1
|
Cui Y, Pu M, Gong Y, Li R, Wang X, Ye J, Huang H, Liao D, Yang Y, Yin A, Li J, Deng Y, Tian Z, Pu R. METTL3-driven m6A modification of lncRNA FAM230B suppresses ferroptosis by modulating miR-27a-5p/BTF3 axis in gastric cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130714. [PMID: 39278369 DOI: 10.1016/j.bbagen.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Our previous research revealed the apoptosis-inhibiting effect of lncRNA FAM230B in gastric cancer (GC). While its role on ferroptosis of GC remain unexplored. In this study, the m6A level and RNA stability regulation of METTL3 on FAM230B was detected by m6A quantification, stability assays, MeRIP, and their interaction was confirmed by RIP, and RNA pull-down assays. The level of ferroptosis was detected by flow cytometry, MDA and GSH level assessments, and electron microscopy. Gene expression was detected by quantitative real-time PCR, western blot, and immunofluorescence. The miR-27a-5p and BTF3 interaction was predicted with TargetScan and confirmed by dual-luciferase assay. Here, elevated levels of METTL3 and FAM230B were observed in GC tissues and cell lines. METTL3 was confirmed to bind with FAM230B RNA. Furthermore, silencing METTL3 reduced FAM230B m6A levels and stability, leading to decreased FAM230B and increased miR-27a-5p expressions. FAM230B knockdown favored ferroptosis and increased BTF3 expression, while its overexpression mitigated erastin-induced ferroptosis in GC cells. Additionally, BTF3 overexpression was found to negate miR-27a-5p's ferroptosis-promoting effects in GC cells. Collectively, our study demonstrates that the m6A modification of FAM230B by METTL3 plays a crucial role in promoting GC progression by reducing ferroptosis, through the modulation of the miR-27a-5p/BTF3 axis.
Collapse
Affiliation(s)
- Yejia Cui
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yanting Gong
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Runchao Li
- Department of Hand and Foot Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Xiaokang Wang
- Department of Thoracic Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jinjun Ye
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Haohai Huang
- Department of Clinical Pharmacy, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Dan Liao
- Department of Gynaecology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jiale Li
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yuling Deng
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Rong Pu
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China.
| |
Collapse
|
2
|
Zhang Z, Shi Q, Zhu X, Jin L, Lang L, Lyu S, Xin X, Huang Y, Yu X, Li Z, Chen S, Xu Z, Zhang W, Wang E. Identification and Functional Analysis of Transcriptome Profiles, Long Non-Coding RNAs, Single-Nucleotide Polymorphisms, and Alternative Splicing from the Oocyte to the Preimplantation Stage of Sheep by Single-Cell RNA Sequencing. Genes (Basel) 2023; 14:1145. [PMID: 37372325 DOI: 10.3390/genes14061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Numerous dynamic and complicated processes characterize development from the oocyte to the embryo. However, given the importance of functional transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms, and alternative splicing during embryonic development, the effect that these features have on the blastomeres of 2-, 4-, 8-, 16-cell, and morula stages of development has not been studied. Here, we carried out experiments to identify and functionally analyze the transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms (SNPs), and alternative splicing (AS) of cells from sheep from the oocyte to the blastocyst developmental stages. We found between the oocyte and zygote groups significantly down-regulated genes and the second-largest change in gene expression occurred between the 8- and 16-cell stages. We used various methods to construct a profile to characterize cellular and molecular features and systematically analyze the related GO and KEGG profile of cells of all stages from the oocyte to the blastocyst. This large-scale, single-cell atlas provides key cellular information and will likely assist clinical studies in improving preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoting Zhu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Lei Jin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoling Xin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiang Yu
- Henan Animal Health Supervision Institute, Zhengzhou 450003, China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China
| | - Sujuan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| |
Collapse
|
3
|
