1
|
Pillar A, Ali MK. IL-22 Binding Protein/IL-22 Axis in Regulating Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:335-337. [PMID: 38199431 DOI: 10.1016/j.ajpath.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Amber Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and The Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Md Khadem Ali
- Pre-Professional Health Academic Program, California State University East Bay, Hayward, California.
| |
Collapse
|
2
|
Xu Q, Fu X, Xiu Z, Yang H, Men X, Liu M, Xu C, Li B, Zhao S, Xu H. Interleukin‑22 alleviates arginine‑induced pancreatic acinar cell injury via the regulation of intracellular vesicle transport system: Evidence from proteomic analysis. Exp Ther Med 2023; 26:578. [PMID: 38023358 PMCID: PMC10655043 DOI: 10.3892/etm.2023.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition characterized by the activation of pancreatic enzymes within acinar cells, leading to tissue damage and inflammation. Interleukin (IL)-22 is a potential therapeutic agent for AP owing to its anti-inflammatory properties and ability to promote tissue repair. The present study evaluated the differentially expressed proteins in arginine-induced pancreatic acinar cell injury following treatment with IL-22, and the possible mechanisms involved in IL-22-mediated alleviation of AP. AR42J cells were stimulated using L-arginine to establish an acinar cell injury model in vitro and the damaged cells were subsequently treated with IL-22. The characteristics of the model and the potential therapeutic effects of IL-22 were examined by CCK-8 assay, flow cytometry, TUNEL assay, transmission electron microscopy and ELISA. Differentially expressed proteins in cells induced by arginine and treated with IL-22 were assessed using liquid chromatography-mass spectrometry. The identified proteins were further subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to elucidate their functional roles. The present study demonstrated that arginine-stimulated cells showed significant pathological changes resembling those in AP, which were alleviated after IL-22 treatment. Proteomic analysis then demonstrated that in IL-22-treated cells, proteins related to the formation and fusion of autophagosomes with lysosomes were significantly downregulated, whereas endocytosis related proteins were enriched in the upregulated proteins. After IL-22 treatment, western blotting demonstrated reduced expression of autophagy-associated proteins. In conclusion, by inhibiting the formation and fusion of autophagosomes with lysosomes, IL-22 may have mitigated premature trypsinogen activation, subsequently minimizing acinar cell injury induced by L-arginine. This was accompanied by concurrent upregulation of endocytosis, which serves a pivotal role in sustaining regular cellular material transport and signal propagation. This research underscored the potential of IL-22 in mitigating arginine-induced AR42J injury, which could be valuable in refining treatment strategies for AP.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Gastroenterology Center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, P.R. China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoxiao Men
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mingyue Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Fu X, Xiu Z, Xu H. Interleukin-22 and acute pancreatitis: A review. Medicine (Baltimore) 2023; 102:e35695. [PMID: 37933011 PMCID: PMC10627694 DOI: 10.1097/md.0000000000035695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal diseases, and it is divided into 3 types according to its severity:mild acute pancreatitis, moderately severe acute pancreatitis, and severe acute pancreatitis. The mortality in severe acute pancreatitis is approximately 15% to 30% due to multiorgan dysfunction and the lack of specific treatment. Interleukin-22 (IL-22) is a member of the Interleukin-10 family, and it can activate several downstream signaling pathways by binding to its receptor complex, thus it is involved in cell differentiation, proliferation, and apoptosis. Some studies have reported the elevated level of IL-22 in patients with AP, which suggests IL-22 may be involved in the pathogenesis of AP. And many studies have shown that IL-22 had a protective effect against AP. This article reviews the characteristics and mechanism of IL-22 and its role in AP to provide insight into the treatment of AP.
