1
|
Ferreira-Duarte M, Oliveira LCG, Quintas C, Dias-Pereira P, Sousa T, Magro F, Casarini DE, Duarte-Araújo M, Morato M. Angiotensin-converting enzymes 1 and 2 in the feces: presence and catalytic activity in the rat 2,4,6-trinitrobenzene sulfonic acid-induced model of colitis. J Gastroenterol Hepatol 2024; 39:1885-1894. [PMID: 38967213 DOI: 10.1111/jgh.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Inflammatory bowel disease is challenging to diagnose. Fecal biomarkers offer noninvasive solutions. The renin-angiotensin-aldosterone system is implicated in intestinal inflammation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) regulate its activity, but conflicting findings on these enzymes in colitis require further investigation. We aimed to assess ACE and ACE2 presence and activities in the feces, serum, and colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rats. METHODS Colitis was induced in male rats by rectal instillation of a 21% ethanolic TNBS solution. After rats' sacrifice, colonic portions, serum, and feces were collected. ACE and ACE2 presence in the feces was analyzed by western Blot, and colonic and serum enzymes' concentrations were quantified using ELISA kits. ACE activity was assessed using Hippuryl-His-Leu and Z-Phe-His-Leu as substrates. ACE2 activity was assessed using Mca-APK (Dnp) as a substrate in the presence and absence of DX600 (ACE2 inhibitor). RESULTS An ACE isoform of ~70 kDa was found only in the feces of TNBS-induced rats. ACE concentration was higher than that of ACE2 in the serum and the inflamed colon. ACE N-domain activity was higher than that of the C-domain in all matrices. ACE2 activity was higher in the feces of TNBS-induced animals compared to controls. CONCLUSION A 70 kDa ACE isoform only detected in the feces of TNBS-induced rats may have translational relevance. ACE N-domain seems to play a significant role in regulating colonic lesions. Further research using human samples is necessary to validate these findings.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Lilian Caroline Gonçalves Oliveira
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- UCIBIO@REQUIMTE, University of Porto, Porto, Portugal
| | - Patricia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, University of Porto (MedInUP), Porto, Portugal
| | - Fernando Magro
- CINTESIS@RISE, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Launonen H, Luiskari L, Linden J, Siltari A, Salmenkari H, Korpela R, Vapaatalo H. Adverse effects of an aldosterone synthase (CYP11B2) inhibitor, fadrozole (FAD286), on inflamed rat colon. Basic Clin Pharmacol Toxicol 2023; 133:211-225. [PMID: 37345281 DOI: 10.1111/bcpt.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Recently, we described local aldosterone production in the murine large intestine. Upregulated local aldosterone synthesis in different tissues has been linked with inflammatory conditions, which have been attenuated by the aldosterone synthase (CYP11B2) inhibitor, fadrozole (FAD286). Therefore, we investigated the effect of inhibition of intestinal aldosterone synthesis on the development of intestinal inflammation. Sprague-Dawley rats were administered 5% (v/w) dextran sodium sulphate (DSS) for 7 days with or without daily FAD286 (30 mg/kg/d) subcutaneous injections on 3 days before, during and one day after DSS. Tissue aldosterone concentrations were evaluated by ELISA, CYP11B2 by Western blot and RT-qPCR. FAD286 halved adrenal aldosterone production but, intriguingly, increased the colonic aldosterone concentration. The lack of inhibitory effect of FAD286 in the colon might have been affected by the smaller size of colonic vs. adrenal CYP11B2, as seen in Western blot. When combined with DSS, FAD286 aggravated the macroscopic and histological signs of intestinal inflammation, lowered the animals' body weight gain and increased the incidence of gastrointestinal bleeding and the permeability to iohexol in comparison to DSS-animals. To conclude, FAD286 exerted harmful effects during intestinal inflammation. Local intestinal aldosterone did not seem to play any role in the inflammatory pathogenesis occurring in the intestine.
Collapse
Affiliation(s)
- Hanna Launonen
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Lotta Luiskari
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences and Finnish Centre for Laboratory Animal Pathology (FCLAP), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aino Siltari
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hanne Salmenkari
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Korpela
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Faculty of Medicine, Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
4
|
Li B, Ge N, Pan Z, Hou C, Xie K, Wang D, Liu J, Wan J, Deng F, Li M, Luo S. KCNJ14 knockdown significantly inhibited the proliferation and migration of colorectal cells. BMC Med Genomics 2022; 15:194. [PMID: 36100894 PMCID: PMC9472386 DOI: 10.1186/s12920-022-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
This study attempted to verify the potential of KCNJ14 as a biomarker in colorectal cancer (CRC).