Zhou W, Yun Z, Wang T, Li C, Zhang J. BTF3-mediated regulation of BMI1 promotes colorectal cancer through influencing epithelial-mesenchymal transition and stem cell-like traits. Int J Biol Macromol 2021; 187:800-810. [PMID: 34293363 DOI: 10.1016/j.ijbiomac.2021.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The critical roles of transcription factors in cell differentiation and the delineation of cell phenotypes have been reported. The current study aimed to characterize the functions of the basic transcription factor 3 (BTF3) gene and its regulation of the intestinal stem cell marker B cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) gene in colorectal cancer (CRC). Stem cell-like traits and epithelial-mesenchymal transition (EMT) of cultured human CRC cell line HCT116 were evaluated by CD133+ subpopulation counting, colony formation, tumorosphere generation, and expression of EMT-specific markers and stem cell markers. The interaction of BTF3 with BMI1 was analyzed. BTF3 was overexpressed in CRC tissues, which was associated with poor patient survival. BTF3 knockdown impaired the retention of stem cell-like traits of HCT116 and inhibited the EMT of HCT116 cells. BMI1 expression changed in a BTF3-dependent manner, and its overexpression could partially restore stem cell-like traits and EMT of cultured HCT116 cells after BTF3 knockdown. In parallel, treatment with the BMI1 inhibitor PTC-209 mimicked the effects of BTF3 knockdown on stem cell-like traits and EMT of cultured HCT116 cells. Together, these results support the notion that BTF3 and BMI1 are potential therapeutic targets to limit CRC metastasis.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
4
|
Paluschinski M, Jin CJ, Qvartskhava N, Görg B, Wammers M, Lang J, Lang K, Poschmann G, Stühler K, Häussinger D. Characterization of the scavenger cell proteome in mouse and rat liver. Biol Chem 2021; 402:1073-1085. [PMID: 34333885 DOI: 10.1515/hsz-2021-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly specialized hepatocyte subpopulations like glutamine synthetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been characterized extensively regarding expression of other genes and potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and perivenous GS-expressing hepatocytes from mouse and rat. Apart from established markers of GS+ hepatocytes such as glutamate/aspartate transporter II (GLT1) or ammonium transporter Rh type B (RhBG), we identified novel scavenger cell-specific proteins like basal transcription factor 3 (BTF3) and heat-shock protein 25 (HSP25). Interestingly, BTF3 and HSP25 were heterogeneously distributed among GS+ hepatocytes in mouse liver slices. Feeding experiments showed that RhBG expression was increased in livers from mice fed with high protein diet compared to standard chow. While spatial distributions of GS and carbamoylphosphate synthetase 1 (CPS1) were unaffected, periportal areas constituted by glutaminase 2 (GLS2)-positive hepatocytes were enlarged or reduced in response to high or low protein diet, respectively. The data suggest that the population of perivenous GS+ scavenger cells is heterogeneous and not uniform as previously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Cheng Jun Jin
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marianne Wammers
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Judith Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Karl Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biomedical Research Center (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021; 10:cells10040754. [PMID: 33808130 PMCID: PMC8067202 DOI: 10.3390/cells10040754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.
Collapse
Affiliation(s)
- Morgane Lallier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Louise Marchandet
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Brice Moukengue
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Celine Charrier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Marc Baud’huin
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- CHU Nantes, 44035 Nantes, France
| | - Franck Verrecchia
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Benjamin Ory
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - François Lamoureux
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- Correspondence:
| |
Collapse
|
6
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Gao X, Yi J, Sang X, Dai Z, Tao Z, Wang M, Shen L, Jia Y, Xie D, Cheng H, Liu Z, Liu P. BTF3 confers oncogenic activity in prostate cancer through transcriptional upregulation of Replication Factor C. Cell Death Dis 2021; 12:12. [PMID: 33414468 PMCID: PMC7791038 DOI: 10.1038/s41419-020-03348-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
High levels of Basic Transcription Factor 3 (BTF3) have been associated with prostate cancer. However, the mechanisms underlying the role of BTF3 as an oncogenic transcription factor in prostate tumorigenesis have not been explored. Herein, we report that BTF3 confers oncogenic activity in prostate cancer cells. Mechanistically, while both BTF3 splicing isoforms (BTF3a and BTF3b) promote cell growth, BTF3b, but not BTF3a, regulates the transcriptional expression of the genes encoding the subunits of Replication Factor C (RFC) family that is involved in DNA replication and damage repair processes. BTF3 knockdown results in decreased expression of RFC genes, and consequently attenuated DNA replication, deficient DNA damage repair, and increased G2/M arrest. Furthermore, knockdown of the RFC3 subunit diminishes the growth advantage and DNA damage repair capability conferred by ectopic overexpression of BTF3b. Importantly, we show that enforced BTF3 overexpression in prostate cancer cells induces substantial accumulation of cisplatin-DNA adducts and render the cells more sensitive to cisplatin treatment both in vitro and in vivo. These findings provide novel insights into the role of BTF3 as an oncogenic transcription factor in prostate cancer and suggest that BTF3 expression levels may serve as a potential biomarker to predict cisplatin treatment response.
