1
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
2
|
Wang QQ, Liu ZX, Wang P, Liu BY, Feng YP, Zhang Y, He HB, Yin T, Tang X, Wang YJ, Gou JX. Intratumoral injection of norcantharidin liposome emulsion hybrid delivery system amplifies the cancer-fighting effects of oral sorafenib against hepatocellular carcinoma. Colloids Surf B Biointerfaces 2023; 232:113599. [PMID: 37857183 DOI: 10.1016/j.colsurfb.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.
Collapse
Affiliation(s)
- Qing-Qing Wang
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zi-Xu Liu
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun, Jilin, China
| | - Bo-Yuan Liu
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yu-Peng Feng
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yu Zhang
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hai-Bing He
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xing Tang
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Yan-Jiao Wang
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Jing-Xin Gou
- School of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
4
|
Yousef EH, El-Magd NFA, El Gayar AM. Norcantharidin potentiates sorafenib antitumor activity in hepatocellular carcinoma rat model through inhibiting IL-6/STAT3 pathway. Transl Res 2023; 260:69-82. [PMID: 37257560 DOI: 10.1016/j.trsl.2023.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
In hepatocellular carcinoma (HCC), sorafenib (Sora) efficacy is limited by primary and/or acquired resistance. Emerging evidence shows that the inflammatory factor interleukin 6 (IL-6) plays a role in Sora resistance. Norcantharidin (NCTD), a derivative of cantharidine, was identified as a potent IL-6 inhibitor. Thus, in this study, we evaluated NCTD ability to improve the Sora efficacy in HCC and its underlying molecular mechanisms. Male Sprague Dawely rats were administered NCTD (0.1 mg/kg/day; orally) or Sora (10 mg/kg day; orally) or combination for 6 weeks after HCC induction using thioacetamide (200 mg/kg; ip; 2 times/wk) for 16 weeks. Our results showed that NCTD greatly enhanced Sora activity against HCC and potentiated Sora-induced oxidative stress. NCTD enhanced Sora-induced tumor immunity reactivation by decreasing both fibrinogen-like protein 1 level and increasing both tumor necrosis factor-α gene expression along with CD8+ T cells number. Also, NCTD augmented Sora attenuation activity against TAA-induced angiogenesis and metastasis by decreasing VEGFA, HIF-1α, serum lactate dehydrogenase enzyme, and vimentin levels. The combined use of NCTD/Sora suppressed drug resistance and stemness by downregulating ATP-binding cassette subfamily G member 2, neurogenic locus notch homolog protein, spalt-like transcription factor 4, and CD133. NCTD boosted Sora antiproliferative and apoptotic activities by decreasing Ccnd1 and BCL2 expressions along with increasing BAX and caspase-3 expressions. To our knowledge, this study represents the first study providing evidence for the potential novel therapeutic use of NCTD/Sora combination for HCC. Moreover, no previous studies have reported the effect of NCTD on FGL1.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Scully MA, Wilkins DE, Dang MN, Hoover EC, Aboeleneen SB, Day ES. Cancer Cell Membrane Wrapped Nanoparticles for the Delivery of a Bcl-2 Inhibitor to Triple-Negative Breast Cancer. Mol Pharm 2023; 20:3895-3913. [PMID: 37459272 PMCID: PMC10628893 DOI: 10.1021/acs.molpharmaceut.3c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) is correlated with poor survival outcomes in triple-negative breast cancer (TNBC), making Bcl-2 inhibition a promising strategy to treat this aggressive disease. Unfortunately, Bcl-2 inhibitors developed to date have limited clinical success against solid tumors, owing to poor bioavailability, insufficient tumor delivery, and off-target toxicity. To circumvent these problems, we loaded the Bcl-2 inhibitor ABT-737 in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were wrapped with phospholipid membranes derived from 4T1 murine mammary cancer cells, which mimic the growth and metastasis of human TNBC. We show that the biomimetic cancer cell membrane coating enabled the NPs to preferentially target 4T1 TNBC cells over noncancerous mammary epithelial cells in vitro and significantly increased NP accumulation in orthotopic 4T1 tumors in mice after intravenous injection by over 2-fold compared to poly(ethylene glycol)-poly(lactide-co-glycolic) (PEG-PLGA) copolymer NPs. Congruently, the ABT-737 loaded, cancer cell membrane-wrapped PLGA NPs (ABT CCNPs) induced higher levels of apoptosis in TNBC cells in vitro than ABT-737 delivered freely or in PEG-PLGA NPs. When tested in a syngeneic spontaneous metastasis model, the ABT CCNPs significantly increased apoptosis (evidenced by elevated active caspase-3 and decreased Bcl-2 staining) and decreased proliferation (denoted by reduced Ki67 staining) throughout tumors compared with saline or ABT-loaded PEG-PLGA NP controls. Moreover, the ABT CCNPs did not alter animal weight or blood composition, suggesting that the specificity afforded by the TNBC cell membrane coating mitigated the off-target adverse effects typically associated with ABT-737. Despite these promising results, the low dose of ABT CCNPs administered only modestly reduced primary tumor growth and metastatic nodule formation in the lungs relative to controls. We posit that increasing the dose of ABT CCNPs, altering the treatment schedule, or encapsulating a more potent Bcl-2 inhibitor may yield more robust effects on tumor growth and metastasis. With further development, drug-loaded biomimetic NPs may safely treat solid tumors such as TNBC that are characterized by Bcl-2 overexpression.
