1
|
Xu L, Wang T, Xu Y, Jiang C. Investigation of the pharmacological mechanisms of Shenfu injection in acute pancreatitis through network pharmacology and experimental validation. Heliyon 2024; 10:e37491. [PMID: 39309824 PMCID: PMC11415655 DOI: 10.1016/j.heliyon.2024.e37491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background Shenfu Injection (SFI) has emerged as a prevalent therapeutic intervention in clinical practice for the management of acute pancreatitis (AP). The purpose of this research was to investigate and validate the potential mechanisms of SFI in the treatment of AP through network pharmacology. Methods Network pharmacology was adopted to investigate the potential targets and mechanisms of SFI in the treatment of AP. Molecular docking was employed to evaluate the binding affinity between active components and targets. Single-cell transcriptome analysis was conducted to explore the cell types associated with SFI treatment in AP. In vitro and in vivo models of AP were induced by caerulein. The histopathological changes were observed by HE staining. Cell apoptosis was detected using flow cytometry and Tunel staining. Cell viability was assessed using CCK-8 assay. Western blot and ELISA were used to detect the protein expression and inflammatory cytokines, respectively. Results A total of 104 SFI active components were obtained, of which 29 targeted 76 genes. After intersecting with 3370 AP-related genes, 42 SFI treatment AP potential targets were identified. Enrichment analysis revealed that these targets were associated with cell apoptosis, necroptosis, and multiple signal transduction pathways, such as p53, IL-17 and TNF signal pathways, etc. Molecular docking demonstrated that the active components of SFI had good binding affinity with the corresponding targets and the binding ability of NGF and aromadendrene was the strongest. Bioinformatics analysis revealed that SFI treatment in AP is associated with various cell types, including acinar cells, endothelial cells, T cells, dendritic cells, ductal cells, and mesenchymal cells. Furthermore, in vitro experiments demonstrated that SFI induces acinar cell apoptosis in a dose-dependent manner, accompanied by increased expression of cleaved-caspase3/caspase3 and cleaved-caspase8/caspase8 proteins, and inhibition of inflammatory cytokine (TNF-ɑ, IL-1β, and PTGS2) expression. In vivo experiments demonstrated that SFI improved histopathological alterations, reduces inflammation, and promotes apoptosis and the expression of cleaved-casp3 and cleaved-casp8 in AP rats. Conclusions This study elucidated the multi-component, multi-target, and multi-cellular characteristics of SFI in the treatment of AP, and confirmed its mechanism of promoting acinar cell apoptosis.
Collapse
Affiliation(s)
- Liming Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Tianpeng Wang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Chenghang Jiang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| |
Collapse
|
2
|
Feng MC, Luo F, Huang LJ, Li K, Chen ZM, Li H, Yao C, Qin BJ, Chen GZ. Rheum palmatum L. and Salvia miltiorrhiza Bge. Alleviates Acute Pancreatitis by Regulating Th17 Cell Differentiation: An Integrated Network Pharmacology Analysis, Molecular Dynamics Simulation and Experimental Validation. Chin J Integr Med 2024; 30:408-420. [PMID: 37861962 DOI: 10.1007/s11655-023-3559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To identify the core targets of Rheum palmatum L. and Salvia miltiorrhiza Bge., (Dahuang-Danshen, DH-DS) and the mechanism underlying its therapeutic efficacy in acute pancreatitis (AP) using a network pharmacology approach and validate the findings in animal experiments. METHODS Network pharmacology analysis was used to elucidate the mechanisms underlying the therapeutic effects of DH-DS in AP. The reliability of the results was verified by molecular docking simulation and molecular dynamics simulation. Finally, the results of network pharmacology enrichment analysis were verified by immunohistochemistry, Western blot analysis and real-time quantitative PCR, respectively. RESULTS Sixty-seven common targets of DH-DS in AP were identified and mitogen-activated protein kinase 3 (MAPK3), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), protein c-Fos (FOS) were identified as core targets in the protein interaction (PPI) network analysis. Gene ontology analysis showed that cellular response to organic substance was the main functions of DH-DS in AP, and Kyoto Encyclopedia of Genes and Genomes analysis showed that the main pathway included Th17 cell differentiation. Molecular docking simulation confirmed that DH-DS binds with strong affinity to MAPK3, STAT3 and FOS. Molecular dynamics simulation revealed that FOS-isotanshinone II and STAT3-dan-shexinkum d had good binding capacity. Animal experiments indicated that compared with the AP model group, DH-DS treatment effectively alleviated AP by inhibiting the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α, and blocking the activation of Th17 cell differentiation (P<0.01). CONCLUSION DH-DS could inhibit the expression of inflammatory factors and protect pancreatic tissues, which would be functioned by regulating Th17 cell differentiation-related mRNA and protein expressions.
Collapse
Affiliation(s)
- Min-Chao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Liang-Jiang Huang
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Kai Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Zu-Min Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Hui Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Chun Yao
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
| | - Bai-Jun Qin
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Guo-Zhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
3
|
Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. J Nanobiotechnology 2023; 21:443. [PMID: 37996911 PMCID: PMC10666376 DOI: 10.1186/s12951-023-02200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Acute pancreatitis (AP) is a common and life-threatening digestive disorder. However, its diagnosis and treatment are still impeded by our limited understanding of its etiology, pathogenesis, and clinical manifestations, as well as by the available detection methods. Fortunately, the progress of microenvironment-targeted nanoplatforms has shown their remarkable potential to change the status quo. The pancreatic inflammatory microenvironment is typically characterized by low pH, abundant reactive oxygen species (ROS) and enzymes, overproduction of inflammatory cells, and hypoxia, which exacerbate the pathological development of AP but also provide potential targeting sites for nanoagents to achieve early diagnosis and treatment. This review elaborates the various potential targets of the inflammatory microenvironment of AP and summarizes in detail the prospects for the development and application of functional nanomaterials for specific targets. Additionally, it presents the challenges and future trends to develop multifunctional targeted nanomaterials for the early diagnosis and effective treatment of AP, providing a valuable reference for future research.
Collapse
Affiliation(s)
- Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yiqing Zhang
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospita, PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| | - Jun Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Omayone TP, Ijomone OM, Oloyede SB, Okunola ST, Aigoro ZO, Esukpa VU, Dinakin SO. Modulatory action of Moringa oleifera Lam. on L-arginine induced acute pancreatitis. J Basic Clin Physiol Pharmacol 2023; 34:707-715. [PMID: 34606706 DOI: 10.1515/jbcpp-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute pancreatitis (AP) is an inflammatory disease of the pancreas with high morbidity and mortality. This study investigates the effect of Moring oleifera (MO) on L-arginine-induced AP in Wistar rats. METHODS Male Wistar rats were randomly divided into seven groups. Control, AP, Magnesium groups, all fed with standard rat diet, MO leaf groups (5% MLF and 15% MLF), and MO seed groups (5% MSD and 15% MSD) were fed with five or 15% MO leaf or seed supplemented diet for four weeks prior to induction of AP. AP was induced by administration of double doses of L-arginine (320 mg/100 g i.p.) at 1 h interval. All animals were sacrificed 72 h thereafter. RESULTS Weekly mean feed consumption and body weight were significantly higher in MO groups compared to the control. Amylase level, MDA, MPO, and NO were significantly higher in the AP group than in the control but decreased in Mg and MO groups. While CAT, SOD, GSH, and SH-group were significantly depleted in AP groups, which was attenuated in MO groups. Rats in AP groups showed severe inflammation, necrosis, and edema. These effects were significantly improved in MO groups resulting in lower histological scores compared to the AP group. CONCLUSIONS Pretreatment with MO could attenuate AP via its antioxidant and anti-inflammatory action.
Collapse
Affiliation(s)
- Tosan Peter Omayone
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Omamuyovwi Meashack Ijomone
- Department of Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Solomon Babatunde Oloyede
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Salihaat Toyin Okunola
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Zainab Oluwabukola Aigoro
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Victory Uwuma Esukpa
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Samuel Oluwaseun Dinakin
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
5
|
Hey-Hadavi J, Velisetty P, Mhatre S. Trends and recent developments in pharmacotherapy of acute pancreatitis. Postgrad Med 2022; 135:334-344. [PMID: 36305300 DOI: 10.1080/00325481.2022.2136390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute pancreatitis (AP), a complex inflammatory disease of the pancreas, is associated with increased morbidity and mortality. Currently, no specific therapies are approved for its treatment, and management is primarily based on supportive care. Despite enhanced understanding of AP pathogenesis, patients remain at significant risk owing to a lack of targeted drug treatments. Therefore, there is an urgent need for effective pharmacological therapeutic measures which may inhibit the early systemic inflammation, thereby preventing subsequent organ failure. This narrative review summarizes the available treatment options for AP and highlights the potential drug classes and pharmacologic therapies including those under clinical development. Although, several therapies targeting different aspects of AP pathogenesis have been investigated, some therapies with promising preclinical activity have been rendered ineffective in clinical trials. Other novel drug classes or molecules including dabigatran (anticoagulant), ulinastatin (protease inhibitor), infliximab (monoclonal antibody), spautin-A41 (autophagy inhibitor), and CM4620-Injectible Emulsion (calcium channel inhibitor) await further clinical assessment. Alternative treatment options using stem cells and nanoparticles are also being explored and may hold promise for AP therapy. However, challenges for exploring targeted treatment approaches include disease complexity, timing of therapeutic intervention, and establishing appropriate clinical endpoints. Understanding the role of specific biomarkers may help in identifying appropriate targets for drug discovery and facilitate determining relevant clinical study endpoints to monitor disease severity and progression, thereby aiding in design of more precise therapies with improved clinical outcomes.