Collapse
Affiliation(s)
- Yuan Zhang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiang Gao
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyan Yi
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaolin Sang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhihong Dai
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiwei Tao
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Min Wang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Lanlin Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yaxun Jia
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Daqing Xie
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailing Cheng
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Zhiyu Liu
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China. .,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
8
|
Wang H, Gao L, Qi M, Su P, Xiong X, Zhao J, Hu J, Han B. BTF3 promotes stemness and inhibits TypeⅠInterferon signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 2020; 537:22-28. [PMID: 33383560 DOI: 10.1016/j.bbrc.2020.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is a major challenge in clinical practice due to its aggressiveness and lack of targeted treatment. Cancer stem-like traits contribute to tumorigenesis and immune privilege of TNBC. However, the relationship of stemness and immunosurveillance remains unclear. Here, we demonstrate that BTF3 expression is related with stem-like properties in TNBC cells. BTF3 modulates stemness, migration and proliferation of TNBC in vitro. Bioinformatics analysis revealed that interferon signaling pathways and IRF7, both of which participate in the immune escape of TNBC, are closely related to BTF3 in TNBC cells. Knockdown of BTF3 activates IRF7 expression through increased degradation of BMI1, a protein that can represses IRF7 transcription by directly binding to its promotor region. BTF3 links stem-like traits and the interferon signaling pathway, revealing the potential connection of stemness and immunomodulation in TNBC. Clinically, we suggest that BTF3 is predictive of poor prognosis in patients with TNBC. Together, our findings highlight an important role of BTF3 in regulating the progression of TNBC cells.
Collapse
Affiliation(s)
- Hexiang Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Qingdao Hiser Hospital, 266034, Qingdao, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jian Zhao
- Department of Thoracic Surgery, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Jing Hu
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| |
Collapse
|
9
|
Li Y, Liu D, Li T, Zhu Y. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations. BMC Bioinformatics 2020; 21:12. [PMID: 31918656 PMCID: PMC6953167 DOI: 10.1186/s12859-019-3314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene regulatory networks (GRNs) can be inferred from both gene expression data and genetic perturbations. Under different conditions, the gene data of the same gene set may be different from each other, which results in different GRNs. Detecting structural difference between GRNs under different conditions is of great significance for understanding gene functions and biological mechanisms. RESULTS In this paper, we propose a Bayesian Fused algorithm to jointly infer differential structures of GRNs under two different conditions. The algorithm is developed for GRNs modeled with structural equation models (SEMs), which makes it possible to incorporate genetic perturbations into models to improve the inference accuracy, so we name it BFDSEM. Different from the naive approaches that separately infer pair-wise GRNs and identify the difference from the inferred GRNs, we first re-parameterize the two SEMs to form an integrated model that takes full advantage of the two groups of gene data, and then solve the re-parameterized model by developing a novel Bayesian fused prior following the criterion that separate GRNs and differential GRN are both sparse. CONCLUSIONS Computer simulations are run on synthetic data to compare BFDSEM to two state-of-the-art joint inference algorithms: FSSEM and ReDNet. The results demonstrate that the performance of BFDSEM is comparable to FSSEM, and is generally better than ReDNet. The BFDSEM algorithm is also applied to a real data set of lung cancer and adjacent normal tissues, the yielded normal GRN and differential GRN are consistent with the reported results in previous literatures. An open-source program implementing BFDSEM is freely available in Additional file 1.
