1
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Meng X, Eslami Y, Derafsh E, Saihood A, Emtiazi N, Yasamineh S, Gholizadeh O, Pecho RDC. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Commun Signal 2023; 21:231. [PMID: 37710249 PMCID: PMC10500852 DOI: 10.1186/s12964-023-01250-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.
Collapse
Affiliation(s)
- Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002 China
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University, School of Medicine, St. Kitts, Canada
| | - Anwar Saihood
- Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
4
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
6
|
Huang W, Song L, Zhang J, Yan X, Yan H. Effects of miR-185-5p on replication of hepatitis C virus. Open Life Sci 2021; 16:752-757. [PMID: 34395911 PMCID: PMC8330614 DOI: 10.1515/biol-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article was designed to explore the effects and mechanisms of miR-185-5p on the replication of hepatitis C virus (HCV). Quantitative reverse transcription PCR (qRT-PCR) was performed for detecting the abundance of miR-185-5p and HCV RNA in HCV-infected primary hepatocytes and Huh7.5 cells. Dual-luciferase reporter gene assay was used for exploring the interaction between miR-185-5p and GALNT8. Western blot analyzed protein expression of GALNT8, NS3, and NS5A. miR-185-5p was remarkably downregulated in HCV-infected primary hepatocytes and Huh7.5 cells. miR-185-5p upregulation inhibited HCV RNA expression, while its inhibition promoted HCV replication. miR-185-5p induced accumulation of NS3 and NS5A in the cells. Dual-luciferase reporter gene assay verified the targeted relationship between miR-185-5p and GALNT8. In addition, the effects of overexpressing or knocking down miR-185-5p on HCV replication could be correspondingly eliminated by the overexpression or knockdown of GALNT8. miR-185-5p may target GALNT8 in JFH1-infected Huh7.5 cells and then inhibit HCV replication. miR-185-5p may be a potential target for treating HCV.
Collapse
Affiliation(s)
- Wei Huang
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Lingyan Song
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Jingyan Zhang
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Xueqiang Yan
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Hui Yan
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| |
Collapse
|
7
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
8
|
Loureiro D, Tout I, Narguet S, Benazzouz SM, Mansouri A, Asselah T. miRNAs as Potential Biomarkers for Viral Hepatitis B and C. Viruses 2020; 12:E1440. [PMID: 33327640 PMCID: PMC7765125 DOI: 10.3390/v12121440] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Around 257 million people are living with hepatitis B virus (HBV) chronic infection and 71 million with hepatitis C virus (HCV) chronic infection. Both HBV and HCV infections can lead to liver complications such as cirrhosis and hepatocellular carcinoma (HCC). To take care of these chronically infected patients, one strategy is to diagnose the early stage of fibrosis in order to treat them as soon as possible to decrease the risk of HCC development. microRNAs (or miRNAs) are small non-coding RNAs which regulate many cellular processes in metazoans. Their expressions were frequently modulated by up- or down-regulation during fibrosis progression. In the serum of patients with HBV chronic infection (CHB), miR-122 and miR-185 expressions are increased, while miR-29, -143, -21 and miR-223 expressions are decreased during fibrosis progression. In the serum of patients with HCV chronic infection (CHC), miR-143 and miR-223 expressions are increased, while miR-122 expression is decreased during fibrosis progression. This review aims to summarize current knowledge of principal miRNAs modulation involved in fibrosis progression during chronic hepatitis B/C infections. Furthermore, we also discuss the potential use of miRNAs as non-invasive biomarkers to diagnose fibrosis with the intention of prioritizing patients with advanced fibrosis for treatment and surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Tarik Asselah
- Department of Hepatology, Université de Paris, CRI, INSERM UMR 1149, AP-HP Hôpital Beaujon, 92110 Clichy, France; (D.L.); (I.T.); (S.N.); (S.M.B.); (A.M.)