Collapse
Affiliation(s)
- Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Dana E Wilkins
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Elise C Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sara B Aboeleneen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
6
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
7
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
8
|
Cheng R, Liu X, Wang Z, Tang K. ABT‑737, a Bcl‑2 family inhibitor, has a synergistic effect with apoptosis by inducing urothelial carcinoma cell necroptosis. Mol Med Rep 2021; 23:412. [PMID: 33786632 PMCID: PMC8025475 DOI: 10.3892/mmr.2021.12051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
ABT‑737 is a recently reported inhibitor of members of the Bcl‑2 family of apoptosis regulators. However, to the best of our knowledge, its necroptosis‑inducing function in bladder cancer has not yet been researched. Thus, the present study aimed to investigate whether this Bcl‑2 family inhibitor can induce both apoptosis and necroptosis of urothelial carcinoma cells. The proliferation and survival of urothelial carcinoma cell lines treated with a combination of both Z‑VAD‑FMK as a pan‑caspase inhibitor and ABT‑737 were assessed in vitro. Z‑DNA binding protein 1 (ZBP1), receptor‑interacting protein (RIP)1 and RIP3 were knocked down using small interfering RNA in urothelial carcinoma cell lines. The protein expression levels of ZBP1, RIP1 and RIP3 following cell transfection were measured via western blot analysis. Cell viability was determined using an MTT assay. Cell invasion was examined using cell invasion assays. The expression levels of necroptosis‑related proteins, high mobility group box 1, ZBP1, mixed‑lineage kinase domain‑like protein (MLKL) and RIP3, were measured via western blotting. It was found that ABT‑737 inhibited the proliferation and invasion of bladder cancer cells by inducing cell necrosis. The data demonstrated that ZBP1 and RIP3 have main roles in the cell necrosis induced by ABT‑737. In addition, RIP3 and ZBP1, without interacting with RIP1, directly induced MLKL‑mediated programmed cell necrosis. Thus, understanding how urothelial carcinoma cells react to Bcl‑2 family inhibitors may accelerate the discovery of drugs to treat bladder cancer.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaolong Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zheng Wang
- Department of Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kunlong Tang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China,Correspondence to: Dr Kunlong Tang, Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, P.R. China, E-mail:
| |
Collapse
|
9
|
Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J Nanobiotechnology 2020; 18:114. [PMID: 32811502 PMCID: PMC7437073 DOI: 10.1186/s12951-020-00677-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Diacid metabolite as the stable form of norcantharidin (DM-NCTD) derived from Chinese blister beetle (Mylabris spp.). The previous studies reported that DM-NCTD could enhance ABT-737-triggered cell viability inhibition and apoptosis in hepatocellular carcinoma (HCC) cell lines. To translate this synergistic therapy into in vivo anticancer treatment, a folate receptor-targeted lipid bilayer-supported chlorodimethyloctadecylsilane-modified mesoporous silica nanoparticle (FA-LB-CHMSN) with DM-NCTD loaded in CHMSN and ABT-737 in lipid bilayer was prepared, which could promote the cancer cell uptake of the drugs through folate receptor-mediated endocytosis. The structure and the properties of the nanoparticle were evaluated. FA-LB-CHMSN with DM-NCTD/ABT-737 loaded induced apparent tumor cell apoptosis and showed remarkably tumor inhibition in H22 tumor-bearing mice model, with significant cellular apoptosis in the tumor and no obvious toxicity to the tissues. We expect that this nanoparticle could be of interest in both biomaterial investigations for HCC treatment and the combination of chemotherapeutic drugs for synergistic therapies.