Collapse
Affiliation(s)
- Yan Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Dayou Liu
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Tengfei Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
| | - Yungang Zhu
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| |
Collapse
|
10
|
Upregulation of BTF3 affects the proliferation, apoptosis, and cell cycle regulation in hypopharyngeal squamous cell carcinoma. Biomed Pharmacother 2019; 118:109211. [DOI: 10.1016/j.biopha.2019.109211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
|
11
|
Liu Q, Wu J, Lu T, Fang Z, Huang Z, Lu S, Dai C, Li M. Positive expression of basic transcription factor 3 predicts poor survival of colorectal cancer patients: possible mechanisms involved. Cell Death Dis 2019; 10:509. [PMID: 31263147 PMCID: PMC6603001 DOI: 10.1038/s41419-019-1747-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Basic transcription factor 3 (BTF3) is associated with the development of several cancers. The aim of our study was to elucidate the role of BTF3 in colorectal cancer (CRC) tissues. CRC tissues or their paired adjacent noncancerous (ANCT) tissues were obtained from 90 patients who underwent operations in our hospital from November 2011 to December 2016, and then we implemented a gene microarray assay for detecting significant changes in gene expression and confirmed expression in tissues using immunohistochemistry and real-time PCR. We transfected or injected the silencing BTF3 (BTF3-siRNA) plasmid into cells and nude mice, and measured the tumorigenicity of CRC cells with flow cytometry and studied the expression level of BTF3 downstream genes (MAD2L2, MCM3 and PLK1) in CRC cells. BTF3 expression level was not only significantly higher in CRC tissue than in ANCT tissue (2.61 ± 0.07 vs 1.90 ± 0.03, P < 0.001) but BTF3-siRNA decreased tumor formation in a nude mice model. Furthermore, based on the data of gene microarray analysis, MAD2L2, MCM3 and PLK1 were detected as the downstream target genes of BTF3 and their expressions were positive related with BTF3 expression. Also, through transfecting BTF3-siRNA into HCT116 cells, we found that BTF3-siRNA could decrease cell viability and induced cell apoptosis and blocking the cell cycle. In conclusion, BTF3 is positively related to CRC and BTF3-siRNA attenuated the tumorigenicity of colorectal cancer cells via MAD2L2, MCM3 and PLK1 activity reduction.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
| | - Junjie Wu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Tailiang Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zhixue Fang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zixuan Huang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Shanzheng Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chen Dai
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Mengqian Li
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, Feng T, Liu H, Li X, Xing Y, Xiong X, Shi B, Zhou G, Han B. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:227. [PMID: 31138311 PMCID: PMC6540453 DOI: 10.1186/s13046-019-1222-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Deciphering the novel molecular mechanisms underlying stem-like traits may provide important insight for developing novel therapeutics. Methods Immunohistochemistry and immunofluorescence assays in prostatic tissues; gain- and loss-of-function analyses using ectopic overexpression and shRNAs in PCa cell lines; measurements of tumorigenic and stemness properties, and transcription in vitro and in vivo; transcriptional analysis in public databases. Results We identified that overexpression of BTF3 in PCa tissues and BTF3 expression highly correlates to stem-like traits. Cancer stem-like characteristics in PCa including self-renewal and metastatic potential were impaired by BTF3 loss and promoted by BTF3 overexpression. Mechanistically, BTF3 could stabilize BMI1, which is a crucial regulator of prostate stem cell self-renewal. More importantly, our data revealed that BTF3 is highly predictive of poor prognosis and may help in risk stratification of PCa patients. Conclusions BTF3 promotes PCa progression though modeling stem-like traits in PCa. BTF3 represents a stratification marker in PCa progression and outcomes. Electronic supplementary material The online version of this article (10.1186/s13046-019-1222-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.,Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, M5S1A8, Toronto, ON, Canada
| | - Benkang Shi
- Department of Urology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China. .,Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China.
| |
Collapse
|
13
|
Liu Q, Jiang L, Wang W, Jiang T. BTF3 Silencing Inhibits the Proliferation of Osteosarcoma Cells. J Cancer 2019; 10:1855-1861. [PMID: 31205542 PMCID: PMC6547992 DOI: 10.7150/jca.28476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the bone malignancy cancers with poor prognosis in the early stages worldwide. Basic transcription factor 3 (BTF3) is associated with the development of several types of cancer. The present study aimed to evaluate the role of BTF3 in OS. Silencing of BTF3 was achieved by using stable lentivirus transfection of siRNA targeting BTF3 in the human OS cell line Saos-2. Cell viability and colony-forming ability were measured using methyl-thaizolyl-tetrazolium (MTT) and colony formation assays, respectively. Propidium iodide staining and flow cytometry was used to detect the progression of the cell cycle. To evaluate the possible intracellular signaling molecules