Collapse
Affiliation(s)
- Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Gastroenterology center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Stojanovic B, Jovanovic IP, Stojanovic MD, Jovanovic M, Vekic B, Milosevic B, Cvetkovic A, Spasic M, Stojanovic BS. The Emerging Roles of the Adaptive Immune Response in Acute Pancreatitis. Cells 2023; 12:1495. [PMID: 37296616 PMCID: PMC10253175 DOI: 10.3390/cells12111495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Acute pancreatitis (AP) is an abrupt, variable inflammatory condition of the pancreas, potentially escalating to severe systemic inflammation, rampant pancreatic necrosis, and multi-organ failure. Its complex pathogenesis involves an intricate immune response, with different T cell subsets (Th1, Th2, Th9, Th17, Th22, TFH, Treg, and CD8+ T cells) and B cells playing pivotal roles. Early T cell activation initiates the AP development, triggering cytokines associated with the Th1 response, which stimulate macrophages and neutrophils. Other T cell phenotypes contribute to AP's pathogenesis, and the balance between pro-inflammatory and anti-inflammatory cytokines influences its progression. Regulatory T and B cells are crucial for moderating the inflammatory response and promoting immune tolerance. B cells further contribute through antibody production, antigen presentation, and cytokine secretion. Understanding these immune cells' roles in AP could aid in developing new immunotherapies to enhance patient outcomes. However, further research is required to define these cells' precise roles in AP and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Shi C, Su C, Cen L, Han L, Tang J, Wang Z, Shi X, Ju D, Cao Y, Zhu H. Vunakizumab-IL22, a Novel Fusion Protein, Promotes Intestinal Epithelial Repair and Protects against Gut Injury Induced by the Influenza Virus. Biomedicines 2023; 11:biomedicines11041160. [PMID: 37189778 DOI: 10.3390/biomedicines11041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Secondary immune damage to the intestinal mucosa due to an influenza virus infection has gained the attention of investigators. The protection of the intestinal barrier is an effective means of improving the survival rate in cases of severe pneumonia. We developed a fusion protein, Vunakizumab-IL22(vmab-IL22), by combining an anti-IL17A antibody with IL22. Our previous study showed that Vunakizumab-IL22 repairs the pulmonary epithelial barrier in influenza virus-infected mice. In this study, we investigated the protective effects against enteritis given its anti-inflammatory and tissue repair functions. The number of goblet cells and the expression of zonula occludens protein 1(ZO-1), Mucin-2, Ki67 and IL-22R were determined by immunohistochemistry (IHC) and quantitative RT-PCR in influenza A virus (H1N1)-infected mice. The expression of NOD-like receptor pyrin domain containing 3 (NLRP3) and toll- like-receptor-4 (TLR4) was assayed by IHC in the lungs and intestine in HIN1 virus-induced mice to evaluate the whole efficacy of the protective effects on lungs and intestines. Consequently, Cytochrome C, phosphorylation of nuclear factor NF-kappaB (p-NF-κB), IL-1β, NLRP3 and Caspase 3 were assayed by Western blotting in dextran sulfate sodium salt (DSS)-treated mice. Treatment with Vunakizumab-IL22 improved the shortened colon length, macroscopic and microscopic morphology of the small intestine (p < 0.001) significantly, and strengthened the tight junction proteins, which was accompanied with the upregulated expression of IL22R. Meanwhile, Vunakizumab-mIL22 inhibited the expression of inflammation-related protein in a mouse model of enteritis induced by H1N1 and DSS. These findings provide new evidence for the treatment strategy for severe viral pneumonia involved in gut barrier protection. The results suggest that Vunakizumab-IL22 is a promising biopharmaceutical drug and is a candidate for the treatment of direct and indirect intestinal injuries, including those induced by the influenza virus and DSS.
Collapse
Affiliation(s)
- Chenchen Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| | - Lifeng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Zhang Y, Zhang WQ, Liu XY, Zhang Q, Mao T, Li XY. Immune cells and immune cell-targeted therapy in chronic pancreatitis. Front Oncol 2023; 13:1151103. [PMID: 36969002 PMCID: PMC10034053 DOI: 10.3389/fonc.2023.1151103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, studies have attempted to understand the immune cells and mechanisms underlying the pathogenesis of chronic pancreatitis (CP) by constructing a model of CP. Based on these studies, the innate immune response is a key factor in disease pathogenesis and inflammation severity. Novel mechanisms of crosstalk between immune and non-immune pancreatic cells, such as pancreatic stellate cells (PSC), have also been explored. Immune cells, immune responses, and signaling pathways in CP are important factors in the development and progression of pancreatitis. Based on these mechanisms, targeted therapy may provide a feasible scheme to stop or reverse the progression of the disease in the future and provide a new direction for the treatment of CP. This review summarizes the recent advances in research on immune mechanisms in CP and the new advances in treatment based on these mechanisms.
