1
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. FRONTIERS IN GASTROENTEROLOGY 2022; 1. [DOI: 10.3389/fgstr.2022.977169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BackgroundImpaired autophagy contributes to development of acute pancreatitis (AP). We studied the effect of inducing autophagy by calorie-restriction and rapamycin, separately, in the caerulein-induced model of severe AP.MethodsAdult, male, Swiss albino mice were given eight, hourly, intraperitoneal injections of caerulein (Ce) (50µg/Kg/dose). The interventions were calorie restriction (CR) and rapamycin (2mg/Kg). Mice were sacrificed at the 9th hour. Pancreas was harvested for histopathology and immunoblotting. Amylase activity and the levels of cytokines were measured in plasma.ResultsThe histopathological score and amylase activity were significantly lower in calorie-restricted caerulein-induced AP (CRCeAP) in comparison to animals that had unrestricted access to chow. In the CRCeAP group, levels of IL-6 and GM-CSF in plasma were lower and the expression of LC3II and Beclin-1 were higher. On transmission electron-microscopy, the area occupied by autophagic vacuoles was higher in CRCeAP. The expression of caspase-8 and caspase-9 was also higher in CRCeAP. In rapamycin with caerulein-induced AP (Rapa+CeAP), the histopathological score and amylase activity were significantly lower than caerulein-induced AP (CeAP). In Rapa+CeAP, the expression of LC3II and Beclin-1 were higher, whereas; SQSTM1 was decreased. The number of autophagic vacuoles in Rapa+CeAP group was fewer. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were lower in Rapa+CeAP. Caspase-3 increased and high mobility group box 1 (HMGB1) decreased in Rapa+CeAP.ConclusionCalorie-restriction and rapamycin can individually decrease the severity of injury in the caerulein-induced model of severe AP.
Collapse
|
2
|
Chen CC, Wang YH, Sun RY, Lu XY, Xu YP, Wang YQ, Li JY, Wang HW, Chen KW. Salidroside protects against caerulein with the LPS-induced severe acute pancreatitis through suppression of oxidative stress and inflammation in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
3
|
Khamaysi I, Hamo-Giladi DB, Abassi Z. Heparanase in Acute Pancreatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:703-719. [PMID: 32274733 DOI: 10.1007/978-3-030-34521-1_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common diseases in gastroenterology, affecting 2% of all hospitalized patients. Nevertheless, neither the etiology nor the pathophysiology of the disease is fully characterized, and no specific or effective treatment has been developed. Heparanase (Hpa) is an endoglycosidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans (HSPGs) into shorter oligosaccharides, activity that is highly implicated in cell invasion associated with cancer metastasis and inflammation. Given that AP is a typical inflammatory disease, we investigated whether Hpa plays a role in AP. Our results provide keen evidence that Hpa expression and activity are significantly increased following cerulein-induced AP in wild type mice. In parallel to the classic manifestations of AP, namely elevation of amylase and lipase levels, pancreas edema and inflammation as well as induction of cytokines and signaling molecules, have been detected in this experimental model of the disease. Noteworthy, these features were far more profound in transgenic mice overexpressing heparanase (Hpa-Tg), suggesting that these mice can be utilized as a model system to reveal the molecular mechanism by which Hpa functions in AP. Further support for the involvement of Hpa in the pathogenesis of AP emerged from our observation that treatment of experimental AP with PG545 or SST0001(= Ronepastat), two potent Hpa inhibitors, markedly attenuated the biochemical, histological and immunological manifestations of the disease. Hpa, therefore, emerges as a potential new target in AP, and Hpa inhibitors are hoped to prove beneficial in AP along with their promising efficacy as anti-cancer compounds.
Collapse
Affiliation(s)
- Iyad Khamaysi
- Department of Gastroenterology, Advanced Endoscopy Procedures Unit, Rambam Health Care Campus, Haifa, Israel.
| | | | - Zaid Abassi
- Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Ko KH, An JM, Son MS, Chung JB, Hahm KB. Antioxidant therapy in chronic pancreatitis-promises and pitfalls. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S115. [PMID: 31576322 DOI: 10.21037/atm.2019.05.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kwang Hyun Ko
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Jeong Min An
- Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| | - Mi Seo Son
- Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| | - Jae Bock Chung
- Department of Gastroenterology, National Health Insurance Service Ilsan Hospital, Ilsan, Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea.,Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| |
Collapse
|
5
|
Tiruveedi VL, Bale S, Khurana A, Godugu C. Withaferin A, a novel compound of Indian ginseng (Withania somnifera), ameliorates Cerulein-induced acute pancreatitis: Possible role of oxidative stress and inflammation. Phytother Res 2018; 32:2586-2596. [PMID: 30307087 DOI: 10.1002/ptr.6200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/29/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas that may precipitate due to various reasons such as chronic alcoholism, gall stone obstruction, and life style. Current treatment options offer limited efficacy, as they provide only symptomatic relief. This study is an attempt to study the effects of Withaferin A (WFA) against Cerulein-induced acute pancreatitis in mice. Animals were pretreated with WFA via intraperitoneal route, for 7 days. Plasma amylase and lipase, tissue malondialdehyde (MDA), and glutathione were evaluated for all groups. Western blot analysis; haematoxylin and eosin staining of the liver, lung, and pancreas; immunohistochemistry for nitrotyrosine; and myeloperoxidase activity were performed. Haematoxylin and eosin stained sections significantly revealed the altered architecture and thereby damage in the pancreas, lungs, and liver that has been low in treatment groups. Increased myeloperoxidase and nitrotyrosine have also been reduced upon treatment with WFA. Increased levels of MDA, NO, and expression of myeloperoxidase and nitrotyrosine in the parameters estimated add evidence to the role of oxidative stress and inflammation in acute pancreatitis. WFA evidently altered these conditions upon pretreatment. Our study shows that this novel steroidal compound has potent anti-inflammatory property. Natural compounds can therefore be good remedies against many diseases if incorporated in routine diet as dietary supplement.