| |
Collapse
|
9
|
Lin H, Chaudhury M, Sharma N, Bhattacharyya S, Elolimy AA, Yeruva L, Ronis MJJ, Mercer KE. MicroRNA profiles were altered in neonatal piglet mammary glands following postnatal infant formula feeding. J Nutr Biochem 2020; 83:108397. [PMID: 32645610 DOI: 10.1016/j.jnutbio.2020.108397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Postnatal dietary modulation of microRNAs (miRNAs) and effects on miRNA-mRNA interactions in tissues remain unknown. This study aimed to investigate whether dietary factors (formula vs. breastfeeding) affect mammary miRNA expression and to determine if these changes are concurrent with developmental alterations of the mammary gland in neonatal piglets. Female Yorkshire/Duroc piglets were fed sow's milk or cow's milk- or soy-based infant formula (from postnatal day 2 to day 21; n=6/group). Differentially expressed miRNAs were determined using mammary miRNA profiling, followed by miRNA and mRNA expressions characterized by quantitative reverse-transcription polymerase chain reaction. Milk and soy formulas reduced expressions of miR-1, -128, -133a, -193b, -206 and -27a; miRNA down-regulation altered mRNA expressions of genes (e.g., Ccnd1, Tgfb3, Igf1r and Tbx3) that were consistent with enhanced cell proliferation and suppressed apoptotic processes in the developing mammary gland. Interestingly, down-regulation of miR-1, -128 and -27a also correlated with increased mRNA genes such as Hmgcs and Hmgcr encoding cholesterol synthesis in the mammary glands in response to lower circulating cholesterol levels. Infant formula feeding affected mammary miRNA profiles in neonatal piglets, concurrent with increased expression of cell proliferation and cholesterol synthesis genes, suggesting early nutritional modulation of miRNAs may contribute to regulation of proliferative status and cholesterol homeostasis of developing mammary glands during infancy.
Collapse
Affiliation(s)
- Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.
| | | | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR; Arkansas Children's Research Institute, Little Rock, AR
| | - Martin J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
10
|
Li J, Jin B, Wang T, Li W, Wang Z, Zhang H, Song Y, Li N. Serum microRNA expression profiling identifies serum biomarkers for HCV-related hepatocellular carcinoma. Cancer Biomark 2020; 26:501-512. [PMID: 31658041 DOI: 10.3233/cbm-181970] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The identification of high-sensitivity biomarkers for detection of hepatocellular carcinoma (HCC) from high-risk individuals is essential. OBJECTIVE The present study was undertaken to identify and validate serum microRNAs (miRNAs) as potential biomarkers for hepatitis C virus (HCV)-related HCC. METHODS Illumina sequencing was employed to screen the expression profiles of miRNAs in serum samples of HCV-related HCC patients and liver cirrhosis (LC) patients. RT-qPCR was used to confirm the altered miRNAs between the two groups. Moreover, candidate miRNAs were examined in serum samples of 40 HCC patients, 54 LC patients, 55 patients with chronic HCV hepatitis and 45 healthy controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of the miRNAs for the detection of HCC. RESULTS Four miRNAs (miR-122-5p, miR-331-3p, miR-494-3p, miR-224-5p) were significantly increased and two miRNAs (miR-185-5p, miR-23b-3p) were significantly decreased in HCC patients compared to LC patients. ROC curve analysis demonstrated that the six miRNAs could be used as potential biomarkers for HCC detection. Combination of the six miRNAs could efficiently detect HCC in LC patients with the area under the ROC curve (AUC) of 0.995 and combination of the six miRNAs also provided high diagnostic accuracy (AUC = 0.961) for detection of HCC in non-HCC subjects. CONCLUSIONS The six serum miRNAs can be utilized as a surrogate and non-invasive biomarker for HCV-related HCC diagnosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Hepatobiliary Surgery, Hospital Affiliated to Chengde Medical University, Chengde, Hebei, China.,Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Boxun Jin
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Tiezheng Wang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenlei Li
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenshun Wang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Haitao Zhang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yunjun Song
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ning Li
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|
12
|
Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019; 24:molecules24020230. [PMID: 30634538 PMCID: PMC6358728 DOI: 10.3390/molecules24020230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.