Collapse
|
6
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
7
|
Zhu F, Yin S, Zhou L, Li Z, Yan H, Zhong Y, Wu X, Luo B, Yang L, Gan D, Deng L, Che D, Li L. Chinese herbal medicine xuebijing injection for acute pancreatitis: An overview of systematic reviews. Front Pharmacol 2022; 13:883729. [PMID: 36034818 PMCID: PMC9399720 DOI: 10.3389/fphar.2022.883729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background: At present, a number of systematic reviews (SRs) on Xuebijing injection (a patent in China) in the treatment of acute pancreatitis (AP) or severe acute pancreatitis (SAP) have been published. However, the quality of evidence is uneven and has not been comprehensively evaluated. Aim: We evaluated the efficacy of Xuebijing injection for AP/SAP through an overview of SR, and to provide a scientific basis for its effectiveness and safety. Methods: We searched Cochrane Library, Embase, PubMed, SinoMed, CNKI, Wanfang, and VIP comprehensively. The retrieval period from inception to 30 November 2021, and the two reviewers independently complete the literature retrieval, data extraction and evaluation. The Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) and the Preferred Reporting Item for Systematic Review and Meta-analysis (PRISMA) were used to evaluate the methodological quality and reporting quality of the SRs, respectively. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used to evaluate the quality grading of outcomes and the risk of bias in SRs was evaluated by ROBIS Tool. Finally, the RCTs involved in SRs were synthesized. Stata15.1 was used for quantitative analysis of total effectiveness rate, time until relief of abdominal pain, time until relief of abdominal distension, and serum amylase level. Results: Nine eligible SRs were included, including 92 RCTs and 6,837 participants. The quality of SRs was relatively good, and the manuscript structures were relatively complete. However, the methodological quality of SRs was low or critically low. RoB rated 5 SRs as low risk of bias and 4 SRs as high risk of bias. In GRADE, a total of 47 results were included in the 9 SRs, of which 5 results (10.64%) were moderate quality, 22 results (46.81%) were low quality, and 20 results (42.55%) were very low quality. The results of data synthesis showed that Xuebijing injection combined treatment increased the total effectiveness rate of AP patients (RR = 1.19, 95% CI 1.17–1.23, p < 0.0001), and there was no heterogeneity between studies (I2 = 0.0%, p = 0.589). Compared with the control group, Xuebijing injection group shortened the abdominal pain and distension relief time in AP patients (WMD = −1.69, 95% CI −1.88–−1.50, p < 0.0001; WMD = −1.48, 95% CI −1.74–−1.23, p < 0.0001), with high heterogeneity (I2 = 84.3%, p = 0.000; I2 = 72.2%, p = 0.000). Serum amylase level was also reduced (WMD = −2.06, 95% CI −2.47–−1.64, p < 0.0001), with significant heterogeneity (I2 = 71.6%, p = 0.000). A total of one SR reported adverse drug reaction (ADR), no ADRs were observed in the control group. Conclusion: Although the quality of the evidence is not high, it can still reflect the clinical value of Xuebijing injection as an analgesic and anti-inflammatory traditional Chinese medicine in the treatment of AP/SAP. Therefore, future clinical studies should focus on the long-term efficacy and adverse reactions of drugs. Systematic Review Registration: (website), identifier (registration number).
Collapse
Affiliation(s)
- Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Shao Yin
- Clinical Medical School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Zimeng Li
- Acupuncture and Tuina School, The Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Yan
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Yue Zhong
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Xiaohan Wu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Biao Luo
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Lanying Yang
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Daohui Gan
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Lvyu Deng
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| | - Deya Che
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
- *Correspondence: Deya Che, ; Liuying Li,
| | - Liuying Li
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
- *Correspondence: Deya Che, ; Liuying Li,
| |
Collapse
|
8
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
9
|
Nagel F, Susemihl A, Geist N, Möhlis K, Palm GJ, Lammers M, Delcea M. Structural Basis of the Pancreatitis-Associated Autoproteolytic Failsafe Mechanism in Human Anionic Trypsin. J Inflamm Res 2022; 15:3633-3642. [PMID: 35775010 PMCID: PMC9239388 DOI: 10.2147/jir.s367699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Felix Nagel
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Anne Susemihl
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, Greifswald, Germany
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Kevin Möhlis
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Gottfried J Palm
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Correspondence: Mihaela Delcea, Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany, Tel +49 3834 420 4423, Fax +49 3834 420 4377, Email
| |
Collapse
|
10
|
Triptolide Suppresses NF-κB-Mediated Inflammatory Responses and Activates Expression of Nrf2-Mediated Antioxidant Genes to Alleviate Caerulein-Induced Acute Pancreatitis. Int J Mol Sci 2022; 23:ijms23031252. [PMID: 35163177 PMCID: PMC8835869 DOI: 10.3390/ijms23031252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.
Collapse
|
11
|
Banerjee S, Yadav S, Banerjee S, Fakayode SO, Parvathareddy J, Reichard W, Surendranathan S, Mahmud F, Whatcott R, Thammathong J, Meibohm B, Miller DD, Jonsson CB, Dubey KD. Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and In Vitro Study. J Chem Inf Model 2021; 61:5469-5483. [PMID: 34666487 PMCID: PMC8547516 DOI: 10.1021/acs.jcim.1c00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/11/2022]
Abstract
COVID-19, an acute viral pneumonia, has emerged as a devastating pandemic. Drug repurposing allows researchers to find different indications of FDA-approved or investigational drugs. In this current study, a sequence of pharmacophore and molecular modeling-based screening against COVID-19 Mpro (PDB: 6LU7) suggested a subset of drugs, from the Drug Bank database, which may have antiviral activity. A total of 44 out of 8823 of the most promising virtual hits from the Drug Bank were subjected to molecular dynamics simulation experiments to explore the strength of their interactions with the SARS-CoV-2 Mpro active site. MD findings point toward three drugs (DB04020, DB12411, and DB11779) with very low relative free energies for SARS-CoV-2 Mpro with interactions at His41 and Met49. MD simulations identified an additional interaction with Glu166, which enhanced the binding affinity significantly. Therefore, Glu166 could be an interesting target for structure-based drug design. Quantitative structural-activity relationship analysis was performed on the 44 most promising hits from molecular docking-based virtual screening. Partial least square regression accurately predicted the values of independent drug candidates' binding energy with impressively high accuracy. Finally, the EC50 and CC50 of 10 drug candidates were measured against SARS-CoV-2 in cell culture. Nilotinib and bemcentinib had EC50 values of 2.6 and 1.1 μM, respectively. In summary, the results of our computer-aided drug design provide a roadmap for rational drug design of Mpro inhibitors and the discovery of certified medications as COVID-19 antiviral therapeutics.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Physical Sciences,
University of Arkansas Fort Smith, 5210 Grand Avenue, Fort
Smith, Arkansas 72904, United States
| | - Shalini Yadav
- Department of Chemistry, Shiv Nadar
University, Gautam Buddha Nagar, Uttar Pradesh 201314,
India
| | - Sourav Banerjee
- Department of Chemistry, School of Basic and Applied
Sciences, Adamas University, Kolkata 700126,
India
| | - Sayo O. Fakayode
- Department of Physical Sciences,
University of Arkansas Fort Smith, 5210 Grand Avenue, Fort
Smith, Arkansas 72904, United States
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory,
University of Tennessee Health Science Center, 901 Monroe
Avenue, Memphis, Tennessee 38163, United States
| | - Walter Reichard
- Department of Microbiology, Immunology, and
Biochemistry, University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| | - Surekha Surendranathan
- Regional Biocontainment Laboratory,
University of Tennessee Health Science Center, 901 Monroe
Avenue, Memphis, Tennessee 38163, United States
| | - Foyez Mahmud
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
| | - Ryan Whatcott
- Department of Physical Sciences,
University of Arkansas Fort Smith, 5210 Grand Avenue, Fort
Smith, Arkansas 72904, United States
| | - Joshua Thammathong
- Department of Physical Sciences,
University of Arkansas Fort Smith, 5210 Grand Avenue, Fort
Smith, Arkansas 72904, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| | - Colleen B. Jonsson
- Regional Biocontainment Laboratory,
University of Tennessee Health Science Center, 901 Monroe
Avenue, Memphis, Tennessee 38163, United States
- Department of Microbiology, Immunology, and
Biochemistry, University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Tennessee Health Science Center,
Memphis, Tennessee 38163, United States
| | - Kshatresh Dutta Dubey
- Department of Chemistry, Shiv Nadar
University, Gautam Buddha Nagar, Uttar Pradesh 201314,
India
| |
Collapse
|
12
|
Huang H, Wang M, Guo Z, Wu D, Wang H, Jia Y, Liu H, Ding J, Peng J. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytother Res 2021; 35:6472-6485. [PMID: 34661951 DOI: 10.1002/ptr.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. Previous studies have shown that rutaecarpine (RUT), an important alkaloid component of Evodia rutaecarpa, exhibits certain protective effects against AP in rats by upregulating calcitonin gene-related peptide (CGRP). However, the molecular mechanism of RUT in AP remains unknown. This study aimed to investigate the effects of RUT on cerulein-induced AP in vivo and in vitro, and to explore the underlying molecular mechanisms. In cerulein/LPS-treated wild-type mice, but not CGRP gene knock-out mice, RUT significantly ameliorated pancreatic inflammation by alleviating histopathological changes, reducing IL-6 and TNF-α levels, and increasing in IL-10 levels. Moreover, RUT improved AP by suppressing the MAPK and NF-κB signaling pathways. These effects were mostly mediated through CGRP. Cell-based studies revealed that RUT significantly improved cell viability while suppressing the apoptosis of AR42J cells with cerulein-induced AP, downregulating IL-6 and TNF-α, stimulating IL-10 release, and inhibiting MAPK, NF-κB, and STAT3 signaling activation, all in a CGRP-dependent manner. RUT ameliorated cerulein/LPS-induced AP inflammatory responses in mice and AR42J cells in a CGRP-dependent manner and thus may represent a potential therapeutic option for AP patients. Our study provides valuable insights for AP drug development.
