1
|
Wade U, Pascual-Figal DA, Rabbani F, Ernst M, Albert A, Janssens I, Dierckxsens Y, Iqtadar S, Khokhar NA, Kanwal A, Khan A. The Possible Synergistic Pharmacological Effect of an Oral Berberine (BBR) and Curcumin (CUR) Complementary Therapy Alleviates Symptoms of Irritable Bowel Syndrome (IBS): Results from a Real-Life, Routine Clinical Practice Settings-Based Study. Nutrients 2024; 16:1204. [PMID: 38674895 PMCID: PMC11053504 DOI: 10.3390/nu16081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent chronic functional gastrointestinal disorder, characterised by recurrent abdominal discomfort and altered bowel movements. IBS cause a significantly negative impact on quality of life (QoL). Growing pharmacological evidence suggests that berberine (BBR) and curcumin (CUR) may mitigate IBS symptoms through multiple complementary synergistic mechanisms, resulting in the attenuation of intestinal inflammation and regulation of bowel motility and gut functions. In the present observational study conducted under real-life routine clinical practice settings, 146 patients diagnosed with IBS were enrolled by general practitioner clinics and pharmacies in Belgium. For the first time, this study assessed the potential synergistic pharmacological effect of a combined oral BBR/CUR supplement (Enterofytol® PLUS, containing 200 mg BBR and 49 mg CUR) (two tablets daily for 2 months), serving as complementary therapy in the management of IBS. Following the 2-month supplementation, significant improvements were observed in the patients' IBS severity index (IBSSI) (47.5%) and all the primary IBS symptoms, such as abdominal discomfort (47.2%), distension (48.0%), intestinal transit (46.8%), and QoL (48.1%) (all p < 0.0001). The improvement in the patients' IBSSI was independent of age, sex, and IBS sub-types. The patients' weekly maximum stool passage frequency decreased significantly (p < 0.0001), and the stool status normalized (p < 0.0001). The patients' need for concomitant conventional IBS treatment decreased notably: antispasmodics by 64.0% and antidiarrhoeals by 64.6%. Minor adverse effects were reported by a small proportion (7.1%) of patients, mostly gastrointestinal. The majority (93.1%) experienced symptom improvement or resolution, with a high satisfaction rate (82.6%) and willingness to continue the supplementation (79.0%). These findings support the potential synergistic pharmacological role of BBR and CUR in IBS, and their co-supplementation may alleviate IBS symptoms and improve QoL.
Collapse
Affiliation(s)
- Ursula Wade
- Department of Basic and Clinical Neuroscience, Kings College London, London SE5 9RT, UK;
| | - Domingo A. Pascual-Figal
- Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, 30120 Murcia, Spain;
| | - Fazale Rabbani
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Marie Ernst
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | - Adelin Albert
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | | | | | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan;
| | - Nisar A. Khokhar
- Department of Medicine, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan;
| | - Ayesha Kanwal
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Amjad Khan
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
2
|
Rahemi M, Mohtadi S, Rajabi Vardanjani H, Khodayar MJ. The role of l -arginine/NO/cGMP/K ATP channel pathway in the local antinociceptive effect of berberine in the rat formalin test. Behav Pharmacol 2023; 34:449-456. [PMID: 36939560 DOI: 10.1097/fbp.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Berberine is an isoquinoline alkaloid naturally produced by several types of plants. Berberine has extensive pharmacological effects, such as anti-diabetic, anti-inflammatory, and antioxidant effects. In the current study, we assess the antinociceptive effects of berberine and its association with the l -arginine ( l -Arg)/NO/cGMP/K ATP channel pathway via intraplantar administration in rats. To examine the antinociceptive properties of berberine, the formalin test was conducted. The number of rat paw flinches was counted for an h. l -Arg (precursor of nitric oxide, 3-30 μ g/paw), l -NAME (NO synthase inhibitor, 10 and 100 μ g/paw), methylene blue (guanylyl cyclase inhibitor, 100 and 200 μ g/paw), and glibenclamide (ATP-sensitive potassium channel blocker, 10 and 30 μ g/paw) were locally injected, respectively, into the right hind paws of rats as a pre-treatment before berberine injection to understand how the l -Arg/NO/cGMP/K ATP pathway plays a role in the antinociceptive effect of berberine. The ipsilateral injection of berberine into the right paw (0.1-10 0 μ g/paw) showed a dose-dependent antinociceptive effect in both the first and second phases of the formalin test, almost similar to morphine (25 μ g/paw). Intraplantar injection of l -Arg (30 µg/paw) increased the antinociceptive effect of berberine in the second phase. In addition, injection of l -NAME, methylene blue, and glibenclamide caused a reduction in the antinociceptive effect of berberine throughout the second phase in a dose-dependent manner. However, the antinociceptive effects of berberine in the first phase of the rat formalin test were not affected by this pathway. As a novel local antinociceptive agent, berberine can exert a peripheral antinociceptive effect via the l -Arg/NO/cGMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | | | | | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Kumei S, Ishioh M, Nozu T, Okumura T. Prostaglandin I 2 suppresses the development of gut-brain axis disorder in irritable bowel syndrome in rats. Biochim Biophys Acta Gen Subj 2023; 1867:130344. [PMID: 36889449 DOI: 10.1016/j.bbagen.2023.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In this study, we attempted to clarify a role of prostaglandin (PG) I2 and its specific receptor, IP in the pathogenesis of irritable bowel syndrome (IBS) using a maternal separation (MS)-induced IBS model. Administration of beraprost (BPS), a specific IP agonist, improved visceral hypersensitivity and depressive state with decreased serum CRF level in the IBS rats. To clarify the mechanism of the effect of BPS, we performed serum metabolome analysis and 1-methylnicotinamide (1-MNA) was identified as a possible candidate for a clue metabolite of pathogenesis of IBS. The serum 1-MNA levels revealed inverse correlation to the level of visceral sensitivity, and positive correlation to a depression marker, immobilizing time. Administration of 1-MNA induced visceral hypersensitivity and depression with increased levels of serum CRF. Since fecal 1-MNA is known for a marker of dysbiosis, we examined the composition of fecal microbiota by T-RFLP analysis. The proportion of clostridium cluster XI, XIVa and XVIII was significantly changed in MS-induced IBS rats treated with BPS. Fecal microbiota transplant of BPS-treated rats improved visceral hypersensitivity and depression in IBS rats. These results suggest for the first time that PGI2-IP signaling plays an important role in IBS phenotypes such as visceral hypersensitivity and depressive state. BPS modified microbiota, thereby inhibition of 1-MNA-CRF pathway, followed by improvement of MS-induced IBS phenotype. These results suggest that the PGI2-IP signaling could be considered to be a therapeutic option for IBS.