involved, a PathScan Intracellular Signaling Array Kit was utilized. Lentivirus-BTF3-shRNA (LV-BTF3-shRNA) suppressed expression of BTF3 in Saos-2 cells (inhibition ratio: 89.8%), which significantly inhibited cell proliferation (48.5%), colony formation and enhanced apoptosis to 48.2% compared to 4.5% with lentivirus control shRNA (N-shRNA). Additionally, BTF3 silencing enhanced the percentage of Saos-2 cells in S and G2/M phases, but significantly reduced cells in the G0/M phase (all P < 0.01). The proteins activated by BTF3 included STAT3, S6 ribosomal protein, HSP27 and SAPK/JNK2, all of which were inhibited by BTF3 silencing, whereas SAPK/JNK1 was upregulated by BTF3 silencing. In the present study, we explored the crucial role of BTF3 in promoting OS cell proliferation as well as laying the foundations for further research to investigate the clinical potential of lentivirus-mediated delivery of BTF3 interruption therapy for the treatment of OS.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Lin Jiang
- Department of Orthopedic Surgery, Traumatology and Orthopedics Hospital of Liuyang, Liuyang 410300, Hunan Province, China
| | - Wanchun Wang
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410005, Hunan Province, China
| | - Tao Jiang
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410005, Hunan Province, China
| |
Collapse
|
14
|
Bardell D, Milner PI, Goljanek-Whysall K, Peffers MJ. Differences in plasma and peritoneal fluid proteomes identifies potential biomarkers associated with survival following strangulating small intestinal disease. Equine Vet J 2019; 51:727-732. [PMID: 30854696 DOI: 10.1111/evj.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Strangulating small intestinal disease (SSID) carries a poor prognosis for survival in comparison to other types of colic, particularly if resection is required. Identification of markers which aid early diagnosis may prevent the need for resection, assist with more accurate prognostication and/or support the decision on whether surgical intervention is likely to be successful, would be of significant welfare benefit. OBJECTIVES To apply an unbiased methodology to investigate the plasma and peritoneal fluid proteomes in horses diagnosed with SSID requiring resection, to identify novel biomarkers which may be of diagnostic or prognostic value. STUDY DESIGN Prospective clinical study. METHODS Plasma and peritoneal fluid from horses presented with acute abdominal signs consistent with SSID was collected at initial clinical examination. Samples from eight horses diagnosed with SSID at surgery in which resection of affected bowel was performed and four control horses subjected to euthanasia for orthopaedic conditions were submitted for liquid chromatography tandem mass spectrometry. Protein expression profiles were determined using label-free quantification. Data were analysed using analysis of variance to identify differentially expressed proteins between control and all SSID horses and SSID horses which survived to hospital discharge and those which did not. Significance was assumed at P≤0.05. RESULTS A greater number of proteins were identified in peritoneal fluid than plasma of both SSID cases and controls, with 123 peritoneal fluid and 13 plasma proteins significantly differentially expressed (DE) between cases and controls (P<0.05, ≥2 fold change). Twelve peritoneal fluid proteins (P<0.036) and four plasma proteins (P<0.05) were significantly DE between SSID horses which survived and those which did not. MAIN LIMITATIONS A low number of samples were analysed, there was variation in duration and severity of SSID and only short-term outcome was considered. CONCLUSIONS Changes in peritoneal fluid proteome may provide a sensitive indicator of small intestinal strangulation and provide biomarkers relevant to prognosis.
Collapse
Affiliation(s)
- D Bardell
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - P I Milner
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - K Goljanek-Whysall
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - M J Peffers
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Chen P, Zhong Q, Li Z, Zhang Y, Huang Z. Expression and clinical significance of basic transcription factor 3 in nasopharyngeal carcinoma. Oncol Lett 2018; 17:789-796. [PMID: 30655831 PMCID: PMC6312943 DOI: 10.3892/ol.2018.9699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2018] [Indexed: 12/28/2022] Open
Abstract
Basic transcription factor 3 (BTF3), a transcription factor and modulator of apoptosis, is differentially expressed in carcinoma. To acquire further understanding of the involvement of BTF3 in carcinoma, the present study analyzed the expression of BTF3, as well as its role in cell function in nasopharyngeal carcinoma (NPC). BTF3 transcription rates in human NPC samples (n=46) and adjacent normal tissue samples (n=46) were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. BTF3-silencing in NPC cells was performed via specific small interfering RNA molecules. The function of BTF3 was analyzed by proliferation assays and colony forming assays using a Cellomic assay system. The positive expression rates of BTF3 were significantly increased in cancerous tissues compared with those in adjacent tissues (P<0.05). In addition, BTF3-silencing decreased cell proliferation and colony formation (P<0.01) in TCA-8113 and 5–8F cells. BTF3 is overexpressed in NPC, and its silencing is associated with decreased cell proliferation and colony formation, enhanced apoptosis and cell cycle regulation of TCA-8113 and 5–8F cells.