Collapse
Affiliation(s)
- Haosu Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Guo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Ershov AV, Andreenkov VS, Manasova ZS. Cardiac depression in severe acute pancreatitis: development mechanisms and possible treatment approaches. Review. ANNALS OF CRITICAL CARE 2021:66-74. [DOI: 10.21320/1818-474x-2020-1-66-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cardiac depression, also known as myocardial depression, is one of the typical complications of severe acute pancreatitis. The review describes modern views on the mechanism of development of this phenomenon; the place of the term «myocardial depression factor» at the current stage of study of the problem was discussed; pathogenetic factors of myocardial depression requiring further study have been identified. An attempt to consider cardiac depression as a phenomenon involving the whole cardiovascular system, rather than the heart along, was made. Each pathophysiological factor is examined in terms of the possibility of clinical use.
Collapse
Affiliation(s)
- A. V. Ershov
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Vyacheslav S. Andreenkov
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Z. Sh. Manasova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
Abstract
OBJECTIVE Activation of the constitutive nuclear and mitochondrial enzyme poly (ADP-ribose) polymerase (PARP) has been implicated in the pathogenesis of cell dysfunction, inflammation, and organ failure in various forms of critical illness. The objective of our study was to evaluate the efficacy and safety of the clinically approved PARP inhibitor olaparib in an experimental model of pancreatitis in vivo and in a pancreatic cell line subjected to oxidative stress in vitro. The preclinical studies were complemented with analysis of clinical samples to detect PARP activation in pancreatitis. METHODS Mice were subjected to cerulein-induced pancreatitis; circulating mediators and circulating organ injury markers; pancreatic myeloperoxidase and malondialdehyde levels were measured and histology of the pancreas was assessed. In human pancreatic duct epithelial cells (HPDE) subjected to oxidative stress, PARP activation was measured by PAR Western blotting and cell viability and DNA integrity were quantified. In clinical samples, PARP activation was assessed by PAR (the enzymatic product of PARP) immunohistochemistry. RESULTS In male mice subjected to pancreatitis, olaparib (3 mg/kg i.p.) improved pancreatic function: it reduced pancreatic myeloperoxidase and malondialdehyde levels, attenuated the plasma amylase levels, and improved the histological picture of the pancreas. It also attenuated the plasma levels of pro-inflammatory mediators (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-12, IP-10, KC) but not MCP-1, RANTES, or the anti-inflammatory cytokine IL-10. Finally, it prevented the slight, but significant increase in plasma blood urea nitrogen level, suggesting improved renal function. The protective effect of olaparib was also confirmed in female mice. In HPDE cells subjected to oxidative stress olaparib (1 μM) inhibited PARP activity, protected against the loss of cell viability, and prevented the loss of cellular NAD levels. Olaparib, at 1μM to 30 μM did not have any adverse effects on DNA integrity. In human pancreatic samples from patients who died of pancreatitis, increased accumulation of PAR was demonstrated. CONCLUSION Olaparib improves organ function and tempers the hyperinflammatory response in pancreatitis. It also protects against pancreatic cell injury in vitro without adversely affecting DNA integrity. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of pancreatitis.
Collapse
|
15
|
Dysregulation of miR-192-5p in acute pancreatitis patients with nonalcoholic fatty liver and its functional role in acute pancreatitis progression. Biosci Rep 2021; 40:224146. [PMID: 32406504 PMCID: PMC7256679 DOI: 10.1042/bsr20194345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a frequent metabolic disease and has been demonstrated to contribute to the severity of acute pancreatitis (AP). The present study aimed to investigate the aberrant expression of microRNA-192-5p (miR-192-5p) in AP patients with NAFLD, and further analyze the clinical significance and biological function of miR-192-5p in AP progression. METHODS Expression of miR-192-5p was estimated using quantitative real-time PCR (qRT-PCR). Diagnostic value of miR-192-5p was evaluated by the receiver operating characteristic curve (ROC). The effects of miR-192-5p on cell proliferation, apoptosis and inflammatory response of pancreatic acinar cells were further assessed by CCK-8 assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA). RESULTS Circulating miR-192-5p was decreased in AP patients with NAFLD compared with those patients without NAFLD and healthy controls (P<0.05). The down-regulated expression of miR-192-5p had a relative high diagnostic accuracy to distinguish the AP patients with NAFLD from the cases without NAFLD. Furthermore, the overexpression of miR-192-5p in pancreatic acinar cells led to the decreased cell proliferation, increased cell apoptosis and suppressed inflammatory reaction (all P<0.05). CONCLUSION Collectively, all data indicated that serum expression of miR-192-5p in AP patients with NAFLD is significantly decreased and serves as a candidate diagnostic biomarker. The up-regulation of miR-192-5p in pancreatic acinar cell leads to increased cell apoptosis and decreased inflammatory response, suggesting the potential of miR-192-5p as a therapeutic target of AP.
Collapse
|
16
|
Liu Y, Chen L, Wang L, Xiong Y. Effects of intestinal lymphatic ligation on intestinal immunity in rats with severe acute pancreatitis. FEBS Open Bio 2021; 11:1109-1121. [PMID: 33576136 PMCID: PMC8016124 DOI: 10.1002/2211-5463.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
Severe acute pancreatitis (SAP) is one of the most common diseases of the gastrointestinal tract, characterized by a complicated pathogenesis, multiple organ failure, and high mortality. The primary aim of the present study was to observe the effect of intestinal lymphatic ligation on intestinal injury and modification in rats with SAP. Male Sprague‐Dawley (SD) rats were randomly divided into: (a) Saline group (SO); (b) SAP group; and (c) SAP + ligation group. We evaluated the effect of mesenteric lymphatic duct ligation on the pancreas and intestine tissue by HE. The histopathology of the pancreas in SAP + ligation rats was alleviated slightly compared with SAP rats, but aggravated in the intestine of SAP + ligation rats. Treatment of mesenteric lymphatic duct ligation resulted in an increase in the levels of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and myeloperoxidase compared with the small intestinal tissues of SAP rats. In addition, the expression of nucleotide‐binding oligomerization domain‐like receptors 3, apoptosis‐associated speck‐like protein containing a caspase recruitment domain (CARD) (ASC), and caspase‐1 in the intestine were higher in the SAP + ligation group. The ratio of Th1/Th2 and regulatory T cells (Tregs) in the mesenteric lymph nodes of the SAP group was lower than those in the SAP + ligation group. The present results indicated that ligation of the mesenteric lymph duct can effectively prevent intestinal inflammatory mediators entering the body through the mesenteric lymph duct, but these mediators assembled in the intestine where they induced an excessive immune response and intestinal injury during SAP.