Collapse
Affiliation(s)
- Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Japan; Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Japan; Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
4
|
Namakin K, Moghaddam MH, Sadeghzadeh S, Mehranpour M, Vakili K, Fathi M, Golshan A, Bayat AH, Tajik AH, Eskandari N, Mohammadzadeh I, Benisi SZ, Aliaghaei A, Abdollahifar MA. Elderberry diet improves gut-brain axis dysfunction, neuroinflammation, and cognitive impairment in the rat model of irritable bowel syndrome. Metab Brain Dis 2023; 38:1555-1572. [PMID: 36877342 DOI: 10.1007/s11011-023-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Irritable bowel syndrome (IBS) is related to a problem in the gut-brain axis. This experimental research aimed to shed light on the potential therapeutic application of elderberry (EB), which can work on the axis and get better the IBS symptoms. There were three groups (36 Sprague-Dawley rats) in this experiment, including control, IBS, and IBS with EB diet (IBS + EB). Making use of intracolonic instillation of 1 ml of 4% acetic acid for 30 s, IBS was induced. 7 days later, the EB extract (2%) was added to the diets of all animals for 8 weeks. Some histological, behavioral, and stereological techniques were used to detect the effects of EB on the gut and brain tissues. The findings showed that the EB diet improved locomotion and decreased anxiety-like behavior in the rat models of IBS. Moreover, the diet dropped the expression of TNF-α and increased mucosal layer thickness and the number of goblet and mast cells in colon tissue samples. In the hippocampal samples, administration of EB prevented astrogliosis and astrocyte reactivity. Although hippocampal and cortical neurons decreased markedly in the IBS group, EB prevented the drop in the number of neurons. Although lots of research is needed to elucidate the effectiveness of EB in IBS and its exact molecular mechanism, the result of this study showed that EB as an antioxidant and immune-modulatory agent could be a promising research target to prevent the impairment in the gut-brain axis, and could ameliorative classic IBS symptoms.
Collapse
Affiliation(s)
- Kosar Namakin
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Sadeghzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Golshan
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir-Hossein Tajik
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, 1385/768, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
6
|
Gao X, Liu J, Fan D, Li X, Fang Z, Yan K, Fan Y. Berberine enhances gemcitabine‑induced cytotoxicity in bladder cancer by downregulating Rad51 expression through inactivating the PI3K/Akt pathway. Oncol Rep 2021; 47:33. [PMID: 34935059 DOI: 10.3892/or.2021.8244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xinghua Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jikai Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Daming Fan
- Department of Pathology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
7
|
Yang L, Luo H, Tan D, Zhang S, Zhong Z, Wang S, Vong CT, Wang Y. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153709. [PMID: 34560518 DOI: 10.1016/j.phymed.2021.153709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
8
|
Lu Y, Huang J, Zhang Y, Huang Z, Yan W, Zhou T, Wang Z, Liao L, Cao H, Tan B. Therapeutic Effects of Berberine Hydrochloride on Stress-Induced Diarrhea-Predominant Irritable Bowel Syndrome Rats by Inhibiting Neurotransmission in Colonic Smooth Muscle. Front Pharmacol 2021; 12:596686. [PMID: 34594213 PMCID: PMC8476869 DOI: 10.3389/fphar.2021.596686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The etiology of diarrhea-predominant irritable bowel syndrome (IBS-D) is complicated and closely related to neurotransmission in the gastrointestinal (GI) tract. Developing new strategies for treating this disease is a major challenge for IBS-D research. Berberine hydrochloride (BBH), the derivative of berberine, is a herbal constituent used to treat IBS. Previous studies have shown that BBH has potential anti-inflammatory, antibacterial, analgesic, and antidiarrheal effects and a wide range of biological activities, especially in regulating the release of some neurotransmitters. A modified IBS-D rat model induced by chronic restraint stress was used in all experiments to study the effects of BBH on the GI tract. This study measured the abdominal withdrawal reflex (AWR) response to graded colorectal distention (CRD; 20, 40, 60, and 80 mmHg) and observed the fecal areas of stress-induced IBS-D model. Experiments were conducted using organ bath techniques, which were performed in vitro using strips of colonic longitudinal smooth muscle. Inhibitory and excitatory neurotransmitter agents were added to each organ bath to observe contractile responses on the strips and the treatment effect exerted by BBH. The IBS-D rat model was successfully induced by chronic restraint stress, which resulted in an increased defecation frequency and visceral hypersensitivity similar to that of humans. BBH could reduce 4-h fecal areas and AWR response to CRD in IBS-D. The stress-induced IBS-D model showed upregulated colonic mRNA expression levels of 5-hydroxytryptamine-3A receptor and downregulated expression levels of neuronal nitric oxide synthase. Meanwhile, BBH could reverse this outcome. The responses of substances that regulate the contraction induced by related neurotransmission in the longitudinal smooth muscle of IBS-D colon (including the agonist of acetylcholine, carbachol; NOS inhibitor, L-NAME; and P2Y1 receptor antagonist, MRS2500) can be inhibited by BBH. In summary, BBH promotes defecation frequency and visceral hypersensitivity in IBS-D and exerts inhibitory effects on contractile responses in colonic longitudinal smooth muscle. Thus, BBH may represent a new therapeutic approach for treating IBS-D.
Collapse
Affiliation(s)
- Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianran Zhou
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Yang Y, Vong CT, Zeng S, Gao C, Chen Z, Fu C, Wang S, Zou L, Wang A, Wang Y. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113573. [PMID: 33181286 DOI: 10.1016/j.jep.2020.113573] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis (C. chinensis, Huanglian in Chinese), a famous traditional herbal medicine used for clearing heat and detoxification since thousands of years ago, is widely and traditionally used for clinical treatment of stomach inflammation, duodenum and digestive tract ulcers alone or through combing with other herbs in compound formulations. AIM OF THE REVIEW Through literature reviews of C. chinensis and berberine (one of the most important bioactive compounds derived from this plant) for the treatment of inflammatory bowel disease (IBD), this review aims to provide beneficial information for further exploration of the potent bioactive constituents from C. chinensis, deep investigation on the molecular mechanisms for the treatment of IBD, as well as further research and development of brand new products from C. chinensis for clinical therapy of IBD. METHODS "C. chinensis" and "IBD" were selected as the main keywords, and various online search engines, such as Google Scholar, PubMed, Web of Science, China National Knowledge Infrastructure database (CNKI) and other publication resources, were used for searching literatures. RESULTS To present, C. chinensis together with other herbs are involved in plenty of Chinese herbal prescriptions for the treatment of IBD, but little research focused on the single therapeutic effects of C. chinensis or extracts from this herb for the treatment of this disease. Berberine, one of important and representative bioactive compound isolated from C. chinensis, was reported to treat IBD effectively at a big arising speed in recent years. However, systematically and comprehensively reviews on the research of C. chinensis and berberine for the treatment of IBD from the aspects of chemical constituents, pharmacological effects, pharmacokinetics as well as clinical studies are seldom accomplished by researchers. Bioactive components from C. chinensis exert therapeutic effects for the treatment of IBD mainly through the inhibition of oxidative stress, antinociception, protection of intestinal mucosal epithelial barrier, regulation of T helper cells, as well as antibacterial activity. Although numerous studies on bioactive compounds from C. chinense have been performed by clinical investigators in recent years, most of them should be performed in a more strict and standard way to ensure the safety and efficacy of these compounds. CONCLUSIONS Berberine is considered as the representative and effective component from C. chinensis, but many other chemical components isolated from C. chinensis also have therapeutic effects for the treatment of IBD, which need deep research and further exploration. To accelerate research and development of C. chinensis and its bioactive components for the treatment of IBD, clinical trials are needed to clarify the effectiveness and safety of these chemical components from C. chinensis, as well as their molecular mechanisms for IBD treatment in vitro and in vivo. It is believed that continuous research and exploration on C. chinensis together with its bioactive compounds will bring great hope to the treatment of IBD.