Collapse
|
8
|
Wang L, Wang N, Shi G, Sun S. Follistatin-like 1 ameliorates severe acute pancreatitis associated lung injury via inhibiting the activation of NLRP3 inflammasome and NF-κB pathway. Am J Transl Res 2022; 14:4310-4320. [PMID: 35836868 PMCID: PMC9274554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Severe acute pancreatitis (SAP) is one of the most common abdominal conditions of digestive system that usually causes acute lung injury through systemic inflammation. Follistatin-like 1 (FSTL-1) has been reported to have anti-inflammatory and anti-apoptotic effects in a variety of diseases. The aim of this study was to investigate the effects of FSTL-1 on SAP-associated lung injury (SAPALI) and the underlying mechanism. METHODS SAP model was induced by intraperitoneal injection of the L-arginine in C57BL/6 mice. The haematoxylin and eosin (H&E) staining was applied to determine the severity of lung and pancreatic injury. ELISA kits were used to determine serum amylase and inflammatory cytokines levels. TUNEL staining was carried out to measure cell apoptosis. Western blotting was applied to analyze the related proteins of NLRP3 inflammasome and NF-κB pathways. RESULTS FSTL-1 was significantly increased in the lung of SAP mice. Knockout of FSTL-1 ameliorated pancreatic injury, lung injury, inflammation and apoptosis in mice with SAP. Moreover, the protein levels of NLRP3, ASC, Caspase-1, p-p65 and p-IκBα were obviously reduced in the FSTL-1 KO+SAP group in comparison with SAP group, suggesting that inhibition of FSTL-1 repressed the activation of the NLRP3 inflammasome and NF-κB pathway. CONCLUSION This study helps us understand the mechanism of FSTL-1 in SAPALI and might provide a potential new strategy for the treatment of SAPALI.
Collapse
Affiliation(s)
- Liming Wang
- Department of Critical Medicine, Weifang People’s HospitalWeifang 261041, Shandong, China
| | - Na Wang
- Department of Nursing, Weifang People’s HospitalWeifang 261041, Shandong, China
| | - Guifang Shi
- Department of Chinese Medicine, Weifang People’s HospitalWeifang 261041, Shandong, China
| | - Shuqing Sun
- Department of Critical Medicine, Weifang People’s HospitalWeifang 261041, Shandong, China
| |
Collapse
|
9
|
Chen H, Dong B, Shi Y, Yu Y, Xie K. Hydrogen Alleviates Neuronal Injury and Neuroinflammation Induced by Microglial Activation via the Nuclear Factor Erythroid 2-related Factor 2 Pathway in Sepsis-associated Encephalopathy. Neuroscience 2021; 466:87-100. [PMID: 33992722 DOI: 10.1016/j.neuroscience.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral and central nervous system (CNS) dysfunction. Microglia play a vital role in protecting the brain from neuronal damage, which is closely related to inflammatory responses. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has an impact on microglial and neuronal injury. Here, we mainly explored the molecular mechanism by which Hydrogen (H2) regulates neuroinflammation in SAE and the role of Nrf2 in this process. An in vivo model of SAE was generated by cecal ligation and puncture (CLP). Primary microglia and neurons were cultured to establish an in vitro model. Microglia, neurons and brain tissue were obtained to detect Nrf2 expression, inflammation, cell injury, apoptosis, and microglial polarization. Escape latency, the number of platform crossings and the time spent in the target quadrant were measured to assess cognitive function. H2 attenuated microglial polarization from the M1 to the M2 phenotype, cytokine release and TLR/NF-κb activation and protected neurons from lipopolysaccharide (LPS)-activated microglia-induced injury via the Nrf2 pathway. SAE activated Nrf2 expression, and H2 further improved Nrf2 expression in SAE mice. H2 alleviated microglial polarization from the M1 to the M2 phenotype and cytokine release in the cerebral cortex and improved neuronal injury or cognitive dysfunction in SAE mice and wild-type mice but not in Nrf2-/- mice. H2 exerts antineuroinflammatory effects associated with TLR4/NF-κB signaling activation and neuroprotective effects by inhibiting the excessive release of proinflammatory cytokines, neuronal loss and apoptosis in vitro and in vivo through the Nrf2 pathway.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
10
|