Collapse
Affiliation(s)
- Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jue Tu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P. R. China.,Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.
| | - Jing Wu
- Zhejiang Pharmaceutical College, Ningbo, P. R. China.
| |
Collapse
|
10
|
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med 2020; 15:55. [PMID: 32514288 PMCID: PMC7260769 DOI: 10.1186/s13020-020-00338-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Norcantharidin (NCTD) is a demethylated derivative of cantharidin, which is an anticancer active ingredient of traditional Chinese medicine, and is currently used clinically as a routine anti-cancer drug in China. Clarifying the anticancer effect and molecular mechanism of NCTD is critical for its clinical application. Here, we summarized the physiological, chemical, pharmacokinetic characteristics and clinical applications of NCTD. Besides, we mainly focus on its potential multi-target anticancer activities and underlying mechanisms, and discuss the problems existing in clinical application and scientific research of NCTD, so as to provide a potential anticancer therapeutic agent for human malignant tumors.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
11
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
12
|
Zhang H, Li G, Chen G, Zhang Y, Pan J, Tang H, Li J, Guo W, Zhang S. Targeting Mcl-1 inhibits survival and self-renewal of hepatocellular cancer stem-like cells. Clin Res Hepatol Gastroenterol 2019; 43:292-300. [PMID: 30528319 DOI: 10.1016/j.clinre.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is highly expressed in tumor tissues and cells of hepatocellular carcinoma (HCC), yet the role of Mcl-1 in cancer stem-like cells (CSLCs) remains largely unclear. Herein, we showed that knockdown of Mcl-1 significantly inhibited HCC cells to form spheres under ultra-low attachment condition in serum-free medium, and also attenuated clone formation. Inhibition of Mcl-1 by specific inhibitors S63845 or A-1210477 hindered secondary sphere formation, triggered apoptosis signaling and reduced the level of stem cell transcription factor Nanog, Sox2 and KLF4 in HCC spheroids cells. This study suggests that Mcl-1 is an essential factor for the survival and self-renewal of HCC CSLCs.
Collapse
Affiliation(s)
- Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Gongquan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Guanghui Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Yi Zhang
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, PR China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, PR China.
| |
Collapse
|
13
|
Chen Y, Wang L, Liu H, Song F, Xu C, Zhang K, Chen Q, Wu S, Zhu Y, Dong Y, Zhou M, Zhang H, Tian M. PET Imaging on Dynamic Metabolic Changes after Combination Therapy of Paclitaxel and the Traditional Chinese Medicine in Breast Cancer-Bearing Mice. Mol Imaging Biol 2019; 20:309-317. [PMID: 28795272 DOI: 10.1007/s11307-017-1108-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of the study was to non-invasively evaluate the anticancer activity of a traditional Chinese medicine-Huaier, combined with paclitaxel (PTX) in breast cancer bearing mice by detecting dynamic metabolic changes with positron emission tomography (PET). PROCEDURES Balb/c nude mice were randomly divided into one of the four groups: Huaier, PTX, PTX + Huaier, or the control. PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was performed to monitor the metabolic changes in BT474 (luminal B) and MDA-MB-231 (triple-negative) breast cancer xenografts. Immunohistochemistry (IHC) study was performed immediately after the final PET scan to assess the expressions of phosphatidylinositol 3-kinase (PI3K), phospho-AKT (p-AKT), caspase-3, and vascular endothelial growth factor (VEGF). RESULTS Compared to the control group, [18F]FDG accumulation demonstrated a significant decrease in PTX + Huaier (p < 0.01) or Huaier group (p < 0.05), which was consistent to the decreased expression of PI3K (p < 0.05) and p-AKT (p < 0.05) in the breast cancer xenografts. CONCLUSION The therapeutic effect of Huaier combined with PTX was superior than the PTX alone in BT474 and MDA-MB-231 breast cancer-bearing mice. [18F]FDG PET imaging could be a potential non-invasive approach to assess the metabolic changes after chemotherapy combined with traditional Chinese medicine in the breast cancer.