Collapse
Affiliation(s)
- Ping Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qi Zhong
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zufei Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
16
|
Li X, Sui J, Xing J, Cao F, Wang H, Fu C, Wang H. Basic transcription factor 3 expression silencing attenuates colon cancer cell proliferation and migration in vitro. Oncol Lett 2018; 17:113-118. [PMID: 30655745 PMCID: PMC6313191 DOI: 10.3892/ol.2018.9613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Basic transcription factor 3 (BTF3) is an RNA polymerase II transcription factor that also regulates apoptosis. Numerous studies have identified that BTF3 is aberrantly expressed in several types of tumor. However, the function of BTF3 in colorectal cancer remains unknown. The aim of the present study was to assess the function of BTF3 during colon cancer tumorigenesis. Applying a lentivirus-transfected short hairpin RNA approach, expression of BTF3 was dysregulated in the colon cancer HCT116 and HT-29 cell lines; knockdown efficiency was verified using the quantitative polymerase chain reaction and western blotting. To determine the function of BTF3 in colon cancer, cell proliferation was assessed using an MTT assay, cell apoptosis and the cell cycle were assessed using flow cytometry, and cell migration was assessed using a Transwell assay. Knockdown of BTF3 inhibited cell proliferation, possibly because BTF3 knockdown induced cell early apoptosis and arrested cells in G0-G1 phase. BTF3 knockdown also inhibited cell migration. The results of the present study identified that BTF3 expression is associated with colon cancer progress, and BTF3 may therefore be a molecular marker for diagnosis and treatment outcomes of human colon cancer.
Collapse
Affiliation(s)
- Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jinke Sui
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chuangang Fu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
17
|
Ding J, Wang X, Zhang Y, Sang X, Yi J, Liu C, Liu Z, Wang M, Zhang N, Xue Y, Shen L, Zhao W, Luo F, Liu P, Cheng H. Inhibition of BTF3 sensitizes luminal breast cancer cells to PI3Kα inhibition through the transcriptional regulation of ERα. Cancer Lett 2018; 440-441:54-63. [PMID: 30315845 DOI: 10.1016/j.canlet.2018.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
Selective phosphatidylinositol 3 kinase (PI3K) inhibitors are being actively tested in clinical trials for ERα-positive (ER+) breast cancer due to the presence of activating PIK3CA mutations. However, recent studies have revealed that increased ERα transcriptional activity limits the efficacy of PI3K inhibitor monotherapy for ER + breast cancers. Herein, we report the identification of BTF3 as an oncogenic transcription factor that regulates ERα expression in luminal breast cancers. Our TCGA analysis reveals high expression levels of BTF3 in luminal/ER + breast cancer and cell line models harboring ERα overexpression. Concordantly, BTF3 expression is highly and strongly associated with ESR1 expression in multiple breast cancer cohorts. We further show that BTF3 promotes the proliferation, survival and migration of ER + breast cancer cells by modulating ESR1 expression and ERα-dependent transcription. Moreover, BTF3 knockdown sensitizes ER + breast cancer cells to the PI3Kα inhibitor BYL-719 in both in vitro and in vivo models. Together, our findings highlight a novel role of BTF3 in modulation of ERα-dependent transcriptional activity and its potential as a predictive marker for the response to PI3K-targeted therapy in ER + breast cancer.
Collapse
Affiliation(s)
- Jinlei Ding
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaonan Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yuan Zhang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaolin Sang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyan Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Chongya Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zundong Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Nan Zhang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yijue Xue
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Lanlin Shen
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fuwen Luo
- Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
18
|
Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun 2018; 9:3846. [PMID: 30242148 PMCID: PMC6155008 DOI: 10.1038/s41467-018-06368-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Connexins are the primary components of gap junctions, providing direct links between cells under many physiological processes. Here, we demonstrate that in addition to this canonical role, Connexins act as transcriptional regulators. We show that Connexin 43 (Cx43) controls neural crest cell migration in vivo by directly regulating N-cadherin transcription. This activity requires interaction between Cx43 carboxy tail and the basic transcription factor-3, which drives the translocation of Cx43 tail to the nucleus. Once in the nucleus they form a complex with PolII which directly binds to the N-cadherin promoter. We found that this mechanism is conserved between amphibian and mammalian cells. Given the strong evolutionary conservation of connexins across vertebrates, this may reflect a common mechanism of gene regulation by a protein whose function was previously ascribed only to gap junctional communication. Connexins are components of gap junctions that link cells and allow intercellular communication. Here, the authors show that the Connexin 43 carboxy tail interacts with basic transcription factor-3, leading to nuclear translocation and direct regulation of N-cadherin expression and neural crest migration.