Collapse
Affiliation(s)
- Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shan Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China.
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China.
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
10
|
Hashemzaei M, Rezaee R. A review on pain‐relieving activity of berberine. Phytother Res 2020; 35:2846-2853. [DOI: 10.1002/ptr.6984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Zabol University of Medical Sciences Zabol Iran
- Toxicology and Addiction Research Center Zabol University of Medical Sciences Zabol Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
11
|
Oliveira P, Lopes T, Tedesco A, Rahal P, Calmon M. Effect of berberine associated with photodynamic therapy in cell lines. Photodiagnosis Photodyn Ther 2020; 32:102045. [DOI: 10.1016/j.pdpdt.2020.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
|
12
|
Shaoyao-Gancao Decoction Relieves Visceral Hyperalgesia in TNBS-Induced Postinflammatory Irritable Bowel Syndrome via Inactivating Transient Receptor Potential Vanilloid Type 1 and Reducing Serotonin Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7830280. [PMID: 33123210 PMCID: PMC7584960 DOI: 10.1155/2020/7830280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Postinflammatory irritable bowel syndrome (PI-IBS) is a common functional gastrointestinal disorder, which is characterized by abdominal pain, low-grade inflammation, and visceral hypersensitivity. Shaoyao-Gancao decoction (SGD) has been used to improve the clinical symptoms of abdominal spasmodic pain accompanying acute gastroenteritis, but the underlying therapeutic mechanism has not been fully elucidated. In the present study, a rat model of PI-IBS was established via rectal administration of TNBS. Rats were scored daily for 28 days using disease activity index (DAI). Abdominal withdrawal reflex (AWR) was used to measure the pain threshold. After SGD (6.25, 12.5, and 25 g/kg/d) treatment for 14 days, rat colonic tissue was collected for histopathological grading, enterochromaffin (EC) cell count, and 5-HT content measurement. RT-qPCR and western blot analyses were employed to detect the gene and protein level of tryptophan hydroxylase (TPH), serotonin reuptake transporter (SERT), and transient receptor potential vanilloid 1 (TRPV1). To further validate the effect of SGD on TRPV1, another experiment was performed in cells. The results revealed that visceral hyperalgesia, reflected by increased DAI, AWR, pathological injury score, 5-HT content, and EC cell count in PI-IBS rats, was significantly ameliorated by SGD. In cells, SGD markedly inhibited the expression and function of TRPV1. Moreover, the expression levels of TPH were also repressed by SGD. The findings of the present study indicated that the therapeutic effect of SGD on visceral hyperalgesia may be closely associated with the regulatory role of TRPV1 and 5-HT signaling pathways.
Collapse
|
13
|
Gu S, Song X, Xie R, Ouyang C, Xie L, Li Q, Su T, Xu M, Xu T, Huang D, Liang B. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci 2020; 257:118122. [PMID: 32702446 DOI: 10.1016/j.lfs.2020.118122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023]
Abstract
AIMS Berberine is an isoquinoline alkaloid extracted from the root, rhizome and stem bark of Coptidis Rhizoma. Previous studies have revealed the anti-tumor potential of berberine against various types of cancer cells. However, the underlying mechanisms are not yet fully understood. In this study, we focused on the effects of berberine on fatty acid synthesis and extracellular vesicles formation in cancer cells, and revealed the internal mechanism of berberine inhibition on cancer cell proliferation. MATERIALS AND METHODS Anti-proliferative activity of berberine was determined by cell counting and microscope observation and cell cycle analysis. Activities of AMPK and ACC, expression of extracellular vesicles markers were detected by western blotting. 13C labeling metabolic flux analysis was used for determination of de novo synthesis of fatty acids. The excreted extracellular vesicles in culture mediums were separated by both polyethylene glycol enrichment of extracellular vesicles and differential centrifugation separation. KEY FINDINGS Among our early experiments, 5-10 μmol/L berberine exhibited the substantial anti-proliferative effect against human colon cancer cell line HCT116, cervical cancer cell line HeLa and other cancer cells. It was also revealed that, through activating AMPK, berberine inhibited ACC activity then suppressed intracellular fatty acid synthesis, finally decreased the biogenesis of extracellular vesicles. Moreover, supplement with citrate acid, palmitic acid, as well as exogenous extracellular vesicles, could rescue the inhibitory effect of berberine on cell proliferation, suggesting that inhibited ACC activity, suppressed fatty acid synthesis and decreased extracellular vesicles production were important mechanisms account for berberine inhibiting cancer cell proliferation. SIGNIFICANCE Our study indicates that berberine suppresses cancer cell proliferation through inhibiting the synthesis of fatty acids and decreasing biogenesis and secretion of extracellular vesicles, suggests that berberine is a promising candidate for the development of new therapies for cancer.
Collapse
Affiliation(s)
- Songgang Gu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, the First Affiliated Hospital, Shantou University Medical College, Guangdong, China; Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Xuhong Song
- Center for Cancer Research, Shantou University Medical College, Guangdong, China
| | - Rufei Xie
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Cong Ouyang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Lingzhu Xie
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China; Biomedical Research Center, Shantou University Medical College, Guangdong, China
| | - Qidong Li
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Ting Su
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Man Xu
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Tian Xu
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China
| | - Dongyang Huang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China.
| | - Bin Liang
- Section of Cell Biology and Genetics, Shantou University Medical College, Guangdong, China; Biomedical Research Center, Shantou University Medical College, Guangdong, China.