Collapse
Affiliation(s)
- Jingwei Yu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jun Peng
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
13
|
Yang X, Han M, Liu S, Yuan X, Liu X, Feng S, Zhou L, Li Y, Lu H, Cheng J, Lin S. HCBP6 upregulates human SREBP1c expression by binding to C/EBPβ-binding site in the SREBP1c promoter. BMB Rep 2018; 51:33-38. [PMID: 29187281 PMCID: PMC5796632 DOI: 10.5483/bmbrep.2018.51.1.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Sterol regulatory element-binding protein-1c (SREBP1c) plays an important role in triglyceride (TG) homeostasis. Although our previous study showed that hepatitis C virus core-binding protein 6 (HCBP6) regulates SREBP1c expression to maintain intracellular TG homeostasis, the mechanism underlying this regulation is unclear. In the present study, we found that HCBP6 increased intracellular TG levels by upregulating SREBP1c expression. HCBP6 increased SREBP1c transcription by directly binding to the SREBP1c promoter (at the −139- to +359-bp region). Moreover, we observed that HCBP6 interacted with C/EBPβ-binding site in the SREBP1c promoter both in vitro and in vivo. These results indicate that HCBP6 upregulates human SREBP1c expression by binding to the C/EBPβ-binding site in the SREBP1c promoter.
Collapse
Affiliation(s)
- Xueliang Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Han
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaojing Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shenghu Feng
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Li Zhou
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Yaru Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hongping Lu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shumei Lin
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
14
|
Dysregulation of cellular microRNAs by human oncogenic viruses - Implications for tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:95-105. [PMID: 29378330 DOI: 10.1016/j.bbagrm.2018.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Infection with certain animal and human viruses, often referred to as tumor viruses, induces oncogenic processes in their host. These viruses can induce tumorigenesis through direct and/or indirect mechanisms, and the regulation of microRNAs expression has been shown to play a key role in this process. Some human oncogenic viruses can express their own microRNAs; however, they all can dysregulate the expression of cellular microRNAs, facilitating their respective life cycles. The modulation of cellular microRNAs expression brings consequences to the host cells that may lead to malignant transformation, since microRNAs regulate the expression of genes involved in oncogenic pathways. This review focus on the mechanisms used by each human oncogenic virus to dysregulate the expression of cellular microRNAs, and their impact on tumorigenesis.
Collapse
|
15
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
16
|
Zhou L, Liu S, Han M, Feng S, Liang J, Li Z, Li Y, Lu H, Liu T, Ma Y, Cheng J. MicroRNA-185 induces potent autophagy via AKT signaling in hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317694313. [PMID: 28240051 DOI: 10.1177/1010428317694313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3'-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.
Collapse
Affiliation(s)
- Li Zhou
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shunai Liu
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ming Han
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shenghu Feng
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jinqiu Liang
- 4 Division of Infectious Disease, Civil Aviation General Hospital, Beijing, China
| | - Zhongshu Li
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaru Li
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongping Lu
- 2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ting Liu
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yanhua Ma
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jun Cheng
- 1 Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,2 Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,3 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Feng S, Han M, Zhou L, Wang Q, Li Z, Li Y, Lu H, Liu T, Ma Y, Liu S, Cheng J. NS5ABP37 inhibits liver cancer by impeding lipogenesis and cholesterogenesis. Cancer Sci 2017; 108:12-22. [PMID: 27862769 PMCID: PMC5276832 DOI: 10.1111/cas.13117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanism underlying non‐alcoholic fatty liver disease progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining results showed that NS5ABP37 protein, which is in a state of lower expression in tumor tissues, decreased with increasing degree of HCC malignancy. Two cell models, HepG2 and L02, were used to analyze the mechanism between NS5ABP37 and HCC. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase‐3/7 activity and cleaved caspase‐3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular triglyceride and total cholesterol contents, with level reduction in sterol regulatory element‐binding proteins (SREBPs) and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by reducing their respective promoters. Finally, reactive oxygen species levels and endoplasmic reticulum stress were both induced by NS5ABP37 overexpression. These findings together indicate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP‐dependent lipogenesis and cholesterogenesis in HepG2 and L02 cells and inducing oxidative stress and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Shenghu Feng
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | - Ming Han
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | - Li Zhou
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhongshu Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaru Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongping Lu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ting Liu
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | - Yanhua Ma
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jun Cheng
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Robertson KA, Ghazal P. Interferon Control of the Sterol Metabolic Network: Bidirectional Molecular Circuitry-Mediating Host Protection. Front Immunol 2016; 7:634. [PMID: 28066443 PMCID: PMC5179542 DOI: 10.3389/fimmu.2016.00634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The sterol metabolic network is emerging center stage in inflammation and immunity. Historically, observational clinical studies show that hypocholesterolemia is a common side effect of interferon (IFN) treatment. More recently, comprehensive systems-wide investigations of the macrophage IFN response reveal a direct molecular link between cholesterol metabolism and infection. Upon infection, flux through the sterol metabolic network is acutely moderated by the IFN response at multiple regulatory levels. The precise mechanisms by which IFN regulates the mevalonate-sterol pathway—the spine of the network—are beginning to be unraveled. In this review, we discuss our current understanding of the multifactorial mechanisms by which IFN regulates the sterol pathway. We also consider bidirectional communications resulting in sterol metabolism regulation of immunity. Finally, we deliberate on how this fundamental interaction functions as an integral element of host protective responses to infection and harmful inflammation.
