1
|
Matos I, Barvalia M, Chehal MK, Robertson AG, Kulic I, Silva JAFD, Ranganathan A, Short A, Huang YH, Long E, Priatel JJ, Dhanji S, Nelson BH, Krebs DL, Harder KW. Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. CANCER RESEARCH COMMUNICATIONS 2023; 3:404-419. [PMID: 36911097 PMCID: PMC9997410 DOI: 10.1158/2767-9764.crc-22-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Collapse
Affiliation(s)
- Israel Matos
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Maunish Barvalia
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Manreet K Chehal
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency. Vancouver, British Columbia, Canada
| | - Iva Kulic
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Jessica A F D Silva
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Abhinandan Ranganathan
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Amy Short
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Erin Long
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - John J Priatel
- ME Therapeutics Inc. Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Salim Dhanji
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.,ME Therapeutics Inc. Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Kusoglu A, Bagca BG, Ay NPO, Saydam G, Avci CB. Ruxolitinib Regulates the Autophagy Machinery in Multiple Myeloma Cells. Anticancer Agents Med Chem 2021; 20:2316-2323. [PMID: 32067619 DOI: 10.2174/1871520620666200218105159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. OBJECTIVE In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. METHODS Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. RESULTS We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. CONCLUSION All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.
Collapse
Affiliation(s)
- Alican Kusoglu
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Bakiye G Bagca
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Neslihan P O Ay
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Guray Saydam
- Department of Hematology, Ege University Medical School, Izmir, Turkey
| | - Cigir B Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| |
Collapse
|
3
|
Yeo B, Redfern AD, Mouchemore KA, Hamilton JA, Anderson RL. The dark side of granulocyte-colony stimulating factor: a supportive therapy with potential to promote tumour progression. Clin Exp Metastasis 2018; 35:255-267. [PMID: 29968171 DOI: 10.1007/s10585-018-9917-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is one of several cytokines that can expand and mobilize haematopoietic precursor cells from bone marrow. In particular, G-CSF mobilizes neutrophils when the host is challenged by infection or tissue damage. Severe neutropenia, or febrile neutropenia is a life-threatening event that can be mitigated by administration of G-CSF. Consequently, G-CSF has been used to support patients undergoing chemotherapy who would otherwise require dose reduction due to neutropenia. Over the past 10-15 years it has become increasingly apparent, in preclinical tumour growth and metastasis models, that G-CSF can support tumour progression by mobilization of tumour-associated neutrophils which consequently promote tumour dissemination and metastasis. With the increasing use of G-CSF in the clinic, it is pertinent to ask if there is any evidence of a similar promotion of tumour progression in patients. Here, we have reviewed the preclinical and clinical data on the potential contribution of G-CSF to tumour progression. We conclude that, whilst the evidence for a promotion of metastasis is strong in preclinical models and that limited data indicate that high serum G-CSF levels in patients are associated with poorer prognosis, no studies published so far have revealed evidence of increased tumour progression associated with supportive G-CSF use during chemotherapy in patients. Analysis of G-CSF receptor positive cohorts within supportive trials, as well as studies of the role of G-CSF blockade in appropriate tumours in the absence of chemotherapy could yield clinically translatable findings.
Collapse
Affiliation(s)
- Belinda Yeo
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,Austin Health, Heidelberg, VIC, 3084, Australia
| | | | - Kellie A Mouchemore
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia.,Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - John A Hamilton
- Arthritis and Inflammation Research Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
4
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
5
|
Su Z, Mao YP, OuYang PY, Tang J, Xie FY. Initial Hyperleukocytosis and Neutrophilia in Nasopharyngeal Carcinoma: Incidence and Prognostic Impact. PLoS One 2015; 10:e0136752. [PMID: 26336064 PMCID: PMC4559377 DOI: 10.1371/journal.pone.0136752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Background This study aimed to evaluate initial hyperleukocytosis and neutrophilia as prognostic indicators in patients with nasopharyngeal carcinoma. Methods A retrospective analysis of 5,854 patients identified from a cohort of 6,035 patients diagnosed with nasopharyngeal carcinoma was performed with initial hyperleukocytosis and neutrophilia analyzed as prognostic factors. Multivariate Cox proportional hazards analyses were applied. Results Hyperleukocytosis was observed in 508 patients (8.7%). Multivariate analysis showed that initial hyperleukocytosis was an independent predictor of death (HR 1.40, 95%CI 1.15–1.70, p = 0.001), progression (HR 1.25, 95%CI 1.06–1.47, p = 0.007) and, marginally, distant metastasis (HR 1.21, 95%CI 0.97–1.52, p = 0.088). Neutrophilia was also an independent predictor of death (HR 1.46, 95%CI 1.18–1.81, p = 0.001), progression (HR 1.31, 95%CI 1.10–1.56, p = 0.003), and distant metastasis (HR 1.29, 95%CI 1.02–1.65, p = 0.036), after adjusting for prognostic factors and excluding hyperleukocytosis. Conclusion Initial hyperleukocytosis and neutrophilia were independent, poor prognostic factors and may be convenient and useful biological markers for survival of patients with nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zhen Su
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jie Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- * E-mail:
| |
Collapse
|