Collapse
|
19
|
RNAi-mediated TCF-3 gene silencing inhibits proliferation of Eca-109 esophageal cancer cells by inducing apoptosis. Biosci Rep 2017; 37:BSR20170799. [PMID: 28864779 PMCID: PMC5678029 DOI: 10.1042/bsr20170799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023] Open
Abstract
Esophageal cancer (EC) remains an important health problem in China. In the present study, through the use of siRNA, specific gene knockdown of transcription factor 3 gene (TCF-3) was achieved in vitro and the effect of TCF-3 gene on human EC Eca-109 cell proliferation and apoptosis. Eca-109 cells were treated using negative control (NC) of siRNA against TCF-3 (siTCF-3) and siTCF-3 group. Colony formation assay was used to detect the colony formation ability in Eca-109 cells. MTT assay was used to measure the cell growth and viability, whereas BrDU assay was used to evaluate cell proliferation, and flow cytometry (FCM) to assess cell apoptosis. Reverse-transcription quantitative PCR (RT-qPCR) was applied to measure TCF-3 gene expression. Protein expressions of TCF-3, apoptosis-related proteins, Bcl-2, Bax, and caspase-3 were determined using Western blotting. Transfection of siTCF-3 successfully down-regulated TCF-3 gene expression. In addition, siTCF-3, reduced Eca-109 cell viability and proliferation, in a time-dependent manner, and inhibited progression of cell cycle from G0/G1 to S-stage. When treated with siTCF-3, the Eca-109 cells exhibited increased apoptosis, with up-regulated cleaved caspase and Bax expressions, whereas Bcl-2 expression was down-regulated. The present study shows that TCF-3 gene silencing inhibits Eca-109 cell growth and proliferation, suppresses cell cycle progression, and promotes apoptosis, which might serve as a new objective for EC treatment.
Collapse
|
20
|
Zhang DZ, Chen BH, Zhang LF, Cheng MK, Fang XJ, Wu XJ. Basic Transcription Factor 3 Is Required for Proliferation and Epithelial-Mesenchymal Transition via Regulation of FOXM1 and JAK2/STAT3 Signaling in Gastric Cancer. Oncol Res 2017; 25:1453-1462. [PMID: 28276310 PMCID: PMC7841179 DOI: 10.3727/096504017x14886494526344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is the most common epithelial malignancy worldwide. Basic transcription factor 3 (BTF3) plays a crucial role in the regulation of various biological processes. We designed experiments to investigate the molecular mechanism underlying the role of BTF3 in GC cell proliferation and metastasis. We confirmed that BTF3 expression was decreased in GC tissues and several GC cell lines. Lentivirus-mediated downregulation of BTF3 reduced cell proliferation, induced S and G2/M cell cycle arrest, and increased apoptosis. Knockdown of BTF3 significantly reduced the expression of Forkhead box M1 (FOXM1). Upregulation of FOXM1 significantly inhibited the decrease in cell proliferation due to BTF3 silencing, S and G2/M cell cycle arrest, and increase in apoptosis. Knockdown of BTF3 decreased Ki-67 and PCNA expression, whereas it increased p27 expression, which was inhibited by upregulation of FOXM1. Knockdown of BTF3 significantly decreased the ability to invade and migrate. Moreover, knockdown of BTF3 increased E-cadherin expression, whereas it decreased N-cadherin and ZEB2 expression, indicating a decrease in epithelial–mesenchymal transition (EMT). Phosphorylation of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) was significantly inhibited by knockdown of BTF3. IL-6-stimulated phosphorylation of STAT3 and JAK2 markedly suppressed inhibition of EMT due to BTF3 silencing. Silencing of BTF3 decreased tumor volume and weight and reduced peritoneal nodules in implanted tumors. Our findings provide a novel understanding of the mechanism of GC and highlight the important role of BTF3/FOXM1 in tumor growth and BTF3/JAK2/STAT3 in EMT and metastasis.
Collapse
|
21
|
Vieira AR, Bayram M, Seymen F, Sencak RC, Lippert F, Modesto A. In Vitro Acid-Mediated Initial Dental Enamel Loss Is Associated with Genetic Variants Previously Linked to Caries Experience. Front Physiol 2017; 8:104. [PMID: 28275354 PMCID: PMC5319969 DOI: 10.3389/fphys.2017.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that AQP5 and BTF3 genetic variation and expression in whole saliva are associated with caries experience suggesting that these genes may have a functional role in protecting against caries. To further explore these results, we tested ex vivo if variants in these genes are associated with subclinical dental enamel mineral loss. DNA and enamel samples were obtained from 53 individuals. Enamel samples were analyzed for Knoop hardness of sound enamel, integrated mineral loss after subclinical carious lesion creation, and change in integrated mineral loss after remineralization. DNA samples were genotyped for single nucleotide polymorphisms using TaqMan chemistry. Chi-square and Fisher's exact tests were used to compare individuals above and below the mean sound enamel microhardness of the cohort with alpha of 0.05. The A allele of BTF3 rs6862039 appears to be associated with harder enamel at baseline (p = 0.09), enamel more resistant to demineralization (p = 0.01), and enamel that more efficiently regain mineral and remineralize (p = 0.04). Similarly, the G allele of AQP5 marker rs3759129 and A allele of AQP5 marker rs296763 are associated with enamel more resistant to demineralization (p = 0.03 and 0.05, respectively). AQP5 and BTF3 genetic variations influence the initial subclinical stages of caries lesion formation in the subsurface of enamel.