Collapse
Affiliation(s)
- Kevin A Robertson
- Division of Infection and Pathway Medicine, University of Edinburgh , Edinburgh , UK
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
19
|
Deng L, Wang X, Jiang L, Yang J, Zhou X, Lu Z, Hu H. Modulation of miR-185-5p expression by EBV-miR-BART6 contributes to developmental differences in ABCG4 gene expression in human megakaryocytes. Int J Biochem Cell Biol 2016; 81:105-111. [DOI: 10.1016/j.biocel.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
|
20
|
Li Z, Feng S, Zhou L, Liu S, Cheng J. NS5ATP6 modulates intracellular triglyceride content through FGF21 and independently of SIRT1 and SREBP1. Biochem Biophys Res Commun 2016; 475:133-9. [PMID: 27179781 DOI: 10.1016/j.bbrc.2016.05.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is rising strikingly in Western countries and China. The molecular biological mechanism of NAFLD remains unclear, with no effective therapies developed so far. Fibroblast growth factor 21 (FGF21) is a recently discovered hormone, with safe lipid lowering effects. FGF21 analogs are being developed for clinical application. Here we demonstrated that a novel gene, NS5ATP6, modulated intracellular triglyceride (TG) content independently of sirtuin1 (SIRT1) and sterol regulatory element binding protein 1 (SREBP1) in HepG2 cells. Interestingly, NS5ATP6 regulated FGF21 expression both at the mRNA and protein levels. The modulatory effects of NS5ATP6 on intracellular TG content depended upon FGF21. Further studies revealed that NS5ATP6 decreased the promoter activity of FGF21. In addition, NS5ATP6 regulated the expression of miR-577, which directly targeted and regulated FGF21. Therefore, miR-577 might be involved in NS5ATP6 regulation of FGF21 at the post-transcriptional level. In conclusion, NS5ATP6 regulates the intracellular TG level via FGF21, and independently of SIRT1 and SREBP1.
Collapse
Affiliation(s)
- Zhongshu Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shenghu Feng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Ditan Hospital, Teaching Hospital of Peking University, Beijing 100015, China
| | - Li Zhou
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Ditan Hospital, Teaching Hospital of Peking University, Beijing 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China.
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China.
| |
Collapse
|
21
|
Shi Q, Hoffman B, Liu Q. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs. Virology 2016; 490:99-108. [PMID: 26855332 DOI: 10.1016/j.virol.2016.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) activates PI3K-Akt signaling to enhance entry and replication. Here, we found that this pathway also increased HCV translation. Knocking down the three Akt isoforms significantly decreased, whereas ectopic expression increased HCV translation. HCV translation upregulation by Akt required their kinase activities because Akt kinase-dead mutants downregulated HCV translation; and was dependent on PI3K activity since it was sensitive to PI3K inhibitor wortmannin. The viral 3'UTR was not involved in translation upregulation by Akt. HCV NS5A increased Akt phosphorylation/activity and HCV translation in the absence of the viral 3'UTR. Sterol regulatory element-binding proteins (SREBPs) were the downstream effectors of the PI3K-Akt pathway in regulating HCV translation because Akt1 and Akt2 activated both SREBP-1 and SREBP-2, whereas Akt3 upregulated SREBP-1. Knocking down SREBPs significantly decreased, while ectopic expression of SREBPs increased HCV translation. Taken together, we showed that the PI3K-Akt signaling pathway positively regulates HCV translation through SREBPs.
Collapse
Affiliation(s)
| | - Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
22
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|