesis. A well-known example is the HERV-K(HML2) env gene that, depending on the presence or the absence of a 292-bp deletion, can originate two proteins of different length (Np9 and Rec) proposed to have oncogenic properties. The understanding of their involvement in complex pathological disorders made HERV Env proteins potential targets for therapeutic interventions. Of note, a monoclonal antibody directed against a HERV-W Env is currently under clinical trial as therapeutic approach for multiple sclerosis, representing the first HERV-based treatment. The present review will focus on the current knowledge of the HERV Env expression, summarizing its role in human physiology and its possible pathogenic effects in various cancer and autoimmune disorders. It moreover analyzes HERV Env possible exploitation for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
8
|
Zare M, Mostafaei S, Ahmadi A, Azimzadeh Jamalkandi S, Abedini A, Esfahani-Monfared Z, Dorostkar R, Saadati M. Human endogenous retrovirus env genes: Potential blood biomarkers in lung cancer. Microb Pathog 2018; 115:189-193. [DOI: 10.1016/j.micpath.2017.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
|
9
|
Li M, Radvanyi L, Yin B, Rycaj K, Li J, Chivukula R, Lin K, Lu Y, Shen J, Chang DZ, Li D, Johanning GL, Wang-Johanning F. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin Cancer Res 2017; 23:5892-5911. [PMID: 28679769 DOI: 10.1158/1078-0432.ccr-17-0001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Purpose: We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer.Experimental Design: shRNA was employed to knockdown (KD) the expression of HERV-K in pancreatic cancer cells.Results: HERV-K env expression was detected in seven pancreatic cancer cell lines and in 80% of pancreatic cancer patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several pancreatic cancer cell lines. Reverse transcriptase activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in pancreatic cancer patient sera (N = 106) than in normal donor sera (N = 40). Importantly, the in vitro and in vivo growth rates of three pancreatic cancer cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-Seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several pancreatic cancer cells or tumors.Conclusions: These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in pancreatic cancer. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of pancreatic cancer, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis, and immunotherapy of pancreatic cancer. Clin Cancer Res; 23(19); 5892-911. ©2017 AACR.
Collapse
Affiliation(s)
- Ming Li
- Viral Oncology Program, Center for Cancer and Metabolism, SRI International, Menlo Park, California
| | - Laszlo Radvanyi
- EMD Serono Research and Development Institute, Billerica, Massachusetts
| | - Bingnan Yin
- Department of Inflammation and Epigenetics, Methodist Research Institute, Houston, Texas
| | | | - Jia Li
- Viral Oncology Program, Center for Cancer and Metabolism, SRI International, Menlo Park, California
| | - Raghavender Chivukula
- Viral Oncology Program, Center for Cancer and Metabolism, SRI International, Menlo Park, California
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, the University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, the University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - JianJun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, the University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - David Z Chang
- Virginia Oncology Associates, Newport News, Virginia
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary L Johanning
- Viral Oncology Program, Center for Cancer and Metabolism, SRI International, Menlo Park, California
| | - Feng Wang-Johanning
- Viral Oncology Program, Center for Cancer and Metabolism, SRI International, Menlo Park, California.