Collapse
Affiliation(s)
- Yuanqi Liu
- College of Comprehensive Health Management, Xihua University, Chengdu, China
| | - Li Chen
- Department of Pharmacy, The Affiliated T.C.M. Hospital of Southwest Medical University, Luzhou, China
| | - Lulu Wang
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- College of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Mesna Alleviates Cerulein-Induced Acute Pancreatitis by Inhibiting the Inflammatory Response and Oxidative Stress in Experimental Rats. Dig Dis Sci 2020; 65:3583-3591. [PMID: 32088797 DOI: 10.1007/s10620-020-06072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a sudden inflammation of the pancreas that may be life-threatening disease with high mortality rates, particularly in the presence of systemic inflammatory response and multiple organ failure. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. AIM This study is designed to investigate the possible effect of mesna on an experimental model of cerulein-induced acute pancreatitis. METHODS Animals were divided into five groups: Group 1 served as a control group given the saline; group II (mesna group) received mesna at a dose of (100 mg/kg per dose, i.p.) four times; group III (acute pancreatitis group) received cerulein at a dose of (20 µg/kg/dose, s.c.) four times with 1-h intervals; group VI, cerulein + mesna, was treated with mesna at a dose of (100 mg/kg, i.p.) 15 min before each cerulein injection. RESULTS Animals with acute pancreatitis showed elevated serum amylase and lipase levels. Biochemical parameters showed increased pancreatic tumor necrosis factors-α (TNF-α) and interleukin-1β (IL-1β) levels. A disturbance in oxidative stress markers was evident by elevated pancreatic lipid peroxides (TBARS) and decline in pancreatic antioxidants' concentrations including reduced glutathione (GSH); superoxide dismutase (SOD); and glutathione peroxidase (GSH-Px). Histological examination confirmed pancreatic injury. Pre-treatment with mesna was able to abolish the changes in pancreatic enzymes, oxidative stress markers (TBARS, SOD, GSH and GSH-Px), pancreatic inflammatory markers (TNF-α, IL-1β) as well as histological changes. CONCLUSIONS Mesna mitigates AP by alleviating pancreatic oxidative stress damage and inhibiting inflammation.
Collapse
|
18
|
Ahn YJ, Lim JW, Kim H. Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2020; 9:antiox9111084. [PMID: 33158207 PMCID: PMC7694300 DOI: 10.3390/antiox9111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)—an omega-3 fatty acid—exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10−8 M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
19
|
Yang X, Li R, Xu L, Qian F, Sun L. Serum amyloid A3 is required for caerulein-induced acute pancreatitis through induction of RIP3-dependent necroptosis. Immunol Cell Biol 2020; 99:34-48. [PMID: 32725692 DOI: 10.1111/imcb.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Serum amyloid A (SAA) is an early and sensitive biomarker of inflammatory diseases, but its role in acute pancreatitis (AP) is still unclear. Here, we used a caerulein-induced mouse model to investigate the role of SAA in AP and other related inflammatory responses. In our study, we found that the expression of a specific SAA isoform, SAA3, was significantly elevated in a caerulein-induced AP animal model. In addition, SAA3-knockout (Saa3-/- ) mice showed lower serum levels of amylase and lipase, tissue damage and proinflammatory cytokine production in the pancreas compared with those of wild-type mice in response to caerulein administration. AP-associated acute lung injury was also significantly attenuated in Saa3-/- mice. In our in vitro experiments, treatment with cholecystokinin and recombinant SAA3 significantly induced necroptosis and cytokine production. Moreover, we found that the regulatory effect of SAA3 on acinar cell necroptosis was through a receptor-interacting protein 3 (RIP3)-dependent manner. Collectively, our findings indicate that SAA3 is required for AP by inducing an RIP3-dependent necroptosis pathway in acinar cells and is a potential drug target for AP.
Collapse
Affiliation(s)
- Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, PR China
| | - Lu Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233003, PR China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
20
|
Ling L, Wang HF, Li J, Li Y, Gu CD. Downregulated microRNA-92a-3p inhibits apoptosis and promotes proliferation of pancreatic acinar cells in acute pancreatitis by enhancing KLF2 expression. J Cell Biochem 2020; 121:3739-3751. [PMID: 31713921 DOI: 10.1002/jcb.29517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Acute pancreatitis (AP) is known worldwide as one of the most common gastrointestinal diseases, prospectively leading to hospitalization coupled with increasing incidence. Several microRNAs (miRNAs) have been reported to be potential biomarkers for pancreatitis. In this study, we verified the hypothesis that miR-92a-3p is implicated in the development of AP by controlling the proliferation and apoptosis of pancreatic acinar cells (PACs) through the modulation of the Kruppel-like factor 2 (KLF2) and inflammatory factors in rats. Initially, we established a rat model of AP and extracted the pancreatic tissues. Then, the positive rate of KLF2 was measured using immunohistochemistry, and the expression of the related genes was determined by rReverse transcription quantitative polymerase chain reaction and Western blot analysis. The cell proliferation and apoptosis were measured by 5-ethynyl-2'-deoxyuridine assay and flow cytometry, and the contents of inflammatory factors were measured using enzyme-linked immunosorbent assay. AP rats presented with increased miR-92a-3p expression as well as decreased KLF2 expression in PACs. The downregulation of miR-92a-3p and overexpression of KLF2 led to decline in expression of nuclear factor-κB (NF-κB), survivin, tumor necrosis factor-α, and Bax as well as extent of NF-κB phosphorylation, contents of inflammatory factors, and apoptosis rate of PACs, but to increased KLF2 and B-cell lymphoma-2 levels and proliferation rate of PACs. Collectively, the data obtained from the present study demonstrated that reduced miR-92a-3p expression may relieve AP through its suppressive effects on cell apoptosis, inflammatory factors, and facilitatory effects on cell proliferation by enhancing KLF2 expression.
Collapse
Affiliation(s)
- Lan Ling
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Hai-Feng Wang
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Jing Li
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Yan Li
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Cheng-Dong Gu
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Abstract
Acute pancreatitis is an inflammatory process of the pancreas, which can range from a localized inflammatory process to a systemic response, resulting in sepsis and multisystem failure. Pancreatic fluid collections are a complication of pancreatitis. Treatment of these fluid collections is dependent on correct classification. The 2012 Atlanta Criteria divides fluid collections into four categories: acute peripancreatic fluid collections, pancreatic pseudocysts, acute necrotic collections, and walled-off necrosis. Endoscopic ultrasound-guided management of chronic fluid collections is currently the preferred treatment modality. Endoscopy nurses need to be aware of their role in this treatment approach. Continued research in this area will lead to both advancements in equipment and treatment options.
Collapse
|
22
|
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol 2020; 11:153. [PMID: 32184728 PMCID: PMC7059186 DOI: 10.3389/fphar.2020.00153] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory diseases are caused by abnormal immune responses and are characterized by an imbalance of inflammatory mediators and cells. In recent years, the anti-inflammatory activity of natural products has attracted wide attention. Rosmarinic acid (RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-inflammatory effects of RosA have been revealed through in vitro and in vivo studies of various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly describes the preclinical research of RosA on inflammatory diseases and depicts a small amount of clinical research data. The purpose of this review is to discuss the anti-inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lin Zou
- Department of Internal Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Research Center of Pharmacodynamic, Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co., Ltd., Tianjin, China
| |
Collapse
|
23
|
Gao GZ, Hao YX. Progress in research of liver injury induced by acute biliary pancreatitis. Shijie Huaren Xiaohua Zazhi 2020; 28:81-85. [DOI: 10.11569/wcjd.v28.i3.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute biliary pancreatitis (ABP) not only causes acute inflammation of the pancreas, but also leads to obstruction or infection of the biliary system. Liver injury is one of the most common complications of ABP. The pathological mechanisms mainly include infection and endotoxin, cholestasis, pancreatic enzyme damage, microcirculatory disorders, and oxidative stress, and the research conclusions are mostly derived from animal experiments. On the basis of routine medical treatment of ABP, active anti-infective treatment and rapid relief of biliary obstruction can promote the recovery of ABP-related liver injury.