Collapse
Affiliation(s)
- Yao Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Ling Wang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hao Liu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Fahuan Song
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Caiyun Xu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Yunqi Zhu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Ying Dong
- Department of Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhou
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China. .,Zhejiang University Medical PET Center, Zhejiang University, Hangzhou, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
14
|
Xie MH, Ge M, Peng JB, Jiang XR, Wang DS, Ji LQ, Ying Y, Wang Z. In-vivo anti-tumor activity of a novel poloxamer-based thermosensitive in situ gel for sustained delivery of norcantharidin. Pharm Dev Technol 2018; 24:623-629. [PMID: 30457414 DOI: 10.1080/10837450.2018.1550788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In order to develop a novel norcantharidin (NCTD) delivery system with slow drug release and specific targeting characteristics, we have developed a Poloxamer-based NCTD thermosensitive in situ gel. The evaluation of the characteristics of this system using both in vitro and in vivo methods was previously reported. However, its anti-tumor activity in vivo is still not confirmed. Thus, the potential anti-tumor activity and relative mechanism were investigated in a murine H22 hepatoma model. Tumor-bearing mice were treated with different dose of NCTD thermosensitive in situ gel (3.3 mg/kg, 6.6 mg/kg, and 9.9 mg/kg, respectively by intra-tumor injection once every three days, totaling 5 injections per group. Control groups included untreated or NCTD injection (2.2 mg/kg, qd) or blank in situ gel. The expression of vascular endothelial growth factor (VEGF) and CD44 in tumor tissue was examined by immunohistochemistry (IHC) staining. Treatment with middle or high dose of NCTD thermosensitive in situ gel significantly induced tumor regression, inhibited VEGF and CD44 expression and improved survival of tumor-bearing mice. The efficacy of NCTD thermosensitive in situ gel is higher than that of free NCTD injection. Therefore, NCTD thermosensitive in situ gel is a novel NCTD delivery approach for chemotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Ming-Hua Xie
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Min Ge
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Jia-Bei Peng
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Xiao-Rui Jiang
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Ding-Sheng Wang
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Li-Qiang Ji
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Yin Ying
- b Department of Pharmacy , Tongde Hospital of Zhejiang Province , Hangzhou , Zhejiang , PR China
| | - Zeng Wang
- c Department of Pharmacy , Zhejiang Cancer Hospital , Hangzhou , Zhejiang , PR China
| |
Collapse
|
15
|
Lin CL, Chen CM, Lin CL, Cheng CW, Lee CH, Hsieh YH. Norcantharidin induces mitochondrial-dependent apoptosis through Mcl-1 inhibition in human prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1867-1876. [PMID: 28760656 DOI: 10.1016/j.bbamcr.2017.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Norcantharidin (NCTD) is the demethylated form of cantharidin that exhibits anticancer potential in many cancer cell types. Recent reports suggest that NCTD targeting ROS/AMPK and DNA replication signaling pathway could be an effective strategy for the treatment of PCa cells. However, supportive evidence is limited to the effect of NCTD that induction of apoptosis through suppression of the Mcl-1. Here, we show that NCTD induced PCa cell apoptosis and triggered caspase activation, which was associated with mitochondria dysfunction. Mechanistic investigations suggested that NCTD modulated the Akt signaling via increased nuclear translocation and interaction with the myeloid cell leukemia-1 (Mcl-1) promoter by FOXO4, resulting in an apoptotic effect. Moreover, miR-320d, which targets Mcl-1, was significantly upregulated after NCTD treatment. Overexpression of miR-320d by NCTD induced mitochondria dysfunction and apoptosis, which was notably attenuated with a miR-320d inhibitor. In vivo xenograft analysis revealed that NCTD significantly reduced tumor growth in mice with PC3 tumor xenografts. Taken together, our results provide new insights into the critical role of NCTD in suppressing Mcl-1 via epigenetic upregulation of miR-320d, resulting in PCa cell apoptosis.
Collapse
Affiliation(s)
- Chu-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung. Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|