| |
Collapse
|
10
|
Kim HJ, Moon BI, Lee JW, Kim SC, Kim HJ. Age-related reduction of antibody response against the human endogenous retrovirus K envelope in women. Oncotarget 2017; 7:17327-37. [PMID: 26872058 PMCID: PMC4951215 DOI: 10.18632/oncotarget.7307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 01/14/2023] Open
Abstract
In the present study, the correlation between the antibody response against human endogenous retrovirus K (HERV-K) envelope and human age was investigated. Antibody levels were compared in groups in their 20s (n = 25), 30s (n = 39), 40s (n = 68), 50s (n = 32), and 60s and over (n = 25), which included healthy individuals and breast cancer and/or cervical cancer patients. It appeared that both IgM and IgG responses against the HERV-K envelope fell with increasing age. There were no differences in anti-HERV-K envelope antibody levels between healthy individuals and cancer patients. Therefore, our results indicated that the anti-HERV-K antibody levels cannot be considered as cancer-specific marker. Also, IgG1 appeared to be the predominant subtype in the reduction of the IgG response by age. Receiver operating characteristic curves of anti-HERV-K envelope IgM levels indicated that the groups of people in their 20s or 30s could be distinguished from those in their 40s, 50s or 60s and over with satisfactory sensitivity and specificity. These findings indicate that the serum antibody level of HERV-K envelope is a critical parameter reflecting person's age.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 06974, South Korea
| | - Byung-In Moon
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 07985, South Korea
| | - Jun Woo Lee
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 07985, South Korea
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 07985, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 06974, South Korea
| |
Collapse
|
11
|
Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:111-162. [DOI: 10.1016/bs.pmbts.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Bray S, Turnbull M, Hebert S, Douville RN. Insight into the ERVK Integrase - Propensity for DNA Damage. Front Microbiol 2016; 7:1941. [PMID: 27990140 PMCID: PMC5131560 DOI: 10.3389/fmicb.2016.01941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses create permanently integrated proviruses that exist in the host genome. Retroviral genomes encode for functionally conserved gag, pro, pol, and env regions, as well as integrase (IN), which is required for retroviral integration. IN mediates viral genome insertion through 3′ end processing of the viral DNA and the strand transfer reaction. This process requires the formation of a pre-integration complex, comprised of IN, viral DNA, and cellular proteins. Viral insertion causes DNA damage, leading to the requirement of host DNA repair mechanisms. Therefore, a failure of DNA repair pathways may result in genomic instability and potentially cause host cell death. Considering the numerous human diseases associated with genomic instability, the endogenous retrovirus-K (ERVK) IN should be considered as a putative contributor to DNA damage in human cells. Future research and drug discovery should focus on ERVK IN activity and its role in human conditions, such as neurological disease and cancers.
Collapse
Affiliation(s)
- Samantha Bray
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Matthew Turnbull
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Sherry Hebert
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg, WinnipegMB, Canada; Department of Immunology, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
13
|
Pérot P, Mullins CS, Naville M, Bressan C, Hühns M, Gock M, Kühn F, Volff JN, Trillet-Lenoir V, Linnebacher M, Mallet F. Expression of young HERV-H loci in the course of colorectal carcinoma and correlation with molecular subtypes. Oncotarget 2016; 6:40095-111. [PMID: 26517682 PMCID: PMC4741882 DOI: 10.18632/oncotarget.5539] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/13/2015] [Indexed: 01/02/2023] Open
Abstract
Background Expression of the human endogenous retrovirus (HERV)-H family has been associated with colorectal carcinomas (CRC), yet no individual HERV-H locus expression has been thoroughly correlated with clinical data. Here, we characterized HERV-H reactivations in clinical CRC samples by integrating expression profiles, molecular patterns and clinical data. Expression of relevant HERV-H sequences was analyzed by qRT-PCR on two well-defined clinical cohorts (n = 139 pairs of tumor and adjacent normal colon tissue) including samples from adenomas (n = 21) and liver metastases (n = 16). Correlations with clinical and molecular data were assessed. Results CRC specific HERV-H sequences were validated and found expressed throughout CRC disease progression. Correlations between HERV-H expression and lymph node invasion of tumor cells (p = 0.0006) as well as microsatellite instable tumors (p < 0.0001) were established. No association with regard to age, tumor localization, grading or common mutations became apparent. Interestingly, CRC expressed elements belonged to specific young HERV-H subfamilies and their 5′ LTR often presented active histone marks. Conclusion These results suggest a functional role of HERV-H sequences in colorectal carcinogenesis. The pronounced connection with microsatellite instability warrants a more detailed investigation. Thus, HERV-H sequences in addition to tumor specific mutations may represent clinically relevant, truly CRC specific markers for diagnostic, prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Philippe Pérot