| |
Collapse
|
14
|
Fibrauretine reduces ischemia/reperfusion injury via RISK/eNOS activation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1515-1525. [PMID: 31796985 DOI: 10.1007/s00210-019-01770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023]
Abstract
Current studies have shown that fibrauretine can be used in the treatment of cardiovascular diseases; however, the protective mechanism of fibrauretine in cardiovascular diseases is unclear. The aim of this study was to investigate the effect and mechanism of fibrauretine in acute myocardial ischemia-reperfusion injury. We investigated the effects of glucocorticoid receptor/oestrogen receptor (GR/ER)-mediated Akt phosphorylation, extracellular regulated protein kinase (ERK1/2) activation and nitric oxide (NO) on the treatment of acute myocardial ischemia-reperfusion injury by fibrauretine. Myocardial ischemia-reperfusion (I/R) injury models were established in rats and gene-knockout mice, and the infarct size was measured. We detected the expression and phosphorylation of phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), glucocorticoid receptor, oestrogen receptor, lactate dehydrogenase (LDH), creatine phosphokinase (CK-MB), stress-activated protein kinase (JNK), P38 protein kinase (P38 MAPK) and nitric oxide synthase (NOS) with or without the inhibitors to investigate the protective effect of fibrauretine on the heart. The results showed that fibrauretine can significantly reduce the myocardial infarction area in myocardial I/R injury, inhibit the activities of LDH and CK-MB in the serum, and increase the content of NO. However, the effects of fibrauretine on the reduction of the myocardial infarction area were eliminated by the PI3K inhibitor LY294002, Akt inhibitor IV, GR inhibitor RU468, ER inhibitor tamoxifen, eNOS inhibitor L-NAME and ERK1/2 inhibitor U0126. Moreover, in the case of WT mice and gene-knockout eNOS and iNOS mice, fibrauretine was able to significantly reduce the myocardial infarction area in iNOS-/- and wild type mice. However, there was no significant protective effect of fibrauretine in eNOS-/- mice. It is suggested that eNOS plays an important role in the protective effect of fibrauretine on the heart. Therefore, the results of this study show that the protective effect of fibrauretine on myocardial I/R injury is closely associated with eNOS expression, GR/ER-induced Akt phosphorylation and ERK1/2 activation.
Collapse
|
15
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Losartan improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13819. [PMID: 32056324 DOI: 10.1111/nmo.13819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is considered to be a rat irritable bowel syndrome (IBS) model. As losartan is known to inhibit proinflammatory cytokine release, we hypothesized that it improves these visceral changes. METHODS The threshold of visceromotor response (VMR), that is, abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured in rats. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 minutes spectrophotometrically. KEY RESULTS Lipopolysaccharide (1 mg kg-1 ) subcutaneously (s.c.) reduced the threshold of VMR and increased colonic permeability. Losartan (5-25 mg kg-1 s.c.) for 3 days inhibited these changes in a dose-dependent manner. Moreover, repeated WAS (1 hour daily for 3 days) or intraperitoneal injection of CRF (50 µg kg-1 ) induced the similar visceral changes as LPS, which were also eliminated by losartan. These effects by losartan in LPS model were reversed by GW9662 (a peroxisome proliferator-activated receptor-γ [PPAR-γ] antagonist), NG -nitro-L-arginine methyl ester (a nitric oxide [NO] synthesis inhibitor), or naloxone (an opioid receptor antagonist). Moreover, it also inhibited by sulpiride (a dopamine D2 receptor antagonist) or domperidone (a peripheral dopamine D2 antagonist). CONCLUSION & INFERENCES Losartan prevented visceral allodynia and colonic hyperpermeability in rat IBS models. These actions may be PPAR-γ-dependent and also mediated by the NO, opioid, and dopamine D2 pathways. Losartan may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
16
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
17
|
Almeer RS, Aref AM, Hussein RA, Othman MS, Abdel Moneim AE. Antitumor Potential of Berberine and Cinnamic Acid against Solid Ehrlich Carcinoma in Mice. Anticancer Agents Med Chem 2019; 19:356-364. [PMID: 30451117 DOI: 10.2174/1871520618666181116162441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Berberine and cinnamic acid are natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. OBJECTIVE In the present study, we aimed to investigate the proapoptotic potential of cinnamic acid and berberine in cancer cells by examining their effect on the expression of proapoptotic and antiapoptotic genes. Moreover, the effects of berberine and cinnamic acid on the antitumor activity of cisplatin were investigated in Ehrlich solid tumor-bearing mice. METHODS For the study, 90 male mice were inoculated intramuscularly with Ehrlich ascites tumor cells (2.5 × 106/mouse), and then on day 4, mice were randomly divided into six experimental groups (group 1-untreated Ehrlich solid tumor (EST), group 2-EST treated CDDP, group 3-EST treated CA, group 4-EST treated BER, group 5-EST treated CA + CDDP, and group 6-EST treated BER + CDDP). RESULTS The results showed that berberine and cinnamic acid significantly decreased tumor growth and tumor volume (-74.8 and -75.5%, respectively) both as single agents and in combination with cisplatin. Moreover, both berberine and cinnamic acid increased the ratio of tumor growth inhibition (-91.5 and -92.6%, respectively), mean survival time (61.5 and 26 days, respectively), and percentage increase in lifespan (559 and 263%, respectively) of the treated mice. Our results also showed that both berberine and cinnamic acid-induced apoptosis by increasing the Bax/Bcl-2 ratio (74.1 and 45.1, respectively) and caspase-3 expression (14.3- and 11.6-fold increase, respectively). Additionally, berberine and cinnamic acid decreased oxidative stress markers, as shown by the decrease in lipid peroxidation and nitric oxide levels and an increase in reduced glutathione level. CONCLUSION These results suggest that berberine and cinnamic acid have potential as antitumor and antioxidant agents derived from natural sources, which could be used alone or in combination with regular chemotherapeutic agents, such as cisplatin. These effects could be attributed to the proapoptotic activity of berberine and cinnamic acid.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Aref
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Romisa A Hussein
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed S Othman
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.,Faculty of Preparatory year, University of Hail, Hail, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
18
|
Yu ZC, Cen YX, Wu BH, Wei C, Xiong F, Li DF, Liu TT, Luo MH, Guo LL, Li YX, Wang LS, Wang JY, Yao J. Berberine prevents stress-induced gut inflammation and visceral hypersensitivity and reduces intestinal motility in rats. World J Gastroenterol 2019; 25:3956-3971. [PMID: 31413530 PMCID: PMC6689801 DOI: 10.3748/wjg.v25.i29.3956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common chronic non-organic disease of the digestive system. Berberine (BBR) has been used to treat patients with IBS, but the underlying therapeutic mechanism is little understood. We believe that BBR achieves its therapeutic effect on IBS by preventing stress intestinal inflammation and visceral hypersensitivity and reducing bowel motility.
AIM To test the hypothesis that BBR achieves its therapeutic effect on IBS by preventing subclinical inflammation of the intestinal mucosa and reducing visceral hypersensitivity and intestinal motility.
METHODS IBS was induced in rats via water avoidance stress (WAS). qRT-PCR and histological analyses were used to evaluate the levels of cytokines and mucosal inflammation, respectively. Modified ELISA and qRT-PCR were used to evaluate the nuclear factor kappa-B (NF-κB) signal transduction pathway. Colorectal distention test, gastrointestinal transit measurement, Western blot, and qRT-PCR were used to analyze visceral sensitivity, intestinal motility, the expression of C-kit (marker of Cajal mesenchymal cells), and the expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB.