Collapse
Affiliation(s)
- Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA; Department of Pediatric Dentistry, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Merve Bayram
- Department of Pedodontics, School of Dentistry, Medipol Istanbul University Istanbul, Turkey
| | - Figen Seymen
- Department of Pedodontics, School of Dentistry, Istanbul University Istanbul, Turkey
| | - Regina C Sencak
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, School of Dentistry, Indiana University Indianapolis, IN, USA
| | - Adriana Modesto
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA; Department of Pediatric Dentistry, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
22
|
Izadi F, Zamanian-Azodi M, Mansouri V, Khodadoostan M, Naderi N. Exploring conserved mRNA-miRNA interactions in colon and lung cancers. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:184-193. [PMID: 29118934 PMCID: PMC5660268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
AIM The main goal of this analysis was prioritization of co-expressed genes and miRNAs that are thought to have important influences in the pathogenesis of colon and lung cancers. BACKGROUND MicroRNAs (miRNAs) as small and endogenous noncoding RNAs which regulate gene expression by repressing mRNA translation or decreasing stability of mRNAs; they have proven pivotal roles in different types of cancers. Accumulating evidence indicates the role of miRNAs in a wide range of biological processes from oncogenesis and tumor suppressors to contribution to tumor progression. Colon and lung cancers are frequently encountered challenging types of cancers; therefore, exploring trade-off among underlying biological units such as miRNA with mRNAs will probably lead to identification of promising biomarkers involved in these malignancies. METHODS Colon cancer and lung cancer expression data were downloaded from Firehose and TCGA databases and varied genes extracted by DCGL software were subjected to build two gene regulatory networks by parmigene R package. Afterwards, a network-driven integrative analysis was performed to explore prognosticates genes, miRNAs and underlying pathways. RESULTS A total of 192 differentially expressed miRNAs and their target genes within gene regulatory networks were derived by ARACNE algorithm. BTF3, TP53, MYC, CALR, NEM2, miR-29b-3p and miR-145 were identified as bottleneck nodes and enriched via biological gene ontology (GO) terms and pathways chiefly in biosynthesis and signaling pathways by further screening. CONCLUSION Our study uncovered correlated alterations in gene expression that may relate with colon and lung cancers and highlighted the potent common biomarker candidates for the two diseases.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Khodadoostan
- Department of Gastroenterology and Hepatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nosratollah Naderi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Osuna-Jiménez I, Abril N, Vioque-Fernández A, Gómez-Ariza JL, Prieto-Álamo MJ, Pueyo C. The environmental quality of Doñana surrounding areas affects the immune transcriptional profile of inhabitant crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2014; 40:136-145. [PMID: 25003697 DOI: 10.1016/j.fsi.2014.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to identify differentially expressed genes in Procambarus clarkii crayfish collected from locations of different environmental qualities in the Doñana National Park surrounding areas. The pollution sustained by the crayfish was confirmed by their hepatopancreatic metal concentration. We generated forward and reverse libraries by suppression subtractive hybridization (SSH) to analyze the transcriptional profiles of crayfish from moderately and highly polluted zones in comparison with the control site within the Doñana Biological Reserve. Forty-three differentially expressed genes were detected, and most of them were identified as genes involved in a variety of biological functions, particularly in the innate immune response. To verify the SSH results and assess interindividual variability nine transcripts (ALP, AST, BTF3, CHIT, CTS, ferritin, HC, HC2, and SPINK4) were selected for absolute quantification by real-time qRT-PCR. The qRT-PCR data revealed substantial differences in the absolute amounts of the nine transcripts and confirmed their up- or down-regulation in the polluted sites. Additionally, a positive and significant linear correlation was found between the hepatopancreatic copper concentration and the levels of the transcripts encoding hemocyanins. Finally, the transcriptomic study was complemented with a detailed analysis of SNP profiles of the selected transcripts that revealed point mutations that might underlie adaptive response to environmental stress in P. clarkii. Overall, this work provides novel insights into the molecular pathways that could mediate the response to environmental pollutants in P. clarkii emphasizing the central role of the immune function and thus, should clearly benefit further immunotoxicological research in this organism.
Collapse
Affiliation(s)
- Inmaculada Osuna-Jiménez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Amalia Vioque-Fernández
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science, University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain.
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| |
Collapse
|