- Cancer Biomarkers Research Group, Joint Unit Hospices Civils de Lyon, bioMérieux, Centre Hospitalier Lyon Sud, Pierre Bénite, France.,Current address: Institut Pasteur, Laboratory for Pathogen Discovery, Paris, France
| | - Christina Susanne Mullins
- Cancer Biomarkers Research Group, Joint Unit Hospices Civils de Lyon, bioMérieux, Centre Hospitalier Lyon Sud, Pierre Bénite, France.,Centre d'Investigation des Thérapeutiques en Oncologie et Hématologie, EMR 3738 Lyon Claude Bernard University, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS/Université Lyon I, Lyon, France
| | - Cédric Bressan
- Cancer Biomarkers Research Group, Joint Unit Hospices Civils de Lyon, bioMérieux, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Maja Hühns
- Institute of Pathology, University Medicine Rostock, Rostock, Germany
| | - Michael Gock
- Department of General, Thoracic, Vascular and Transplantation Surgery, University Medicine Rostock, Rostock, Germany
| | - Florian Kühn
- Department of General, Thoracic, Vascular and Transplantation Surgery, University Medicine Rostock, Rostock, Germany
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS/Université Lyon I, Lyon, France
| | - Véronique Trillet-Lenoir
- Centre d'Investigation des Thérapeutiques en Oncologie et Hématologie, EMR 3738 Lyon Claude Bernard University, Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - François Mallet
- Cancer Biomarkers Research Group, Joint Unit Hospices Civils de Lyon, bioMérieux, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| |
Collapse
|
14
|
Kozlov AP. Expression of evolutionarily novel genes in tumors. Infect Agent Cancer 2016; 11:34. [PMID: 27437030 PMCID: PMC4949931 DOI: 10.1186/s13027-016-0077-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TSEEN (tumor specifically expressed, evolutionarily novel) genes.
Collapse
Affiliation(s)
- A. P. Kozlov
- The Biomedical Center and Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
15
|
Mullins CS, Hühns M, Krohn M, Peters S, Cheynet V, Oriol G, Guillotte M, Ducrot S, Mallet F, Linnebacher M. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples. PLoS One 2016; 11:e0153349. [PMID: 27119520 PMCID: PMC4847760 DOI: 10.1371/journal.pone.0153349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
Introduction A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). Results The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Conclusion Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.
Collapse
Affiliation(s)
- Christina S. Mullins
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Maja Hühns
- University Medicine Rostock, Institute of Pathology, Strempelstraße 14, 18055 Rostock, Germany
| | - Mathias Krohn
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Sven Peters
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Valérie Cheynet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | - Guy Oriol
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | | | - Sandrine Ducrot
- R&D Immunoassay, bioMérieux, Raw Material Department, Marcy l’Etoile, France
| | - François Mallet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
- EA Pathophysiology of injury-induced immunosuppression, University of Lyon1–Hospices Civils de Lyon–bioMérieux,Hôpital Edouard Herriot, 5, Place d’Arsonval, 69437 LYON Cedex 3, Lyon, France
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
- * E-mail:
| |
Collapse
|
16
|
Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int J Cancer 2014; 137:1249-57. [PMID: 24890612 PMCID: PMC6264888 DOI: 10.1002/ijc.29003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
Harbored as relics of ancient germline infections, human endogenous retroviruses (HERVs) now constitute up to 8% of our genome. A proportion of this sequence has been co-opted for molecular and cellular processes, beneficial to human physiology, such as the fusogenic activity of the envelope protein, a vital component of placentogenesis. However, the discovery of high levels of HERV-K mRNA and protein and even virions in a wide array of cancers has revealed that HERV-K may be playing a more sinister role–a role as an etiological agent in cancer itself. Whether the presence of this retroviral material is simply an epiphenomenon, or an actual causative factor, is a hotly debated topic. This review will summarize the current state of knowledge regarding HERV-K and cancer and attempt to outline the potential mechanisms by which HERV-K could be involved in the onset and promotion of carcinogenesis.