Collapse
Affiliation(s)
- Guang-Zhou Gao
- Department of Gastroenterology (Division II), Baoding First Central Hospital, Baoding 071300, Hebei Province, China
| | - Ying-Xia Hao
- Department of Gastroenterology (Division II), Baoding First Central Hospital, Baoding 071300, Hebei Province, China
| |
Collapse
|
24
|
Zhang L, Liu S, Liu H, Yang C, Jiang A, Wei H, Sun D, Cai Z, Zheng Y. Versatile cationic liposomes for RIP3 overexpression in colon cancer therapy and RIP3 downregulation in acute pancreatitis therapy. J Drug Target 2020; 28:627-642. [PMID: 31868032 DOI: 10.1080/1061186x.2019.1708370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because the induction of strong host antitumor responses plays a very important role in antitumor therapy, identifying effective approaches to elicit immunogenic cell death could have important implications. RIP3-dependent necroptotic cancer cells have been reported to release damage-associated molecular patterns and enhance antitumor immunity. In this study, hyaluronic acid-conjugated cationic liposomes (DOTAP/DOPE/PEG-DSPE/CHOL) (HA-P-LP) were prepared as a vector for mRIP3-pDNA overexpression in tumours. Compared with standard cationic liposomes, this vector markedly increased cellular gene internalisation in vitro, enhanced the tumour-targeting effect in vivo and exhibited a significant antitumor effect in combination with adjuvant chloroquine. Considering the dramatic increase in RIP3 under the pathological condition of pancreatitis and the correlation between pancreatitis and necroptosis, non-HA-conjugated liposomes with the same formulation loaded with shRNA mRIP3-pDNA effectively controlled the disease by decreasing the serum amylase concentration and inflammatory cell infiltration. The versatile cationic liposomes loaded with plasmids with opposing functions in this study provide a new concept and method for both tumour therapy and pancreatitis therapy.
Collapse
Affiliation(s)
- Lijing Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Simeng Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Huimin Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Ailing Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Heng Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Dan Sun
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
25
|
Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, Haddock AN, Shi J, Guo J, Chen J, Zhu X, Edenfield BH, Zhuang L, Hu C, Wang Y, Mukhopadhyay D, Radisky ES, Zhang L, Lugea A, Pandol SJ, Bi Y, Ji B. Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J Clin Invest 2020; 130:189-202. [PMID: 31550238 PMCID: PMC6934224 DOI: 10.1172/jci130172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Currently, an effective targeted therapy for pancreatitis is lacking. Hereditary pancreatitis (HP) is a heritable, autosomal-dominant disorder with recurrent acute pancreatitis (AP) progressing to chronic pancreatitis (CP) and a markedly increased risk of pancreatic cancer. In 1996, mutations in PRSS1 were linked to the development of HP. Here, we developed a mouse model by inserting a full-length human PRSS1R122H gene, the most commonly mutated gene in human HP, into mice. Expression of PRSS1R122H protein in the pancreas markedly increased stress signaling pathways and exacerbated AP. After the attack of AP, all PRSS1R122H mice had disease progression to CP, with similar histologic features as those observed in human HP. By comparing PRSS1R122H mice with PRSS1WT mice, as well as enzymatically inactivated Dead-PRSS1R122H mice, we unraveled that increased trypsin activity is the mechanism for R122H mutation to sensitize mice to the development of pancreatitis. We further discovered that trypsin inhibition, in combination with anticoagulation therapy, synergistically prevented progression to CP in PRSS1R122H mice. These animal models help us better understand the complex nature of this disease and provide powerful tools for developing and testing novel therapeutics for human pancreatitis.
Collapse
Affiliation(s)
- Fu Gui
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xianbao Zhan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yao Yao
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yinghua Li
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ashley N. Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Lu Zhuang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Cheng Hu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology
| | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Aurelia Lugea
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan Bi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
26
|
Ercan G, İlbar Tartar R, Solmaz A, Gulcicek OB, Karagulle OO, Meric S, Cayoren H, Kusaslan R, Kemik A, Gokceoglu Kayali D, Cetinel S, Celik A. Examination of protective and therapeutic effects of ruscogenin on cerulein-induced experimental acute pancreatitis in rats. Ann Surg Treat Res 2019; 97:271-281. [PMID: 31824881 PMCID: PMC6893218 DOI: 10.4174/astr.2019.97.6.271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the potential protective and therapeutic effects and action mechanism of ruscogenin on cerulein-induced acute pancreatitis (AP) model in rats. Methods Overall, 32 rats were attenuated to the sham (2-mL/kg/day isotonic solution for 4 weeks), control (20-µg/kg cerulein-induced AP for 12 hours), prophylaxis groups (cerulein-induced AP following 3-mL/kg/day ruscogenin for 4 weeks) and treatment (3-mL/kg/day ruscogenin following cerulein-induced AP for 12 hours). Blood samples were collected for biochemical analysis of nitric oxide synthase 1 (NOS1/neuronal NOS), malondialdehyde (MDA) and intercellular adhesion molecule 1 (ICAM-1). After sacrification, pancreas tissues were collected and prepared for light microscopic (hematoxylin and eosin), immunohistochemical (nuclear factor kappa B) and biochemical analysis (tumor necrosis factor-alpha [TNF-α], interleukin-6 and 1β [IL-6 and IL-1β], CRP, high-sensitivity CRP [hs-CRP] amylase, lipase, and ICAM-1). Ultrastructural analysis was performed by transmission electron microscopy. Results The protective and therapeutic actions of ruscogenin were accomplished by improvements in histopathology, by decreasing blood cytokine levels of CRP, hs-CRP levels, TNF-α, IL-6, IL-1β, ICAM-1, by reducing the pancreatic enzymes amylase and lipase in blood, and by suppressing the expression of nuclear factor kappa B, ICAM-1, and NOS-1, but not MDA in pancreatic tissues. Ruscogenin also improved cerulein-induced ultrastructural degenerations in endocrine and exocrine cells, especially in treatment group. Conclusion The present findings have demonstrated the beneficial protective and therapeutical effects of ruscogenin, nominating it as a highly promising supplementary agent to be considered in the treatment of AP, and even as a protective agent against the damages induced by disease.
Collapse
Affiliation(s)
- Gulcin Ercan
- Department of General Surgery, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Rumeysa İlbar Tartar
- Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ali Solmaz
- Department of General Surgery, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Osman Bilgin Gulcicek
- Department of General Surgery, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Onur Olgac Karagulle
- Department of General Surgery, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey
| | - Serhat Meric
- Department of General Surgery, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Huseyin Cayoren
- Department of General Surgery, Igdir State Hospital, Igdir, Turkey
| | - Ramazan Kusaslan
- Department of General Surgery, Elitium Surgery Center, Istanbul, Turkey
| | - Ahu Kemik
- Department of Biochemistry, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Damla Gokceoglu Kayali
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sule Cetinel
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Atilla Celik
- Department of General Surgery, University of Health Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
27
|
Dong K, Chen X, Xie L, Yu L, Shen M, Wang Y, Wu S, Wang J, Lu J, Wei G, Xu D, Yang L. Spautin-A41 Attenuates Cerulein-Induced Acute Pancreatitis through Inhibition of Dysregulated Autophagy. Biol Pharm Bull 2019; 42:1789-1798. [DOI: 10.1248/bpb.b19-00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kai Dong
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xia Chen
- Department of Endocrinology and Metabolism, Shanghai Fourth People’s Hospital, Tongji University
| | - Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengjun Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Shanshan Wu
- Shandong University Affiliated Shandong Provincial Hospital Affiliated, Department of Endocrinology and Metabolism
| | - Jiajia Wang
- Department of Endocrinology, Medical College of Soochow University
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Gang Wei
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
- Department of Urology, Changzheng Hospital, Second Military Medical University
| | - Liu Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| |
Collapse
|
28
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|
29
|
Abstract
Pancreatitis is a major risk factor for the development of pancreatic cancer. In genetically engineered mouse models, induction of pancreatic inflammation dramatically accelerates oncogenic KRas-induced fibrosis, precancerous PanIN formation, and tumorigenesis. Here we describe simple methods of secretagogue-induced experimental acute and chronic pancreatitis, the most commonly used pancreatitis models, and their applications in pancreatic cancer research. Additionally, the preparation of primary pancreatic acinar cells is introduced. Primary acinar cells can be used to study the early events of pancreatic inflammation and pancreatic acinar-to-ductal (ADM) metaplasia.
Collapse
|
30
|
Effectiveness and therapeutic value of phytochemicals in acute pancreatitis: A review. Pancreatology 2019; 19:481-487. [PMID: 31079933 DOI: 10.1016/j.pan.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that can lead to local and systemic complications. Repeated attacks of AP can lead to chronic pancreatitis, which markedly increases the probability of developing pancreatic cancer. Although many researchers have attempted to identify the pathogenesis involved in the initiation and aggravation of AP, the disease is still not fully understood, and effective treatment is limited to supportive therapy. METHODS We aim to summarize available literature focused on phytochemicals (berberine, chlorogenic acid, curcumin, emblica officinalis, ellagic acid, cinnamtannin B-1, resveratrol, piperine and lycopene) and discuss their effectiveness and therapeutic value for improving AP. RESULTS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect databases. CONCLUSIONS Many phytochemicals hold potential in improving AP symptoms and may be a valuable and effective addition to standard treatment of AP. It has already been proven that the crucial factor for reducing the severity of AP is stimulation of apoptosis along with/or inhibition of necrosis. Supplementation of phytochemicals, which target the balance between apoptosis and necrosis can be recommended in ongoing clinical studies.