RESULTS WAS led to mucosal inflammation, visceral hyperalgesia, and high intestinal motility. Oral administration of BBR inhibited the NF-κB signal transduction pathway, reduced the expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-α], promoted the expression of anti-inflammatory cytokines (IL-10 and transforming growth factor-β), and improved the terminal ileum tissue inflammation. BBR inhibited the expression of BDNF, TrkB, and C-kit in IBS rats, leading to the reduction of intestinal motility and visceral hypersensitivity. The therapeutic effect of BBR at a high dose (100 mg/kg) was superior to than that of the low-dose (25 mg/kg) group.
CONCLUSION BBR reduces intestinal mucosal inflammation by inhibiting the intestinal NF-κB signal pathway in the IBS rats. BBR reduces the expression of BDNF, its receptor TrkB, and C-kit. BBR also reduces intestinal motility and visceral sensitivity to achieve its therapeutic effect on IBS.
Collapse
Affiliation(s)
- Zhi-Chao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Yong-Xin Cen
- Department of Gastroenterology, Foshan Gaoming Affiliated Hospital of Guangdong Medical University, Foshan 528500, Guangdong Province, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ting-Ting Liu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ming-Han Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Liangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ying-Xue Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen 518026, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
19
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
20
|
Goswami AK, Gogoi N, Shakya A, Sharma HK. Development and Validation of High-Performance Thin-layer Chromatographic Method for Quantification of Berberine in Rhizomes of Coptis teeta Wall, an Endangered Species Collected from Arunachal Pradesh, India. J Chromatogr Sci 2019; 57:411-417. [DOI: 10.1093/chromsci/bmz009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 12/03/2018] [Indexed: 11/14/2022]
Affiliation(s)
- Ashis Kumar Goswami
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hemanta Kumar Sharma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
21
|
Okumura T, Nozu T, Kumei S, Ohhira M. Central oxytocin signaling mediates the central orexin-induced visceral antinociception through the opioid system in conscious rats. Physiol Behav 2019; 198:96-101. [DOI: 10.1016/j.physbeh.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
22
|
Okumura T, Nozu T, Kumei S, Takakusaki K, Ohhira M. Ghrelin acts centrally to induce an antinociceptive action during colonic distension through the orexinergic, dopaminergic and opioid systems in conscious rats. Brain Res 2018; 1686:48-54. [DOI: 10.1016/j.brainres.2018.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 02/08/2023]
|
23
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
24
|
Nozu T, Miyagishi S, Kumei S, Nozu R, Takakusaki K, Okumura T. Glucagon-like peptide-1 analog, liraglutide, improves visceral sensation and gut permeability in rats. J Gastroenterol Hepatol 2018; 33:232-239. [PMID: 28440889 DOI: 10.1111/jgh.13808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/08/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM A glucagon-like peptide-1 analog, liraglutide, has been reported to block inflammatory somatic pain. We hypothesized that liraglutide attenuates lipopolysaccharide (LPS)-induced and repeated water avoidance stress (WAS)-induced visceral hypersensitivity and tested the hypothesis in rats. METHODS The threshold of the visceromotor response induced by colonic balloon distention was measured to assess visceral sensation. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue spectrophotometrically, which was instilled in the proximal colon for 15 min. The interleukin-6 level in colonic mucosa was also quantified using ELISA. RESULTS Subcutaneously injected LPS (1 mg/kg) reduced the visceromotor response threshold after 3 h. Liraglutide (300 μg/kg subcutaneously) at 15 h and 30 min before injecting LPS eliminated LPS-induced allodynia. It also blocked the allodynia induced by repeated water avoidance stress for 1 h for three consecutive days. Neither vagotomy nor naloxone altered the antinociceptive effect of liraglutide, but NG -nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor, blocked it. LPS increased colonic permeability and the interleukin-6 level, and the analog significantly inhibited these responses. CONCLUSIONS This study suggests that liraglutide blocked LPS-induced visceral allodynia, which may be a nitric oxide-dependent response, and was probably mediated by inhibiting pro-inflammatory cytokine production and attenuating the increased gut permeability. Because the LPS-cytokine system is considered to contribute to altered visceral sensation in irritable bowel syndrome, these results indicate the possibility that liraglutide can be useful for treating this disease.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
25
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Repeated water avoidance stress induces visceral hypersensitivity: Role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor. J Gastroenterol Hepatol 2017; 32:1958-1965. [PMID: 28299830 DOI: 10.1111/jgh.13787] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Repeated water avoidance stress (WAS) induces visceral hypersensitivity. Additionally, it is also known to activate corticotropin-releasing factor (CRF), mast cells, and pro-inflammatory cytokines systems, but their precise roles on visceral sensation have not been determined definitely. The aim of the study was to explore this issue. METHODS Abdominal muscle contractions induced by colonic balloon distention, that is, visceromotor response (VMR) was detected electrophysiologically in conscious rats. WAS or sham stress as control for 1 h daily was loaded, and the threshold of VMR was determined before and at 24 h after the stress. RESULTS Repeated WAS for three consecutive days reduced the threshold of VMR, but sham stress did not induce any change. Astressin, a CRF receptor antagonist (50 μg/kg) intraperitoneally (ip) at 10 min before each WAS session, prevented the visceral allodynia, but the antagonist (200 μg/kg) ip at 30 min and 15 h before measurement of the threshold after completing 3-day stress session did not modify the response. Ketotifen, a mast cell stabilizer (3 mg/kg), anakinra, an interleukin (IL)-1 receptor antagonist (20 mg/kg) or IL-6 antibody (16.6 μg/kg) ip for two times before the measurement abolished the response. CONCLUSIONS Repeated WAS for three consecutive days induced visceral allodynia, which was mediated through mast cells, IL-1, and IL-6 pathways. Inhibition of peripheral CRF signaling prevented but did not reverse this response, suggesting that peripheral CRF may be an essential trigger but may not contribute to the maintenance of repeated WAS-induced visceral allodynia.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
26
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
27
|
Wang YX, Liu L, Zeng QX, Fan TY, Jiang JD, Deng HB, Song DQ. Synthesis and Identification of Novel Berberine Derivatives as Potent Inhibitors against TNF-α-Induced NF-κB Activation. Molecules 2017; 22:molecules22081257. [PMID: 28749438 PMCID: PMC6152030 DOI: 10.3390/molecules22081257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023] Open
Abstract
Twenty-three new berberine (BBR) analogues defined on substituents of ring D were synthesized and evaluated for their activity for suppression of tumor necrosis factor (TNF)-α-induced nuclear factor (NF)-κB activation. Structure–activity relationship (SAR) analysis indicated that suitable tertiary/quaternary carbon substitutions at the 9-position or rigid fragment at position 10 might be beneficial for enhancing their anti-inflammatory potency. Among them, compounds 2d, 2e, 2i and 2j exhibited satisfactory inhibitory potency against NF-κB activation, with an inhibitory rate of around 90% (5 μM), much better than BBR. A preliminary mechanism study revealed that all of them could inhibit TNF-α-induced NF-κB activation via impairing IκB kinase (IKK) phosphorylation as well as cytokines interleukin (IL)-6 and IL-8 induced by TNF-α. Therefore, the results provided powerful information on further structural modifications and development of BBR derivatives into a new class of anti-inflammatory candidates for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yan-Xiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Qing-Xuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Tian-Yun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Hong-Bin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
28
|
Yang PJ, LaMarca M, Kaminski C, Chu DI, Hu DL. Hydrodynamics of defecation. SOFT MATTER 2017; 13:4960-4970. [PMID: 28470247 DOI: 10.1039/c6sm02795d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Animals discharge feces within a range of sizes and shapes. Such variation has long been used to track animals as well as to diagnose illnesses in both humans and animals. However, the physics by which feces are discharged remain poorly understood. In this combined experimental and theoretical study, we investigate the defecation of mammals from cats to elephants using the dimensions of large intestines and feces, videography at Zoo Atlanta, cone-on-plate rheological measurements of feces and mucus, and a mathematical model of defecation. The diameter of feces is comparable to that of the rectum, but the length is double that of the rectum, indicating that not only the rectum but also the colon is a storage facility for feces. Despite the length of rectum ranging from 4 to 40 cm, mammals from cats to elephants defecate within a nearly constant duration of 12 ± 7 seconds (N = 23). We rationalize this surprising trend by our mathematical model, which shows that feces slide along the large intestine by a layer of mucus, similar to a sled sliding down a chute. Larger animals have not only more feces but also thicker mucus layers, which facilitate their ejection. Our model accounts for the shorter and longer defecation times associated with diarrhea and constipation, respectively. This study may support clinicians use of non-invasive procedures such as defecation time in the diagnoses of ailments of the digestive system.