Collapse
Affiliation(s)
- Ronan F Downey
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland.,Department of Radiation Oncology, Galway University Hospitals, Galway, Ireland
| | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Francis J Giles
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland.,HRB Clinical Research Facilities Galway & Dublin, National University of Ireland Galway and Trinity College Dublin, Galway, Ireland
| | - Sharon A Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
The saga of XMRV: a virus that infects human cells but is not a human virus. Emerg Microbes Infect 2014; 3:e. [PMID: 26038516 PMCID: PMC4008767 DOI: 10.1038/emi.2014.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/17/2023]
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) was discovered in 2006 in a search for a viral etiology of human prostate cancer (PC). Substantial interest in XMRV as a potentially new pathogenic human retrovirus was driven by reports that XMRV could be detected in a significant percentage of PC samples, and also in tissues from patients with chronic fatigue syndrome (CFS). After considerable controversy, etiologic links between XMRV and these two diseases were disproven. XMRV was determined to have arisen during passage of a human PC tumor in immunocompromised nude mice, by activation and recombination between two endogenous murine leukemia viruses from cells of the mouse. The resulting XMRV had a xentropic host range, which allowed it replicate in the human tumor cells in the xenograft. This review describes the discovery of XMRV, and the molecular and virological events leading to its formation, XMRV infection in animal models and biological effects on infected cells. Lessons from XMRV for other searches of viral etiologies of cancer are discussed, as well as cautions for researchers working on human tumors or cell lines that have been passed through nude mice, includingpotential biohazards associated with XMRV or other similar xenotropic murine leukemia viruses (MLVs).
Collapse
|
18
|
Pérot P, Cheynet V, Decaussin-Petrucci M, Oriol G, Mugnier N, Rodriguez-Lafrasse C, Ruffion A, Mallet F. Microarray-based identification of individual HERV loci expression: application to biomarker discovery in prostate cancer. J Vis Exp 2013:e50713. [PMID: 24300377 PMCID: PMC3969901 DOI: 10.3791/50713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Collapse
|
19
|
Zwolińska K, Knysz B, Gąsiorowski J, Pazgan-Simon M, Gładysz A, Sobczyński M, Piasecki E. Frequency of human endogenous retroviral sequences (HERV) K113 and K115 in the Polish population, and their effect on HIV infection. PLoS One 2013; 8:e77820. [PMID: 24204983 PMCID: PMC3810129 DOI: 10.1371/journal.pone.0077820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115. It has been suggested that their presence and expression was connected with several human diseases. It is also believed that they could interfere with the replication cycle of exogenous retroviruses, including HIV. RESULTS Prevalence of endogenous retroviral sequences HERV-K113 and HERV-K115 was determined in the Polish population. The frequencies were found as 11.8% for HERV-K113 and 7.92% for HERV-K115. To verify the hypothesis that the presence of these HERVs sequences could affect susceptibility to HIV infection, comparison of a control group (HIV-negative, not exposed to HIV; n = 303) with HIV-positive patients (n = 470) and exposed but uninfected (EU) individuals (n = 121) was performed. Prevalence of HERV-K113 and HERV-K115 in the EU group was 8.26% and 5.71%, respectively. In the HIV(+) group we detected HERV-K113 sequences in 12.98% of the individuals and HERV-K115 sequences in 7.23% of the individuals. There were no statistically significant differences between groups studied. CONCLUSION The frequency of HERV-K113 and HERV-K115 sequences in Poland were found to be higher than usually shown for European populations. No relation between presence of the HERVs and HIV infection was detected.