Collapse
|
31
|
Seo JY, Pandey RP, Lee J, Sohng JK, Namkung W, Park YI. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:40-49. [PMID: 30668442 DOI: 10.1016/j.phymed.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE Glycosylation of phenolic compounds has been reported to increase water-solubility, reduce toxicity, and sometimes give improved or novel pharmacological activities. Present study was aimed to evaluate and compare the beneficial effects of quercetin aglycone (Quer) and its glycosylated derivative, quercetin 3-O-xyloside (Quer-Xyl), against acute pancreatitis (AP). METHODS The cellular acute pancreatitis model was established by treating the rat pancreatic acinar cells (AR42J) with lipopolysaccharide (10 µg/ml) and cerulein (10-7 M). The cytotoxicity of Quer or Quer-Xyl on AR42J cells was assessed by MTT assay. Calcium and ROS levels were fluorometrically determined. The ER stress levels (PERK, GRP78), expression levels of amylase and lipase, and apoptotic markers (caspase-3 and -9) were measured by RT-PCR, western blotting, or fluorometric assay. RESULTS While Quer increased the mRNA expressions of AP marker enzymes, amylase and lipase, Quer-Xyl dose-dependently reversed their expressions. Quer-Xyl suppressed intracellular ROS production and both mRNA and protein levels of GRP78 and PERK, which were significantly elevated in cerulein and LPS-treated AR42J cells. Further, RT-PCR and fluorescence assay revealed that Quer-Xyl dose-dependently augmented the mRNA expressions and activities of caspase-3 and -9. CONCLUSION These results showed that Quer-Xyl, but not Quer, has a significant anti-pancreatitis activity through attenuating intracellular ROS production and ER stress response and enhancing apoptotic cell death, suggesting that it might be useful as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat AP.
Collapse
Affiliation(s)
- Jeong Yeon Seo
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Wan Namkung
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 21983, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
32
|
Zhang Q, Tao X, Xia S, Qu J, Song H, Liu J, Li H, Shang D. Emodin attenuated severe acute pancreatitis via the P2X ligand‑gated ion channel 7/NOD‑like receptor protein 3 signaling pathway. Oncol Rep 2018; 41:270-278. [PMID: 30542707 PMCID: PMC6278370 DOI: 10.3892/or.2018.6844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is an aseptic inflammation characterized with an annual incidence rate, and ~20% patients progressing to severe AP (SAP) with a high mortality rate. Although Qingyi decoction has been frequently used for SAP treatment over the past 3 decades in clinic, the actual mechanism of its protective effects remains unknown. As the major active ingredient of Qingyi decoction, emodin was selected in the present study to investigate the effect of emodin against severe acute pancreatitis (SAP) in rats through NOD-like receptor protein 3 (NLRP3) inflammasomes. The rats were randomly divided into a sham operation group, an SAP model group induced by a standard retrograde infusion of 5.0% sodium taurocholate into the biliopancreatic duct, and low-dose (30 mg/kg) and high-dose (60 mg/kg) emodin-treated groups. At 12 h after the event, the plasma amylase, lipase, interleukin (IL)-1β, IL-18 and myeloperoxidase (MPO) activities were examined. Furthermore, the pathological scores of pancreases were evaluated by hematoxylin and eosin staining. The expression levels of P2X ligand-gated ion channel 7 (P2X7), NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain and caspase-1 were also analyzed by western blot analysis. The data demonstrated that, compared with the SAP group, emodin could significantly relieve the pancreatic histopathology and acinar cellular structure injury, and notably downregulate the plasma amylase and lipase levels, as well as the MPO activities in pancreatic tissues, in a dose-dependent manner. Furthermore, emodin inhibited the P2X7/NLRP3 signaling pathway followed by the decrease of pro-inflammatory factors, and the latter is beneficial for the recovery of SAP. Collectively, the data indicated that emodin may be an efficient candidate natural product for SAP treatment.
Collapse
Affiliation(s)
- Qingkai Zhang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xufeng Tao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilin Xia
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jialin Qu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianjun Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hailong Li
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dong Shang
- Department of Integrative Medicine Surgery, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
33
|
|
34
|
Zhang M, Wu YQ, Xie L, Wu J, Xu K, Xiao J, Chen DQ. Isoliquiritigenin Protects Against Pancreatic Injury and Intestinal Dysfunction After Severe Acute Pancreatitis via Nrf2 Signaling. Front Pharmacol 2018; 9:936. [PMID: 30174606 PMCID: PMC6108026 DOI: 10.3389/fphar.2018.00936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Severe acute pancreatitis (SAP) is a digestive system disease that is associated with a range of complications including intestinal dysfunction. In this study, we determined that the chalcone compound, isoliquiritigenin (ISL), reduces pancreatic and intestinal injury in a mouse model of SAP. These effects were achieved by suppressing oxidative stress and the inflammatory responses to SAP. This was evidenced by a reduction in histological score, and malondialdehyde (MDA), interleukin (IL)-6, tumor necrosis factor (TNF)-α and cleaved-caspase-3 (c-caspase-3) protein along with an increase in Nrf2, hemeoxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD). We then used Nrf2-/- mice to test the protective effect of Nrf2 during ISL treatment of SAP. Our results indicated that Nrf2-/- mice had greater pancreatic injury and intestinal dysfunction than wild-type mice. They also had reduced adherens junctions (P120-catenin) and tight junctions (occludin), and increased activated nuclear factor-κB (NF-κB) protein. In Nrf2-/- mice, ISL was less effective at these functions than in the WT mice. In conclusion, this study demonstrated that ISL exerts its protective effects against oxidative stress and inflammatory injury after SAP via regulation of the Nrf2/NF-κB pathway. It also showed that the efficacy of ISL in repairing the intestinal barrier damage caused by SAP is closely related to the Nrf2 protein. Our findings demonstrated that Nrf2 is an important protective factor against SAP-induced injuries in the pancreas and intestines.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Yan-Qing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiang Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Wenzhou University College of Life and Environmental Science, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Protective Effects of Rhubarb in Rats with Acute Pancreatitis and the Role of Its Active Compound Rhein on Mitochondria of Exocrine Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7321352. [PMID: 30140298 PMCID: PMC6081545 DOI: 10.1155/2018/7321352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
Da-Cheng-Qi-Decoction (DCQD) has been used in the treatment of acute pancreatitis (AP) in China for many years. The aim of the current study was to examine the principal ingredient rhubarb of DCQD and its potential link to the pancreatic repair effects in rats with AP. The pancreatitis was induced in SD rats by intraperitoneal injections of cerulein. The results showed that rhubarb significantly increased blood perfusion of pancreatic tissue, reversed mitochondrial damage, and promoted pancreatic acinar and stellate cell proliferation. In addition, the rhein (from rhubarb) had high distribution in pancreas tissue and protected mitochondria in AR42J cells via the activation of PI3K/AKT/mTOR signaling pathway and activity inhibition of AMPK (P < 0.05). The results provide some preclinical evidence on the protective effects of DCQD for the treatment of acute pancreatitis. Rhein is regarded to be the active compound of rhubarb and can be expected to be a new compound for the treatment of AP.
Collapse
|
36
|
Fonteh P, Smith M, Brand M. Adaptive Immune Cell Dysregulation and Role in Acute Pancreatitis Disease Progression and Treatment. Arch Immunol Ther Exp (Warsz) 2018; 66:199-209. [PMID: 29189884 DOI: 10.1007/s00005-017-0495-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
Acute pancreatitis (AP) is an inflammation of the pancreas caused by various stimuli including excessive alcohol consumption, gallstone disease and certain viral infections. Managing specifically the severe form of AP is limited due to lack of an understanding of the complex immune events that occur during AP involving immune cells and inflammatory molecules such as cytokines. The relative abundance of various immune cells resulting from the immune dysregulation drives disease progression. In this review, we examine the literature on the adaptive immune cells in AP, the prognostic value of these cells in stratifying patients into appropriate care and treatment strategies based on cell frequency in different AP severities are discussed.