Collapse
Affiliation(s)
- Patricia J Yang
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 1308, Atlanta, GA 30332-0405, USA.
| | - Morgan LaMarca
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Candice Kaminski
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 1308, Atlanta, GA 30332-0405, USA.
| | - Daniel I Chu
- Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David L Hu
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 1308, Atlanta, GA 30332-0405, USA. and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
29
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J Gastroenterol 2017; 52:72-80. [PMID: 27075754 DOI: 10.1007/s00535-016-1208-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) induces visceral hypersensitivity, and corticotropin-releasing factor (CRF) also modulates visceral sensation. Besides, LPS increases CRF immunoreactivity in rat colon, which raises the possibility of the existence of a link between LPS and the CRF system in modulating visceral sensation. The present study tried to clarify this possibility. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response, electrophysiologically in conscious rats. The threshold of visceromotor response was measured before and after administration of drugs. RESULTS LPS at a dose of 1 mg/kg subcutaneously (sc) decreased the threshold at 3 h after the administration. Intraperitoneal (ip) administration of anakinra (20 mg/kg), an interleukin-1 (IL-1) receptor antagonist, or interleukin-6 (IL-6) antibody (16.6 µg/kg) blocked this effect. Additionally, IL-1β (10 µg/kg, sc) or IL-6 (10 µg/kg, sc) induced visceral allodynia. Astressin (200 µg/kg, ip), a non-selective CRF receptor antagonist, abolished the effect of LPS, but astressin2-B (200 µg/kg, ip), a CRF receptor type 2 (CRF2) antagonist, did not alter it. Peripheral CRF receptor type 1 (CRF1) stimulation by cortagine (60 µg/kg, ip) exaggerated the effect of LPS, but activation of CRF2 by urocortin 2 (60 µg/kg, ip) abolished it. CONCLUSIONS LPS induced visceral allodynia possibly through stimulating IL-1 and IL-6 release. In addition, this effect was mediated through peripheral CRF signaling. Since the LPS-cytokine system is thought to contribute to altered visceral sensation in the patients with irritable bowel syndrome, these results may further suggest that CRF plays a crucial role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
30
|
Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 2016; 113:592-599. [DOI: 10.1016/j.phrs.2016.09.041] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
|
31
|
Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 2016; 22:558-574. [PMID: 27431236 PMCID: PMC5056566 DOI: 10.5056/jnm16001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/26/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common disorder referred to gastroenterologists and is characterized by altered bowel habits, abdominal pain, and bloating. Visceral hypersensitivity (VH) is a multifactorial process that may occur within the peripheral or central nervous systems and plays a principal role in the etiology of IBS symptoms. The pharmacological studies on selective drugs based on targeting specific ligands can provide novel therapies for modulation of persistent visceral hyperalgesia. The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients. There are a wide range of mediators and receptors participating in visceral pain perception amongst which substances targeting afferent receptors are attractive sources of novel drugs. Novel therapeutic targets for the management of VH include compounds which alter gut-brain pathways and local neuroimmune pathways. Molecular mediators and receptors participating in pain perception and visceroperception include histamine-1 receptors, serotonin (5-hydrodytryptamine) receptors, transient receptor potential vanilloid type I, tachykinins ligands, opioid receptors, voltage-gated channels, tyrosine receptor kinase receptors, protease-activated receptors, adrenergic system ligands, cannabinoid receptors, sex hormones, and glutamate receptors which are discussed in the current review. Moreover, several plant-derived natural compounds with potential to alleviate VH in IBS have been highlighted. VH has an important role in the pathology and severity of complications in IBS. Therefore, managing VH can remarkably modulate the symptoms of IBS. More preclinical and clinical investigations are needed to provide efficacious and targeted medicines for the management of VH.