Collapse
Affiliation(s)
- Katarzyna Zwolińska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- * E-mail:
| | - Brygida Knysz
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Jacek Gąsiorowski
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Monika Pazgan-Simon
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Andrzej Gładysz
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Maciej Sobczyński
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Egbert Piasecki
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University, Częstochowa, Poland
| |
Collapse
|
20
|
Maliniemi P, Vincendeau M, Mayer J, Frank O, Hahtola S, Karenko L, Carlsson E, Mallet F, Seifarth W, Leib-Mösch C, Ranki A. Expression of human endogenous retrovirus-w including syncytin-1 in cutaneous T-cell lymphoma. PLoS One 2013; 8:e76281. [PMID: 24098463 PMCID: PMC3788054 DOI: 10.1371/journal.pone.0076281] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 12/03/2022] Open
Abstract
The pathomechanism of mycosis fungoides (MF), the most common type of primary cutaneous T-cell lymphomas (CTCLs) and a malignancy of non-recirculating, skin-resident T-cells, is unknown albeit underlying viral infections have been sought for. Human endogenous retroviruses (HERVs) are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancers. We explored the transcriptional activity of HERV sequences in a total of 34 samples comprising MF and psoriasis skin lesions, as well as corresponding non-malignant skin using a retrovirus-specific microarray and quantitative RT-PCR. To identify active HERV-W loci, we cloned the HERV-W specific RT-PCR products, sequenced the cDNA clones and assigned the sequences to HERV-W loci. Finally, we used immunohistochemistry on MF patient and non-malignant inflammatory skin samples to confirm specific HERV-encoded protein expression. Firstly, a distinct, skin-specific transcription profile consisting of five constitutively active HERV groups was established. Although individual variability was common, HERV-W showed significantly increased transcription in MF lesions compared to clinically intact skin from the same patient. Predominantly transcribed HERV-W loci were found to be located in chromosomes 6q21 and 7q21.2, chromosomal regions typically altered in CTCL. Surprisingly, we also found the expression of 7q21.2/ERVWE1-encoded Syncytin-1 (Env) protein in MF biopsies and expression of Syncytin-1 was seen in malignant lymphocytes, especially in the epidermotropic ones, in 15 of 30 cases studied. Most importantly, no Syncytin-1 expression was detected in inflammatory dermatosis (Lichen ruber planus) with skin-homing, non-malignant T lymphocytes. The expression of ERVWE1 mRNA was further confirmed in 3/7 MF lesions analyzed. Our observations strengthen the association between activated HERVs and cancer. The study offers a new perspective into the pathogenesis of CTCL since we demonstrate that differences in HERV-W transcription levels between lesional MF and non-malignant skin are significant, and that ERVWE1-encoded Syncytin-1 is expressed in MF lymphoma cells.
Collapse
Affiliation(s)
- Pilvi Maliniemi
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Oliver Frank
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Sonja Hahtola
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Leena Karenko
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Emilia Carlsson
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Francois Mallet
- Joint Unit Hospices Civils de Lyon-bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Annamari Ranki
- Department of Dermatology and Allergology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Hohn O, Hanke K, Bannert N. HERV-K(HML-2), the Best Preserved Family of HERVs: Endogenization, Expression, and Implications in Health and Disease. Front Oncol 2013; 3:246. [PMID: 24066280 PMCID: PMC3778440 DOI: 10.3389/fonc.2013.00246] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022] Open
Abstract
Retroviruses that have the ability to infect germ line cells can become an integral and inherited part of the host genome. About 8% of the human chromosomal DNA consists of sequences derived from infections by retroviruses that presumably circulated 2-40 millions of years ago, and some elements are actually much older. Post-insertional recombinations, deletions, and mutations have rendered all known human endogenous retroviruses (HERVs) non-infectious. However some, particularly the most recently acquired proviruses of the HERV-K(HML-2) family, can expresses viral proteins and produce viral particles. In this review we will first discuss the major aspects of the endogenization process and peculiarities of the different HERV-K families. We will then focus on the genes and proteins encoded by HERV-K(HML-2) as well as inactivation of these proviruses by postinsertional mutations and their inhibition by antiretroviral factors. After describing the evolutionary interplay between host and endogenous retrovirus we will delve deeper into the currently limited understanding of HERV-K and its possible association with disease, particularly tumorigenesis.
Collapse
Affiliation(s)
- Oliver Hohn
- Division for HIV and Other Retroviruses, Robert Koch Institute , Berlin , Germany
| | | | | |
Collapse
|