Collapse
Affiliation(s)
- Pascaline Fonteh
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Martin Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Brand
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
37
|
Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G, Vargas AS, Lambert E, Borel C, Dorphin B, Aknin-Seifer I, Mitchell MJ, Metzler-Guillemain C, Escoffier J, Nef S, Grepillat M, Thierry-Mieg N, Satre V, Bailly M, Boitrelle F, Pernet-Gallay K, Hennebicq S, Fauré J, Bottari SP, Coutton C, Ray PF, Arnoult C. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med 2018; 9:1132-1149. [PMID: 28554943 PMCID: PMC5538632 DOI: 10.15252/emmm.201607461] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Azoospermia, characterized by the absence of spermatozoa in the ejaculate, is a common cause of male infertility with a poorly characterized etiology. Exome sequencing analysis of two azoospermic brothers allowed the identification of a homozygous splice mutation in SPINK2, encoding a serine protease inhibitor believed to target acrosin, the main sperm acrosomal protease. In accord with these findings, we observed that homozygous Spink2 KO male mice had azoospermia. Moreover, despite normal fertility, heterozygous male mice had a high rate of morphologically abnormal spermatozoa and a reduced sperm motility. Further analysis demonstrated that in the absence of Spink2, protease-induced stress initiates Golgi fragmentation and prevents acrosome biogenesis leading to spermatid differentiation arrest. We also observed a deleterious effect of acrosin overexpression in HEK cells, effect that was alleviated by SPINK2 coexpression confirming its role as acrosin inhibitor. These results demonstrate that SPINK2 is necessary to neutralize proteases during their cellular transit toward the acrosome and that its deficiency induces a pathological continuum ranging from oligoasthenoteratozoospermia in heterozygotes to azoospermia in homozygotes.
Collapse
Affiliation(s)
- Zine-Eddine Kherraf
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Marie Christou-Kent
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzene
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UF de Biochimie Génétique et Moléculaire, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Guillaume Martinez
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandra S Vargas
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 4, Switzerland
| | - Béatrice Dorphin
- Laboratoire d'Aide Médicale à la Procréation, Centre AMP 74, Contamine-sur-Arve, France
| | | | | | | | - Jessica Escoffier
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 4, Switzerland
| | - Mariane Grepillat
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Véronique Satre
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, France
| | - Marc Bailly
- Department of Reproductive Biology and Gynaecology, Poissy General Hospital, Poissy, France.,EA 7404 GIG, Université de Versailles Saint Quentin Montigny le Bretonneux, France
| | - Florence Boitrelle
- Department of Reproductive Biology and Gynaecology, Poissy General Hospital, Poissy, France.,EA 7404 GIG, Université de Versailles Saint Quentin Montigny le Bretonneux, France
| | | | - Sylviane Hennebicq
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UF de Biologie de la procréation, Grenoble, France
| | - Julien Fauré
- CHU de Grenoble, UF de Biochimie Génétique et Moléculaire, Grenoble, France.,Grenoble Neuroscience Institute, INSERM 1216, Grenoble, France
| | - Serge P Bottari
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UF de Radioanalyses, Grenoble, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France .,CHU de Grenoble, UF de Biochimie Génétique et Moléculaire, Grenoble, France
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
38
|
Zhu Q, Pan X, Cao Y, Wang H, Yu N, Liu F, Yang S, Wang Y, Sun Y, Wang Z. Clinical Evaluation of Continuous Renal Replacement Therapy in Combination with Ultrasound-Guided Percutaneous Transhepatic Gallbladder Drainage for Acute Severe Biliary Pancreatitis: a Retrospective Study. Kidney Blood Press Res 2017; 42:1023-1032. [PMID: 29212080 DOI: 10.1159/000485437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/20/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study aimed to report the clinical efficacy of continuous renal replacement therapy (CRRT) in combination with ultrasound-guided percutaneous transhepatic gallbladder drainage (PTGD) (CRRT+PTGD) in the treatment of acute severe biliary pancreatitis (ASBP). METHODS Between January 2010 and January 2016, 40 cases of patients with ASBP who received routine CRRT (CRRT group) and 40 of those who received CRRT+PTGD (CRRT+PTGD group) at the Affiliated Hospital of Qingdao University (Qingdao, China) were retrospectively reviewed. Clinical (including abdominal pain remission time, gastrointestinal decompression time, Intensive Care Unit (ICU) hospital stay, respirator treatment time, and mortality rate), laboratory (white blood cells [WBC], platelet [PLT], procalcitonin [PCT], C-reactive protein [CRP], total bilirubin [TBIL], alanine aminotransferase [ALT], albumin [ALB], and blood lactic acid [Lac]) parameters, various critical disease scores, and incidence of complications after the treatment were compared between the two groups. RESULTS Compared with those in the routine CRRT group, patients in the CRRT+PTGD group exhibited significant remission of clinical symptoms (i.e. shorter abdominal pain remission time, gastrointestinal decompression time, respirator treatment time and ICU hospital stay) (all P<0.05), change of laboratory parameters (WBC, PLT, PCT, CRP, TBIL, ALT) (P<0.05), and improvement of various critical disease scores (P<0.05). Moreover, the variation of most of the above parameters after versus before the treatment was greater in the CRRT+PTGD group than in the CRRT group (all P<0.05). CONCLUSION CRRT in combination with PTGD is more effective in the treatment of ASBP than CRRT alone.
Collapse
|
39
|
Li J, Zhang S, Zhou R, Zhang J, Li ZF. Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis. World J Gastroenterol 2017; 23:3615-3623. [PMID: 28611514 PMCID: PMC5449418 DOI: 10.3748/wjg.v23.i20.3615] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common diseases. AP is associated with significant morbidity and mortality, but it lacks specific and effective therapies. Traditional Chinese medicine (TCM) is one of the most popular complementary and alternative medicine modalities worldwide for the treatment of AP. The current evidence from basic research and clinical studies has shown that TCM has good therapeutic effects on AP. This review summarizes the widely used formulas, single herbs and monomers that are used to treat AP and the potential underlying mechanisms of TCM. Because of the abundance, low cost, and safety of TCM as well as its ability to target various aspects of the pathogenesis, TCM provides potential clinical benefits and a new avenue with tremendous potential for the future treatment of AP.
Collapse
|
40
|
Aziz NM, Kamel MY, Rifaai RA. Eff ects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats. Endocr Regul 2017; 51:20-30. [DOI: 10.1515/enr-2017-0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Objective. The aim of the current study was to assess the protective outcome of hemin, a heme oxygenase-1 (HO-1) inducer on L-arginine-induced acute pancreatitis in rats. Acute pancreatitis (AP) is considered to be a critical inflammatory disorder with a major impact on the patient health. Various theories have been recommended regarding the pathophysiology of AP and associated pulmonary complications.
Methods. Twenty-four adult male albino rats were randomly divided into four groups: control group, acute pancreatitis (AP), hemin pre-treated AP group, and hemin post-treated AP group.
Results. Administration of hemin before induction of AP significantly attenuated the L-arginine- induced pancreatitis and associated pulmonary complications characterized by the increasing serum levels of amylase, lipase, tumor necrosis factor-α, nitric oxide, and histo-architectural changes in pancreas and lungs as compared to control group. Additionally, pre-treatment with hemin significantly compensated the deficits in total antioxidant capacities and lowered the elevated malondialdehyde levels observed with AP. On the other hand, post-hemin administration did not show any protection against L-arginine-induced AP.
Conclusions. The current study indicates that the induction of HO-1 by hemin pre-treatment significantly ameliorated the L-arginine-induced pancreatitis and associated pulmonary complications may be due to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- N. M. Aziz
- Assistant Professor, Department of Physiology, Faculty of Medicine, Minia University, 61111, Minia, Egypt
| | - M. Y. Kamel
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| | - R. A. Rifaai
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
41
|
Borran M, Minaiyan M, Zolfaghari B, Mahzouni P. Protective effect of Tribulus terrestris fruit extract on cerulein-induced acute pancreatitis in mice. AVICENNA JOURNAL OF PHYTOMEDICINE 2017; 7:250-260. [PMID: 28748172 PMCID: PMC5511977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Antioxidant, anti-inflammatory, analgesic and antimicrobial activities of Tribulus terrestris (T. terrestris) could be helpful in the treatment of acute pancreatitis; thus, this study was designed to investigate the effects of T. terrestris on cerulein-induced acute pancreatitis in mice. MATERIALS AND METHODS Three doses (100, 200 and 400 mg/kg) of T. terrestris hydro-alcoholic extract were administered both orally (60 minutes before pancreatitis induction, p.o.) and intra-peritoneally (30 minutes before pancreatitis induction, i.p.) to different groups of mice (n=6). Pancreatitis was induced by five injections (i.p.) of cerulein 50μg/kg body weight with 1 hr intervals. Animals were euthanized 5 hr after the last injection of cerulein and tissue injures were assessed biochemically and pathologically. RESULTS T. terrestris extract 200 and 400mg/kg (p.o.) and T. terrestris extract 400 mg/kg (i.p.) reduced pancreatic tissue myeloperoxidase (MPO) activity and serum amylase and lipase levels and alleviated histological parameters. CONCLUSION These data suggest that T. terrestris hydro-alcoholic extract was effective in protecting against experimental acute pancreatitis and possibly the efficacy depends on dose and route of administration.