Collapse
Affiliation(s)
- Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Pettit J, Glickman-Simon R. Osteopathic Manipulative Therapy for Preterm Infants, Acupuncture for Menopausal Symptoms, Mindfulness-Based Stress Reduction for Chronic Low Back Pain, Chocolate for Ischemic Heart Disease, Berberine for Irritable Bowel Syndrome. Explore (NY) 2016; 12:388-92. [PMID: 27473312 DOI: 10.1016/j.explore.2016.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kim HJ, Kim H, Jung MH, Kwon YK, Kim BJ. Berberine induces pacemaker potential inhibition via cGMP-dependent ATP-sensitive K+ channels by stimulating mu/delta opioid receptors in cultured interstitial cells of Cajal from mouse small intestine. Mol Med Rep 2016; 14:3985-91. [PMID: 27601272 DOI: 10.3892/mmr.2016.5698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Berberine is traditionally used to treat gastrointestinal (GI) motility disorders. The interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal tract, which are responsible for the production of gut movements. The present study aimed to investigate the effects of berberine on pacemaker potentials (PPs) in cultured ICC clusters from the mouse small intestine, and sought to identify the receptors involved and the underlying mechanisms of action. All experiments were performed on cultured ICCs, and a whole‑cell patch‑clamp configuration was used to record PPs from ICC clusters (current clamp mode). Under current clamp mode, berberine was shown to decrease the amplitude and frequency of PPs. However, these effects were suppressed by treatment with glibenclamide, a specific ATP‑sensitive K+ channel blocker. Nor‑binaltorphimine dihydrochloride (a kappa opioid receptor antagonist) did not suppress berberine‑induced PP inhibition, whereas ICI 174,864 (a delta opioid receptor antagonist) and CTOP (a mu opioid receptor antagonist) did suppress the inhibitory effects of berberine. Pretreatment with SQ‑22536 (an adenylate cyclase inhibitor) or with KT‑5720 (a protein kinase A inhibitor) did not suppress the effects of berberine; however, pretreatment with 1H‑[1,2,4] oxadiazolo [4,3‑a] quinoxalin‑1‑one (a guanylate cyclase inhibitor) or KT‑5823 [a protein kinase G (PKG) inhibitor] did. In addition, berberine stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. These observations indicate that berberine may inhibit the pacemaker activity of ICC clusters via ATP‑sensitive K+ channels and the cGMP‑PKG‑dependent pathway by stimulating mu and delta opioid receptors. Therefore, berberine may provide a basis for the development of novel agents for the treatment of GI motility dysfunction.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
34
|
Zhang NZ, Ma L, Jun C, Guo YX, Yuan HQ. Changes in mast cell infiltration: a possible mechanism in detrusor overactivity induced by visceral hypersensitivity. Int Braz J Urol 2016; 42:373-82. [PMID: 27256194 PMCID: PMC4871401 DOI: 10.1590/s1677-5538.ibju.2015.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To establish the detrusor overactivity (DO) model induced by visceral hypersensitivity (VH) and investigate the relationship between mast cell (MC) infiltration and DO. MATERIALS AND METHODS Sixty rats are divided into 4 groups randomly: Group 1:Baseline group; Group 2: DO group; Group 3: CON group; Group 4: VH group. The colorectal distension (CRD) and abdominal withdral reflex (AWR) scores are performed to evaluate VH. The cystometric investigation and histological test of MC infiltration are assessed. RESULTS The threshold pressure of CRD in the VH group is significantly lower than that in the CON group (P<0.001). At the distension pressure ≥20 mmHg, the AWR scores of the VH group are significantly higher than those of the CON group (10 mmHg: P=0.33; 20 mmHg: P=0.028; 40 mmHg: P<0.001; 60 mmHg: P<0.001; 80 mmHg: P<0.001). DO model is successfully established in the VH group (DO rate=100%). Compared with the CON group, the numbers of MC infiltration are significantly increased in the VH group, including submucosa of bladder (P<0.001), mucosa lamina propria/mesentery of small intestine (P<0.001), and mucosa lamina propria/mesentery of large intestine (P<0.001). Furthermore, more MC activation as well as degranulation are observed in the VH group. CONCLUSIONS It is indicated that DO model can be established in the VH rats. The MC infiltration may play an important role in DO induced by VH, and may be helpful to understand the mechanisms of DO in VH patients.
Collapse
Affiliation(s)
- Nian-Zhao Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Lin Ma
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Chen Jun
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yan-Xia Guo
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong University, Jinan, P.R. China
| | - Hui-Qing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
35
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Water avoidance stress induces visceral hyposensitivity through peripheral corticotropin releasing factor receptor type 2 and central dopamine D2 receptor in rats. Neurogastroenterol Motil 2016; 28:522-31. [PMID: 26662216 DOI: 10.1111/nmo.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Water avoidance stress (WAS) is reported to induce functional changes in visceral sensory function in rodents, but the results which have been demonstrated so far are not consistent, i.e., hypersensitivity or hyposensitivity. We determined the effect of WAS on visceral sensation and evaluated the mechanisms of the action. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response (VMR), measured electrophysiologically in conscious rats. The electromyogram electrodes were acutely implanted under anesthesia on the day of the experiment. The threshold of VMR was measured before and after WAS for 1 h. To explore the mechanisms of WAS-induced response, drugs were administered 10 min prior to the initiation of WAS. KEY RESULTS WAS significantly increased the threshold of VMR, and this effect was no longer detected at 24 h after. Intraperitoneal injection of astressin2 -B (200 μg/kg), a corticotropin releasing factor (CRF) receptor type 2 antagonist abolished the response by WAS. Subcutaneous (sc) injection of sulpiride (200 mg/kg), a dopamine D2 receptor antagonist blocked the response, while sc domperidone (10 mg/kg), a peripheral dopamine D2 receptor antagonist did not alter it. Naloxone (1 mg/kg, sc), an opioid antagonist did not modify it either. CONCLUSIONS & INFERENCES WAS induced visceral hyposensitivity through peripheral CRF receptor type 2 and central dopamine D2 receptor, but not through opioid pathways. As altered pain inhibitory system was reported to be observed in the patients with irritable bowel syndrome, CRF and dopamine signaling might contribute to the pathophysiology.
Collapse
Affiliation(s)
- T Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - S Miyagishi
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - R Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - K Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - T Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
36
|
Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats. J Neurol Sci 2016; 362:106-10. [DOI: 10.1016/j.jns.2016.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
|
37
|
Okumura T, Nozu T, Kumei S, Takakusaki K, Miyagishi S, Ohhira M. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats. J Pharmacol Sci 2016; 130:123-7. [DOI: 10.1016/j.jphs.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/24/2015] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
|
38
|
Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Cent Eur J Immunol 2016; 40:400-10. [PMID: 26862303 PMCID: PMC4737735 DOI: 10.5114/ceji.2015.54607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to evaluate analgesic activity ("hot plate" test), anti-inflammatory activity (carrageenan-induced paw edema) and locomotor activity in rats under the influence of three fractions of Chelidonium majus herb extract: full water extract (FWE), protein enriched fraction (PEF), and non-protein fraction (NPF). Effects of the fractions on the level of chosen cytokines and their mRNA levels were also assessed using lipopolysaccharide (LPS) administration as a proinflammatory cue. All fractions and diclofenac did not affect the locomotor activity of rats in comparison with the control group. FWE and PEF three hours after administration showed statistically significant analgesic activities comparable to morphine (p < 0.05). A slight reduction in rat paw edema was observed after three (comparable with diclofenac) and six hours in the NPF group. FWE revealed a statistically significant pro-inflammatory effect after three hours in comparison with the control group. Peripheral IL-1 and IL-4 cytokine concentrations were reduced under FWE and NPF, PEF fractions. The combination of FWE, PEF and NPF together with LPS showed only the effects of LPS. We suggest that protein enriched fraction (PEF) produced centrally mediated (morphine-like) analgesic action, whereas the anti-inflammatory potential was shown only after LPS-induced inflammation. The precise mechanisms involved in the production of anti-nociceptive and anti-inflammatory responses of studied fractions are not completely understood, but they may be caused rather by the presence of protein more than alkaloids-enriched fraction. This fraction of the extract could be used as an alternative therapy for the prevention of inflammatory-related diseases in the future, but further studies are needed.
Collapse
|
39
|
Chen C, Lu M, Pan Q, Fichna J, Zheng L, Wang K, Yu Z, Li Y, Li K, Song A, Liu Z, Song Z, Kreis M. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner. PLoS One 2015; 10:e0145556. [PMID: 26700862 PMCID: PMC4689480 DOI: 10.1371/journal.pone.0145556] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. METHODS The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms. Then the opioid antagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons. RESULTS In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR) and delta- (DOR) opioid receptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons. CONCLUSION Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions.