Shah J, Rana SS. Acute respiratory distress syndrome in acute pancreatitis. Indian J Gastroenterol 2020; 39:123-132. [PMID: 32285399 DOI: 10.1007/s12664-020-01016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Development of organ failure is one of the major determinants of mortality in patients with acute pancreatitis (AP). Acute respiratory distress syndrome (ARDS) is an important cause of respiratory failure in AP and is associated with high mortality. Pathogenesis of ARDS in AP is incompletely understood. Release of various cytokines plays an important role in development of ARDS in AP. Increased gut permeability due to various toxins, inflammatory mediators, and pancreatic enzymes potentiates lung injury by gut-lymph-lung axis leading on to increased translocation of bacterial endotoxins. Various scoring systems, serum levels of various cytokines and lung ultrasound have been evaluated for prediction of development of ARDS in AP with varying results. Various drugs have shown encouraging results in prevention of ARDS in animal models but these encouraging results in animal models are yet to be confirmed in clinical studies. There is no specific effective treatment for ARDS. Treatment of sepsis and local complications of AP should be done according to the standard management strategies. Lung protective ventilatory strategies are of paramount importance to improve outcome of patients of AP with ARDS and therefore effective coordination between gastroenterologists and intensivists is needed for effective management of these patients.
Collapse
Affiliation(s)
- Jimil Shah
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160 012, India
| | - Surinder S Rana
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160 012, India.
| |
Collapse
|
11
|
Zhou Q, Tao X, Xia S, Guo F, Pan C, Xiang H, Shang D. T Lymphocytes: A Promising Immunotherapeutic Target for Pancreatitis and Pancreatic Cancer? Front Oncol 2020; 10:382. [PMID: 32266154 PMCID: PMC7105736 DOI: 10.3389/fonc.2020.00382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic disorders cause a broad spectrum of clinical diseases, mainly including acute and chronic pancreatitis and pancreatic cancer, and are associated with high global rates of morbidity and mortality. Unfortunately, the pathogenesis of pancreatic disease remains obscure, and there is a lack of specific treatments. T lymphocytes (T cells) play a vital role in the adaptive immune systems of multicellular organisms. During pancreatic disease development, local imbalances in T-cell subsets in inflammatory and tumor environments and the circulation have been observed. Furthermore, agents targeting T cells have been shown to reverse the natural course of pancreatic diseases. In this review, we have discussed the clinical relevance of T-cell alterations as a potential outcome predictor and the underlying mechanisms, as well as the present status of immunotherapy targeting T cells in pancreatitis and neoplasms. The breakthrough findings summarized in this review have important implications for innovative drug development and the prospective use of immunotherapy for pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chen Pan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Hong Xiang
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dong Shang
| |
Collapse
|
12
|
El-Kashef DH, Shaaban AA, El-Agamy DS. Protective role of pirfenidone against experimentally-induced pancreatitis. Pharmacol Rep 2019; 71:774-781. [PMID: 31376587 DOI: 10.1016/j.pharep.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/02/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pirfenidone (PFD) is an orally active antifibrotic agent that has anti-inflammatory activity in diverse animal models. Its effect against acute pancreatitis (AP) has not been elucidated. Hence, the present investigation was carried out to assess the potential protective role of PFD against l-arginine-induced AP in mice. METHODS AP was induced in adult male Swiss albino mice via intraperitoneal injections of l-arginine (4 g/kg, twice each 1 h apart). PFD (250 mg/kg, orally) was administered one day before and on the day of l-arginine challenge. Twenty-four hours after l-arginine injection, the severity of AP was evaluated using biochemical and histological analyses. Indices of oxidative stress, inflammation and apoptosis were evaluated using ELISA and immunohistochemistry (IHC). RESULTS PFD suppressed the development of l-arginine-induced AP as revealed by the improvement of histopathological lesions of pancreatic specimen and the significant reduction of serum amylase and lipase levels. Notably, PFD reduced the lipid peroxidation and enhanced the antioxidants such as reduced glutathione (GSH) and superoxide dismutase (SOD) in pancreatic tissue. Importantly, PFD suppressed AP-associated elevation of inflammatory cytokines along with depression of nuclear factor kappa-B (NF-κB) immuno-expression in pancreatic tissue. Lastly, PFD efficiently ameliorated AP-induced elevation of the pro-apoptotic protein (Bax) and increased AP-induced reduction of the anti-apoptotic protein (Bcl2). CONCLUSIONS PFD protected against l-arginine-induced AP in mice through anti-oxidative, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.