Collapse
Affiliation(s)
- Mina Borran
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding Author: Tel: 031-37927000, Fax: 031-36680011,
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Mahzouni
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Scarpignato C, Gatta L, Zullo A, Blandizzi C. Effective and safe proton pump inhibitor therapy in acid-related diseases - A position paper addressing benefits and potential harms of acid suppression. BMC Med 2016; 14:179. [PMID: 27825371 PMCID: PMC5101793 DOI: 10.1186/s12916-016-0718-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The introduction of proton pump inhibitors (PPIs) into clinical practice has revolutionized the management of acid-related diseases. Studies in primary care and emergency settings suggest that PPIs are frequently prescribed for inappropriate indications or for indications where their use offers little benefit. Inappropriate PPI use is a matter of great concern, especially in the elderly, who are often affected by multiple comorbidities and are taking multiple medications, and are thus at an increased risk of long-term PPI-related adverse outcomes as well as drug-to-drug interactions. Herein, we aim to review the current literature on PPI use and develop a position paper addressing the benefits and potential harms of acid suppression with the purpose of providing evidence-based guidelines on the appropriate use of these medications. METHODS The topics, identified by a Scientific Committee, were assigned to experts selected by three Italian Scientific Societies, who independently performed a systematic search of the relevant literature using Medline/PubMed, Embase, and the Cochrane databases. Search outputs were distilled, paying more attention to systematic reviews and meta-analyses (where available) representing the best evidence. The draft prepared on each topic was circulated amongst all the members of the Scientific Committee. Each expert then provided her/his input to the writing, suggesting changes and the inclusion of new material and/or additional relevant references. The global recommendations were then thoroughly discussed in a specific meeting, refined with regard to both content and wording, and approved to obtain a summary of current evidence. RESULTS Twenty-five years after their introduction into clinical practice, PPIs remain the mainstay of the treatment of acid-related diseases, where their use in gastroesophageal reflux disease, eosinophilic esophagitis, Helicobacter pylori infection, peptic ulcer disease and bleeding as well as, and Zollinger-Ellison syndrome is appropriate. Prevention of gastroduodenal mucosal lesions (and symptoms) in patients taking non-steroidal anti-inflammatory drugs (NSAIDs) or antiplatelet therapies and carrying gastrointestinal risk factors also represents an appropriate indication. On the contrary, steroid use does not need any gastroprotection, unless combined with NSAID therapy. In dyspeptic patients with persisting symptoms, despite successful H. pylori eradication, short-term PPI treatment could be attempted. Finally, addition of PPIs to pancreatic enzyme replacement therapy in patients with refractory steatorrhea may be worthwhile. CONCLUSIONS Overall, PPIs are irreplaceable drugs in the management of acid-related diseases. However, PPI treatment, as any kind of drug therapy, is not without risk of adverse effects. The overall benefits of therapy and improvement in quality of life significantly outweigh potential harms in most patients, but those without clear clinical indication are only exposed to the risks of PPI prescription. Adhering with evidence-based guidelines represents the only rational approach to effective and safe PPI therapy. Please see related Commentary: doi: 10.1186/s12916-016-0724-1 .
Collapse
Affiliation(s)
- Carmelo Scarpignato
- Clinical Pharmacology & Digestive Pathophysiology Unit, Department of Clinical & Experimental Medicine, University of Parma, Maggiore University Hospital, Cattani Pavillon, I-43125, Parma, Italy.
| | - Luigi Gatta
- Clinical Pharmacology & Digestive Pathophysiology Unit, Department of Clinical & Experimental Medicine, University of Parma, Maggiore University Hospital, Cattani Pavillon, I-43125, Parma, Italy
- Gastroenterology & Endoscopy Unit, Versilia Hospital, Azienda USL Toscana Nord Ovest, Lido di Camaiore, Italy
| | - Angelo Zullo
- Division of Gastroenterology & Digestive Endoscopy, Nuovo Regina Elena Hospital, Rome, Italy
| | - Corrado Blandizzi
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
44
|
Li X, Zhuang LW, Zhu CY, Bo WL, Mi LN. Optimal route of transplantation of bone marrow mesenchymal stem cells for therapy of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:2152-2160. [DOI: 10.11569/wcjd.v24.i14.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To find the optimal route of transplantation of mesenchym stem cells for the treatment of acute pancreatitis.
METHODS: Bone marrow mesenchymal stem cells (BMSCs) were derived from the bone marrow of the femur and tibia from healthy 3-week-old SD rats by primary adherent culture. Acute pancreatitis was induced in rats by intraperitoneal injection of L-arginine. The model rats were randomly divided into either a treatment group or a model group. Serum amylase was measured at 12, 24, 48, and 72 h and lipase measured at 24, 48, 72 h, and one week. The treatment group was further divided into a tail vein group, a superior mesenteric vein group, and a pancreatic local injection group, with 40 rats in each group. All experimental groups received Pkh26 labelled BMSCs transplantation. At 12, 24, 48, 72 h, and one week after the transplantation, serum amylase and lipase were measured and compared. After three weeks, Pkh26 labelled BMSCs in animals were observed, and pancreatic tissue pathology was assessed by HE staining.
RESULTS: Two weeks and three weeks after the transplantation, compared with the model group, the levels of serum amylase and lipase were statistically significant different in the tail vein injection group, and they were also significantly decreased in the pancreatic local injection group and superior mesenteric vein group compared with the model group (P < 0.05). The levels of serum amylase and lipase were significantly lower in the pancreatic local injection group than in the superior mesenteric vein group (P < 0.05), but they were still higher in the treatment groups than in the control group. Very few Pkh26 labeled cells were found in the tail vein group at different time points. A few Pkh26 labeled cells were found in the superior mesenteric vein group at week 2, and more were visible at week 3. A lot of Pkh26 labeled cells were found in the pancreatic local injection group at both weeks 2 and 3, but they were not found in the control group or model group at each time point.
CONCLUSION: Transplantation of bone marrow BMSCs via the tail vein, superior mesenteric vein and pancreatic local injection can ameliorate and repair pancreatic function of rats with pancreatic injury. Pancreatic local injection is the best route of transplantation.
Collapse
|
45
|
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13:5920-46. [PMID: 26389927 PMCID: PMC4584361 DOI: 10.3390/md13095920] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Fucoidans are a class of sulfated fucose-rich polysaccharides found in brown marine algae and echinoderms. Fucoidans have an attractive array of bioactivities and potential applications including immune modulation, cancer inhibition, and pathogen inhibition. Research into fucoidan has continued to gain pace over the last few years and point towards potential therapeutic or adjunct roles. The source, extraction, characterization and detection of fucoidan is discussed.
Collapse
Affiliation(s)
- Janet Helen Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien N Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Samuel S Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| |
Collapse
|
46
|
Abstract
The medical treatment of acute pancreatitis continues to focus on supportive care, including fluid therapy, nutrition, and antibiotics, all of which will be critically reviewed. Pharmacologic agents that were previously studied were found to be ineffective likely due to a combination of their targets and flaws in trial design. Potential future pharmacologic agents, particularly those that target intracellular calcium signaling, as well as considerations for trial design will be discussed. As the incidence of acute pancreatitis continues to increase, greater efforts will be needed to prevent hospitalization, readmission and excessive imaging in order to reduce overall healthcare costs. Primary prevention continues to focus on post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis and secondary prevention on cholecystectomy for biliary pancreatitis as well as alcohol and smoking abstinence.
Collapse
Affiliation(s)
- Vikesh K Singh
- Pancreatitis Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
47
|
Effect of da-cheng-qi decoction on pancreatitis-associated intestinal dysmotility in patients and in rat models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:895717. [PMID: 25821505 PMCID: PMC4363702 DOI: 10.1155/2015/895717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP). We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD) on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP) were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models.
Collapse
|
48
|
Orlov YP, Ershov AV, Lukach VN, Govorova NV, Degovtsov EN, Glushchenko AV. [Correction of endotoxemia in patients with pancreatic necrosis]. Khirurgiia (Mosk) 2015:36-42. [PMID: 26978466 DOI: 10.17116/hirurgia20151036-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AIM To study the results of deferoxamine (Deferal) administration in intensive therapy program of 63 patients with severe acute pancreatitis to decrease effect of oxidative stress and endotoxemia. MATERIAL AND METHODS In deferoxamine group (31 patients) there were decrease of serum iron's level and inhibition of free radical oxidation that led to early relief of endotoxemia, reducing periods of organs' dysfunction. It was not observed in comparison group (32 patients). RESULTS Deferoxamine decrease risk of pancreatic necrosis and pancreatogenic sepsis. It allows reducing ICU- and hospital-stay and number of extended surgical procedures.
Collapse
Affiliation(s)
- Yu P Orlov
- Omsk State Medical Academy, Omsk, Russia
| | - A V Ershov
- Omsk State Medical Academy, Omsk, Russia
| | - V N Lukach
- Omsk State Medical Academy, Omsk, Russia
| | | | | | | |
Collapse
|