Collapse
Affiliation(s)
- Chunqiu Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiling Lu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuhui Pan
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Lijun Zheng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kesheng Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Yu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongyu Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - Kun Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - Aihong Song
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongchen Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Martin Kreis
- Charité University Medicine, Department of General-, Visceral- and Vascular Surgery, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
40
|
Chen C, Tao C, Liu Z, Lu M, Pan Q, Zheng L, Li Q, Song Z, Fichna J. A Randomized Clinical Trial of Berberine Hydrochloride in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Phytother Res 2015; 29:1822-7. [PMID: 26400188 DOI: 10.1002/ptr.5475] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
We aimed to evaluate clinical symptoms in diarrhea predominant irritable bowel syndrome (IBS-D) receiving berberine hydrochloride in a randomized double-blind placebo-controlled clinical trial. Overall, 196 patients with IBS-D were recruited for this study; consequently, 132 patients randomized to receive daily 400 mg of berberine hydrochloride, delivered twice daily or placebo for 8 weeks followed by a 4-week washout period. After a 2-week run-in period, diarrhea, abdominal pain, urgent need for defecation frequency and any adverse events were recorded daily. Prior to administration of the medication and after completing the treatment, assessment of IBS symptom scores, depression and anxiety scale scores and the IBS scale for quality of life (QOL) was carried out. The effects of berberine hydrochloride on IBS-D, defined by a reduction of diarrhea frequency (P = 0.032), abdominal pain frequency (P < 0.01) and urgent need for defecation frequency (P < 0.01), were significantly more pronounced in the berberine group than the placebo group in the 8 weeks of treatment. A trend of improvement (P < 0.05) was observed with berberine hydrochloride for IBS symptom score, depression score and anxiety score and the IBSQOL, compared with placebo. At last, berberine hydrochloride was well tolerated. So we concluded that berberine hydrochloride is well tolerated and reduces IBS-D symptoms, which effectively improved patients QOL.
Collapse
Affiliation(s)
- Chunqiu Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Tao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongchen Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Meiling Lu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiuhui Pan
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijun Zheng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Li
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenshun Song
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
41
|
Wang Y, Ding Y. Berberine protects vascular endothelial cells in hypertensive rats. Int J Clin Exp Med 2015; 8:14896-14905. [PMID: 26628971 PMCID: PMC4658860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/02/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE This study is to investigate the effect and mechanism of berberine on vascular endothelial cell injury. METHODS The isolated aortic endothelial cells were divided into negative control group, spontaneous hypertension group, and berberine group (1.25, 2.5, and 5 μmol/L berberine). CCK-8 assay was performed to detect cell proliferation. Annexin V-FITC flow cytometry and Hochest33342/PI staining were used to measure cell apoptosis. Expression of TLR4, Myd88, and NF-κB was detected with Western blotting analysis. Level of IL-6 and TNF-α was measured with ELISA. RESULTS Compared with spontaneous hypertension group, cell proliferation in berberine group was significantly improved (P < 0.05). Flow cytometry showed that cell apoptosis was reduced in berberine group in a dose-dependent manner and there was statistically significant difference between spontaneous hypertension group and berberine group (P < 0.05). This result was further confirmed by Hochest33342/PI staining. Expression levels of TLR4, Myd88 and NF-κB were increased in spontaneous hypertension group. However, their expression levels were significantly reduced in berberine group than those in spontaneous hypertension group (P < 0.05). Similarly, levels of IL-6 and TNF-α were increased in spontaneous hypertension group and decreased in berberine group. And, the difference was significant (P < 0.05). Importantly, there were significant differences between negative control group and spontaneous hypertension group in cell proliferation, apoptosis, and expression of TLR4, Myd88, NF-κB, IL-6 and TNF-α. CONCLUSION Berberine plays a protective role in vascular endothelial cell injury through inhibiting apoptosis and expression of TLR4, Myd88, NF-κB, IL-6 and TNF-α.
Collapse
Affiliation(s)
- Yang Wang
- Department of ECG, The First Affiliated Hospital, Harbin Medical UniversityHarbin 150001, P. R. China
| | - Yun Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical UniversityHarbin 150001, P. R. China
| |
Collapse
|
42
|
Involvement of the dopaminergic system in the central orexin-induced antinociceptive action against colonic distension in conscious rats. Neurosci Lett 2015; 605:34-8. [DOI: 10.1016/j.neulet.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
|
43
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
44
|
Antinociceptive action against colonic distension by brain orexin in conscious rats. Brain Res 2015; 1598:12-7. [DOI: 10.1016/j.brainres.2014.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/16/2023]
|
45
|
Somani SJ, Modi KP, Majumdar AS, Sadarani BN. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 2015; 29:339-50. [PMID: 25572840 DOI: 10.1002/ptr.5271] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unclear etiology, namely ulcerative colitis and Crohn's disease. Various drug therapies including aminosalicylates and immunomodulators have been approved for use; they have shown to produce diverse side effects. To overcome these limitations of the current therapeutics for IBD, extensive research is underway to identify drugs that are effective and free of undesirable side effects. Recently, various naturally occurring phytochemicals that cover a wide range of chemical entities such as polyphenols, terpeniods, flavonoids, and alkaloids have received attention as alternative candidates for IBD therapy. These phytochemicals act by modulating the immune response, various transcription factors, or reduce cytokine secretion. This review summarizes the findings of recent studies on phytochemicals as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Sahil J Somani
- Department of Pharmacology, School of Pharmacy, RK University, Rajkot, India
| | | | | | | |
Collapse
|
46
|
Chen C, Yu Z, Li Y, Fichna J, Storr M. Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1053-70. [PMID: 25183302 DOI: 10.1142/s0192415x14500669] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Berberine is an isoquinoline alkaloid present in several plant species, including Coptis sp. and Berberis sp. In traditional medicine, extracts of berberine are used in the treatment of diarrhea of different origins. Recent studies have shown that berberine and its derivatives have significant biological effects on gastrointestinal (GI) and other functions and may become therapeutics for the treatment of diarrhea, gastroenteritis, diabetes, hyperlipidemia, cardiovascular diseases and inflammatory conditions. This paper summarizes the current knowledge on the actions of berberine in the GI tract. Binding and target sites, activated intracellular pathways, as well as the absorption and metabolism of berberine are discussed. Effects that may be useful in future clinical treatment, like antidiarrheal, anti-inflammatory and antitumor effects are critically reviewed and potential clinical applications are presented in detail.
Collapse
Affiliation(s)
- Chunqiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
47
|
Ortiz LMG, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules 2014; 19:12349-67. [PMID: 25153862 PMCID: PMC6271598 DOI: 10.3390/molecules190812349] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022] Open
Abstract
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated.
Collapse
Affiliation(s)
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese 20026, Italy.
| | - Micol Tillhon
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| |
Collapse
|