| |
Collapse
|
13
|
Al-Hariri MT, Eldin TG, Hashim T, Chathoth S, Alswied A. Propolis Modulates Inflammatory Mediators and Improves Histopathology in Male Rats with L-arginine-induced Acute Pancreatitis. Sultan Qaboos Univ Med J 2019; 19:e103-e107. [PMID: 31538007 PMCID: PMC6736264 DOI: 10.18295/squmj.2019.19.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/26/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives This study aimed to determine the effects of propolis on immune mediators and tissue histopathology in rats with L-arginine-induced acute pancreatitis (AP). Methods This study was conducted at Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia between September and November 2017. A total of 24 male albino Wistar rats were divided into three equal groups. Group one was the negative control, group two was the positive control (L-arginine-induced AP) and group three received treatment (L-arginineinduced AP and propolis). The rats in group three were treated with 100 mg/kg propolis for seven days after AP induction. Pancreatic tissue was evaluated histologically and levels of interleukin (IL)-6, IL-22 and IL-1β and tumour necrosis factor-alpha (TNF-α) were measured. Results Propolis reduced the quanitity of proinflammatory molecules (TNF-α, IL-1β and IL-6) in group three compared to group two, significantly increased the overall anti-inflammatory effect of IL-22 (P <0.005) and reduced interstitial inflammation and neutrophil cell infiltration of the pancreatic tissues. Conclusion Propolis may exert a therapeutic effect in AP. Further studies are required to demonstrate the mechanisms of propolis in AP.
Collapse
Affiliation(s)
- Mohammed T Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tharwat G Eldin
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tarek Hashim
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shahanas Chathoth
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah Alswied
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Tariket S, Hamzeh-Cognasse H, Arthaud CA, Laradi S, Bourlet T, Berthelot P, Garraud O, Cognasse F. Inhibition of the CD40/CD40L complex protects mice against ALI-induced pancreas degradation. Transfusion 2019; 59:1090-1101. [DOI: 10.1111/trf.15206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sofiane Tariket
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Sandrine Laradi
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Olivier Garraud
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Institut National de Transfusion Sanguine (INTS); Paris France
| | - Fabrice Cognasse
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| |
Collapse
|
15
|
Wu X, Ji K, Wang H, Zhao Y, Jia J, Gao X, Zang B. Retracted
: microRNA‐542‐5p protects against acute lung injury in mice with severe acute pancreatitis by suppressing the mitogen‐activated protein kinase signaling pathway through the negative regulation of P21‐activated kinase 1. J Cell Biochem 2018; 120:290-304. [DOI: 10.1002/jcb.27356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Xing‐Mao Wu
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Kai‐Qiang Ji
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Hai‐Yuan Wang
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Yang Zhao
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Jia Jia
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Xiao‐Peng Gao
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Bin Zang
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| |
Collapse
|
16
|
Wu X, Ji K, Wang H, Zhao Y, Jia J, Gao X, Zang B. Retracted
: MicroRNA‐339‐3p alleviates inflammation and edema and suppresses pulmonary microvascular endothelial cell apoptosis in mice with severe acute pancreatitis‐associated acute lung injury by regulating Anxa3 via the Akt/mTOR signaling pathway. J Cell Biochem 2018; 119:6704-6714. [DOI: 10.1002/jcb.26859] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/13/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Xing‐Mao Wu
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Kai‐Qiang Ji
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Hai‐Yuan Wang
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Yang Zhao
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Jia Jia
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Xiao‐Peng Gao
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| | - Bin Zang
- Intensive Care UnitShengjing Hospital of China Medical UniversityShenyangP.R. China