Methods
Data on transcriptomics and DNA methylation and the clinical information of CRC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Biological information analysis methods were conducted to determine the role of KCNJ14 in the prognosis, diagnosis, immune cell infiltration, and regulation mechanism of CRC patients. The effect of KCNJ14 on the proliferation and migration of HCT116 and SW480 CRC cell lines was verified by in vitro experiments (MTT, colony-forming, wound healing, and transwell assays). Western blotting was performed to detect the effect of KCNJ14 on the levels of mTOR signalling pathway-related proteins.
Results
KCNJ14 expression was remarkably increased in CRC tissues and cell lines, which reduced the overall survival time of patients. KCNJ14 mRNA was negatively regulated by its methylation site cg17660703, which can also endanger the prognosis of patients with CRC. Functional enrichment analysis suggested that KCNJ14 is involved in the mTOR, NOD-like receptor, and VEGF signalling pathways. KCNJ14 expression was positively correlated with the number of CD4 + T cells and negatively correlated with that of CD8 + T cells in the immune microenvironment. KCNJ14 knockdown significantly reduced not only the proliferation and migration of CRC cell lines but also the levels of mTOR signalling pathway-related proteins.
Conclusions
This study not only increases the molecular understanding of KCNJ14 but also provides a potentially valuable biological target for the treatment of colorectal cancer.
Collapse
|
5
|
Exploring the Impact of ACE Inhibition in Immunity and Disease. J Renin Angiotensin Aldosterone Syst 2022; 2022:9028969. [PMID: 36016727 PMCID: PMC9371878 DOI: 10.1155/2022/9028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent dipeptidyl carboxypeptidase and is crucial in the renin-angiotensin-aldosterone system (RAAS) but also implicated in immune regulation. Intrinsic ACE has been detected in several immune cell populations, including macrophages and neutrophils, where its overexpression results in enhanced bactericidal and antitumour responses, independent of angiotensin II. With roles in antigen presentation and inflammation, the impact of ACE inhibitors must be explored to understand how ACE inhibition may impact our ability to clear infections or malignancy, particularly in the wake of the coronavirus (SARS-CoV2) pandemic and as antibiotic resistance grows. Patients using ACE inhibitors may be more at risk of postsurgical complications as ACE inhibition in human neutrophils results in decreased ROS and phagocytosis whilst angiotensin receptor blockers (ARBs) have no effect. In contrast, ACE is also elevated in certain autoimmune diseases such as rheumatoid arthritis and lupus, and its inhibition benefits patient outcome where inflammatory immune cells are overactive. Although the ACE autoimmune landscape is changing, some studies have conflicting results and require further input. This review seeks to highlight the need for further research covering ACE inhibitor therapeutics and their potential role in improving autoimmune conditions, cancer, or how they may contribute to immunocompromise during infection and neurodegenerative diseases. Understanding ACE inhibition in immune cells is a developing field that will alter how ACE inhibitors are designed in future and aid in developing therapeutic interventions.
Collapse
|
6
|
Pang Z, Launonen H, Korpela R, Vapaatalo H. Local aldosterone synthesis in the large intestine of mouse: An ex vivo incubation study. J Int Med Res 2022; 50:3000605221105163. [PMID: 35748030 PMCID: PMC9248050 DOI: 10.1177/03000605221105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the regulation of local aldosterone synthesis by physiological
stimulants in the murine gut. Methods Male mice were fed for 14 days with normal, high (1.6%) or low (0.01%) sodium
diets. Tissue liver receptor homolog-1 and aldosterone in the colon and
caecum were detected using an enzyme-linked immunosorbent assay (ELISA).
Released corticosterone and aldosterone in tissue incubation experiments
after stimulation with angiotensin II (Ang II) and dibutyryl-cAMP (DBA; the
second messenger of adrenocorticotropic hormone) were assayed using an
ELISA. Tissue aldosterone synthase (CYP11B2) protein levels were measured
using an ELISA and Western blots. Results In incubated colon tissues, aldosterone synthase levels were increased by a
low-sodium diet; and by Ang II and DBA in the normal diet group. Release of
aldosterone into the incubation buffer was increased from the colon by a
low-sodium diet and decreased by a high-sodium diet in parallel with changes
in aldosterone synthase levels. In mice fed a normal diet, colon incubation
with both Ang II and DBA increased the release of aldosterone as well as its
precursor corticosterone. Conclusion Local aldosterone synthesis in the large intestine is stimulated by a
low-sodium diet, dibutyryl-cAMP and Ang II similar to the adrenal
glands.