Collapse
Affiliation(s)
- Vijaya Lakshmi Tiruveedi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
6
|
Zhang M, Wu YQ, Xie L, Wu J, Xu K, Xiao J, Chen DQ. Isoliquiritigenin Protects Against Pancreatic Injury and Intestinal Dysfunction After Severe Acute Pancreatitis via Nrf2 Signaling. Front Pharmacol 2018; 9:936. [PMID: 30174606 PMCID: PMC6108026 DOI: 10.3389/fphar.2018.00936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Severe acute pancreatitis (SAP) is a digestive system disease that is associated with a range of complications including intestinal dysfunction. In this study, we determined that the chalcone compound, isoliquiritigenin (ISL), reduces pancreatic and intestinal injury in a mouse model of SAP. These effects were achieved by suppressing oxidative stress and the inflammatory responses to SAP. This was evidenced by a reduction in histological score, and malondialdehyde (MDA), interleukin (IL)-6, tumor necrosis factor (TNF)-α and cleaved-caspase-3 (c-caspase-3) protein along with an increase in Nrf2, hemeoxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD). We then used Nrf2-/- mice to test the protective effect of Nrf2 during ISL treatment of SAP. Our results indicated that Nrf2-/- mice had greater pancreatic injury and intestinal dysfunction than wild-type mice. They also had reduced adherens junctions (P120-catenin) and tight junctions (occludin), and increased activated nuclear factor-κB (NF-κB) protein. In Nrf2-/- mice, ISL was less effective at these functions than in the WT mice. In conclusion, this study demonstrated that ISL exerts its protective effects against oxidative stress and inflammatory injury after SAP via regulation of the Nrf2/NF-κB pathway. It also showed that the efficacy of ISL in repairing the intestinal barrier damage caused by SAP is closely related to the Nrf2 protein. Our findings demonstrated that Nrf2 is an important protective factor against SAP-induced injuries in the pancreas and intestines.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Yan-Qing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiang Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Wenzhou University College of Life and Environmental Science, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
8
|
Aziz NM, Kamel MY, Rifaai RA. Eff ects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats. Endocr Regul 2017; 51:20-30. [DOI: 10.1515/enr-2017-0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Objective. The aim of the current study was to assess the protective outcome of hemin, a heme oxygenase-1 (HO-1) inducer on L-arginine-induced acute pancreatitis in rats. Acute pancreatitis (AP) is considered to be a critical inflammatory disorder with a major impact on the patient health. Various theories have been recommended regarding the pathophysiology of AP and associated pulmonary complications.
Methods. Twenty-four adult male albino rats were randomly divided into four groups: control group, acute pancreatitis (AP), hemin pre-treated AP group, and hemin post-treated AP group.
Results. Administration of hemin before induction of AP significantly attenuated the L-arginine- induced pancreatitis and associated pulmonary complications characterized by the increasing serum levels of amylase, lipase, tumor necrosis factor-α, nitric oxide, and histo-architectural changes in pancreas and lungs as compared to control group. Additionally, pre-treatment with hemin significantly compensated the deficits in total antioxidant capacities and lowered the elevated malondialdehyde levels observed with AP. On the other hand, post-hemin administration did not show any protection against L-arginine-induced AP.
Conclusions. The current study indicates that the induction of HO-1 by hemin pre-treatment significantly ameliorated the L-arginine-induced pancreatitis and associated pulmonary complications may be due to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- N. M. Aziz
- Assistant Professor, Department of Physiology, Faculty of Medicine, Minia University, 61111, Minia, Egypt
| | - M. Y. Kamel
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| | - R. A. Rifaai
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Lee HJ, Park JM, Han YM, Gil HK, Kim J, Chang JY, Jeong M, Go EJ, Hahm KB. The role of chronic inflammation in the development of gastrointestinal cancers: reviewing cancer prevention with natural anti-inflammatory intervention. Expert Rev Gastroenterol Hepatol 2016; 10:129-39. [PMID: 26524133 DOI: 10.1586/17474124.2016.1103179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory mediators alter the local environment of tumors, known as the tumor microenvironment. Mechanistically, chronic inflammation induces DNA damage, but understanding this hazard may help in the search for new chemopreventive agents for gastrointestinal (GI) cancer which attenuate inflammation. In the clinic, GI cancer still remains a major cause of cancer-associated mortality, chemoprevention with anti-inflammatory agents is thought to be a realistic approach to reduce GI cancer. Proton pump inhibitors, monoclonal antibodies targeting tumor necrosis factor-alpha, anti-sense targeted smad7 and non-steroidal anti-inflammatory agents have been investigated for their potential to prevent inflammation-based GI cancer. Besides these, a wide variety of natural products have also shown potential for the prevention of GI cancer. In this review, the authors will provide insights to explain the mechanistic connection between inflammation and GI cancer, as well as describe a feasible cancer prevention strategy based on anti-inflammatory treatments.
Collapse
Affiliation(s)
- Ho-Jae Lee
- a Laboratory of Chemoprevention, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Korea
| | - Jong-Min Park
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Young Min Han
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Hong Kwon Gil
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Jinhyung Kim
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ji Young Chang
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Migyeong Jeong
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Eun-Jin Go
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ki Baik Hahm
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea.,c Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|