| |
Collapse
|
17
|
Wu Z, Hu Z, Cai X, Ren W, Dai F, Liu H, Chang J, Li B. Interleukin 22 attenuated angiotensin II induced acute lung injury through inhibiting the apoptosis of pulmonary microvascular endothelial cells. Sci Rep 2017; 7:2210. [PMID: 28526849 PMCID: PMC5438354 DOI: 10.1038/s41598-017-02056-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/30/2023] Open
Abstract
Apoptosis of pulmonary microvascular endothelial cells (PMVECs) was considered to be closely related to the pathogenesis of acute lung injury (ALI). We aim to investigate whether IL-22 plays protective roles in lung injury through inhibiting the apoptosis of PMVECs. ALI model was induced through subcutaneous infusion of angiotensin II (Ang II). Lung injury and infiltration of inflammatory cells were evaluated by determining the PaO2/FiO2, calculation of dry to weight ratio in lung, and immunohistochemisty analysis. Apoptosis of PMVECs was determined using TUNEL assay and flow cytometry, respectively. Immunofluorescence and Western blot analysis were used to determine the expression and localization of STAT3, as well as the nucleus transmission of STAT3 from cytoplasm after IL22 treatment. Pathological findings showed ALI was induced 1 week after AngII infusion. IL22 inhibited the AngII-induced ALI, attenuated the edema in lung and the infiltration of inflammatory cells. Also, it contributed to the apoptosis of PMVECs induced by AngII. Meanwhile, significant increase was noticed in the expression of STAT3, phosphorylation of Y705-STAT3, and migration from cytoplasm to the nucleus after IL-22 treatment (P < 0.05). The activation of STAT3 by IL22 showed significant attenuation after AG490 treatment. Our data indicated that IL22 showed protective effects on lung injury through inhibiting the AngII-induced PMVECs apoptosis and PMVEC barrier injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| |
Collapse
|
18
|
Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Chronic Pancreatitis Associated Acute Respiratory Failure. MOJ IMMUNOLOGY 2017; 5:00149. [PMID: 29399623 PMCID: PMC5793936 DOI: 10.15406/moji.2017.05.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a condition characterized by parenchymal inflammation of the pancreas, which is often associated with lung injury due to low level of oxygen and the condition is termed as acute pancreatitis-associated lung injury (APALI). Clinical reports indicated that ~ 20% to 50% of patients from low oxygen levels in blood with acute respiratory distress syndrome (ARDS). ARDS is a severe form of acute lung injury (ALI), a pulmonary disease with impaired airflow making patients difficult to breathe. ALI is frequently observed in patients with severe acute pancreatitis. Approximately one third of severe pancreatitis patients develop acute lung injury and acute respiratory distress syndrome that account for 60% of all deaths within the first week. The major causes of ALI and ARDS are sepsis, trauma, aspiration, multiple blood transfusion, and most importantly acute pancreatitis. The molecular mechanisms of ALI and ARDS are still not well explored, but available reports indicate the involvement of several pro-inflammatory mediators including cytokines (TNF-α, IL-1β, IL-6) and chemokines [like interleukin-8 (IL-8) and macrophage inhibitory factor (MIF)], as well as macrophage polarization regulating the migration and pulmonary infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the pulmonary parenchyma. Acute lung injury and acute respiratory distress syndrome in acute pancreatitis remains an unsolved issue and needs more research and resources to develop effective treatments and therapies. However, recent efforts have tested several molecules in an experimental model and showed promising results as a treatment option. The current review summarized the mechanism that is operational in pancreatitis-associated acute respiratory failure and respiratory distress syndrome in patients and current treatment options.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Alok K Verma
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | | | - Anil Mishra
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| |
Collapse
|
19
|
Jouan Y, Si-Tahar M, Guillon A. Immunité de la muqueuse respiratoire : physiologie et implications en réanimation. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-016-1245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|