Collapse
Affiliation(s)
- Zan Pang
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Launonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Korpela
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Human Microbiome Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Salmenkari H, Korpela R, Vapaatalo H. Renin-angiotensin system in intestinal inflammation-Angiotensin inhibitors to treat inflammatory bowel diseases? Basic Clin Pharmacol Toxicol 2021; 129:161-172. [PMID: 34128327 DOI: 10.1111/bcpt.13624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract, which manifest in recurring gastrointestinal inflammation. The current treatment options of IBD are not curative and are lacking in aspects like prevention of fibrosis. New treatment options are needed to fulfil the unmet needs and provide alternatives to drugs with resistances and side effects. Drugs targeting the renin-angiotensin system (RAS), besides being antihypertensive, also possess anti-inflammatory and antifibrotic properties and could offer an inexpensive alternative to control inflammation and fibrosis in the gut. RAS inhibitors have been effective in preventing and alleviating colitis in preclinical studies, but available human data are still sparse. This review outlines the pathophysiological functions of RAS in the gut and summarizes preclinical studies utilizing pharmacological RAS inhibitors in the treatment of experimental colitis. We discuss the alterations in intestinal RAS and the available evidence of the benefits of RAS inhibitors for IBD patients. Retrospective studies comparing IBD patients using ACE inhibitors or angiotensin II receptor blockers have provided optimistic results regarding a milder disease course and fewer hospitalizations and corticosteroid use in patients using RAS inhibitors. Prospective studies are needed to evaluate the effectiveness of these promising medications in the treatment of IBD.
Collapse
Affiliation(s)
- Hanne Salmenkari
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riitta Korpela
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Research Program for Human Microbiome, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Salmenkari H, Laitinen A, Forsgård RA, Holappa M, Lindén J, Pasanen L, Korhonen M, Korpela R, Nystedt J. The use of unlicensed bone marrow-derived platelet lysate-expanded mesenchymal stromal cells in colitis: a pre-clinical study. Cytotherapy 2019; 21:175-188. [PMID: 30611671 DOI: 10.1016/j.jcyt.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/04/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are a promising candidate for treatment of inflammatory disorders, but their efficacy in human inflammatory bowel diseases (IBDs) has been inconsistent. Comparing the results from various pre-clinical and clinical IBD studies is also challenging due to a large variation in study designs. METHODS In this comparative pre-clinical study, we compared two administration routes and investigated the safety and feasibility of both fresh and cryopreserved platelet-lysate-expanded human bone marrow-derived MSCs without additional licensing in a dextran sodium sulfate (DSS) colitis mouse model both in the acute and regenerative phases of colitis. Body weight, macroscopic score for inflammation and colonic interleukin (IL)-1β and tumor necrosis factor (TNF)α concentrations were determined in both phases of colitis. Additionally, histopathology was assessed and Il-1β and Agtr1a messenger RNA (mRNA) levels and angiotensin-converting enzyme (ACE) protein levels were measured in the colon in the regenerative phase of colitis. RESULTS Intravenously administered MSCs exhibited modest anti-inflammatory capacity in the acute phase of colitis by reducing IL-1β protein levels in the inflamed colon. There were no clear improvements in mice treated with fresh or cryopreserved unlicensed MSCs according to weight monitoring results, histopathology and macroscopic score results. Pro-inflammatory ACE protein expression and shedding were reduced by cryopreserved MSCs in the colon. CONCLUSIONS In conclusion, we observed a good safety profile for bone marrow-derived platelet lysate-expanded MSCs in a mouse pre-clinical colitis model, but the therapeutic effect of MSCs prepared without additional licensing (i.e. such as MSCs are administered in graft-versus-host disease) was modest in the chosen in vivo model system and limited to biochemical improvements in cytokines without a clear benefit in histopathology or body weight development.
Collapse
Affiliation(s)
- Hanne Salmenkari
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anita Laitinen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Richard A Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Holappa
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jere Lindén
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri Pasanen
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Riitta Korpela
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Nystedt
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland.
| |
Collapse
|