1
|
Matboli M, Diab GI, Saad M, Khaled A, Roushdy M, Ali M, ELsawi HA, Aboughaleb IH. Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101456. [PMID: 39055616 PMCID: PMC11268357 DOI: 10.1016/j.jceh.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC. Methods We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6). Results LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%). Conclusion Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Gouda I. Diab
- Biomedical Engineering Department, Egyptian Armed Forces, Cairo, Egypt
| | - Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Marian Roushdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Marwa Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | | |
Collapse
|
2
|
Kaur S, Vashistt J, Changotra H. Autophagy Gene BECN1 Intronic Variant rs9890617 Predisposes Individuals to Hepatitis B Virus Infection. Biochem Genet 2024; 62:3336-3349. [PMID: 38103127 DOI: 10.1007/s10528-023-10608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Beclin 1 protein encoded by the BECN1 gene plays a critical role in the autophagy pathway which is utilized by the Hepatitis B virus (HBV) for its replication. HBV is known for the subversion of the host's autophagy process for its multiplication. The aim of this study was to determine the role of BECN1 intronic variants in HBV susceptibility. Intronic region variant rs9890617 was analyzed using Human splicing finder v3.1 and was found to alter splicing signals. A total of 712 individuals (494 HBV infected and 218 healthy controls) were recruited in the study and genotyped by applying Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis revealed that the mutant allele T of rs9890617 was significantly associated with the overall disease risk in the allelic model (OR 1.41; 95%CI 1.00-1.99, p = 0.04). On stratifying the data based on the different stages of HBV infection, the mutant genotype showed a significant association with the chronic group in allelic (OR 1.62; 95%CI 1.11-2.39, p = 0.01), dominant (OR 1.64; 95%CI 1.07-2.52, p = 0.02), and co-dominant (OR 1.55; 95%CI 1.00-2.40, p = 0.04) models. Overall, this is the first study regarding beclin 1 variant rs9890617 and we found a significant association of the mutant T allele with the genetic predisposition to HBV infection.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
3
|
Mahdinia E, Rostami R, Rezaei A, Ghaderi P, Yarahmadi S, Fallah S. Evaluation of autophagy related ATG4B gene, protein and miR-655-3p expression levels in endometrial cancer and hyperplasia. J Gynecol Oncol 2024; 36:36.e33. [PMID: 39302146 DOI: 10.3802/jgo.2025.36.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE The pathogenesis of endometrial cancer (EC) and hyperplasia is complex and poorly understood. Autophagy has emerged as a crucial aspect of this process. METHODS This study examines the role of autophagy in the pathogenesis of EC and hyperplasia by investigating the expression of the autophagy-related 4B cysteine peptidase (ATG4B) gene, protein, and miR-665-3p levels in patients compared to a control group. This cross-sectional case control study analyzed 90 endometrial tissues, including 30 tumors, 30 normal controls, and 30 hyperplasia, using quantitative reverse transcription polymerase chain reaction and Western blot to assess ATG4B gene and protein levels. RESULTS Higher ATG4B gene expression levels were found in the endometrial tissue of EC patients than in hyperplasia patients and controls. Furthermore, protein levels of ATG4B were also higher in EC and hyperplasia patients than in controls. ATG4B gene expression and protein levels were positively correlated in EC patients. However, in EC patients, miR-655-3p showed a significant negative correlation with the ATG4B gene and protein levels. CONCLUSION ATG4B gene and protein expression is elevated in EC tissue, suggesting their role as a tumor promoter. Evaluating their levels could serve as markers for monitoring EC progression and prognosis.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahim Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Ghaderi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jen IA, Kuo TBJ, Liaw YP. Sex-specific associations of Notch signaling with chronic HBV infection: a study from Taiwan Biobank. Biol Sex Differ 2024; 15:69. [PMID: 39237981 PMCID: PMC11378497 DOI: 10.1186/s13293-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Hepatitis B, a liver infection caused by the hepatitis B virus (HBV), can develop into a chronic infection that puts patients at high risk of death from cirrhosis and liver cancer. In this study, we aimed to investigate the difference of reactome pre-Notch expression and processing between males and females by using gene to function analysis in FUMA. METHODS We analyzed Taiwan Biobank (TWB) data pertaining to 48,874 women and 23,178 men individuals which were collected from 2008 to 2019. According to hepatitis B surface antigen (HBsAg) status in hematology, positive and negative were classified into case and control in the genome-wide association study (GWAS) analysis. RESULTS We found 4715 women and 2656 men HBV cases. The genomic risk loci were different between males and females. In male, three risk loci (rs3732421, rs1884575 and Affx-28516147) were detected while eight risk loci (Affx-4564106, rs932745, rs7574865, rs34050244, rs77041685, rs107822, rs2296651 and rs12599402) were found in female. In addition, sex also presented different results. In females, the most significant SNPs are gathered in chromosome 6. However, except for chromosome 6, significant HBV infection SNPs also could be found in chromosome 3 among males. We further investigated gene function in FUMA to identify the difference in reactome pre-Notch expression and processing between males and females. We found that POGLUT1 and HIST1H2BC only appeared in men but not in women. CONCLUSION According to our study, the reactome pre-Notch expression including POGLUT1 and HIST1H2BC was associated with a risk of Hepatitis B in Taiwanese men when compared to women.
Collapse
Affiliation(s)
- I-An Jen
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, 11221, Taiwan.
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
5
|
Wu Q, Ouyang Y. Association of ATG16L1 and ATG5 gene polymorphisms with susceptibility to hepatitis B virus infection and progression to HCC in central China. Microbiol Immunol 2024; 68:47-55. [PMID: 37991129 DOI: 10.1111/1348-0421.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.
Collapse
Affiliation(s)
- Qiaoyu Wu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol 2023; 33:e2485. [PMID: 37902197 DOI: 10.1002/rmv.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Hepatitis B virus (HBV)-associated liver cancer is the third most prevalent cancer-related cause of death worldwide. Different studies have been done on the histomolecular analysis of HBV induced-liver cancer including epigenetics which are dynamic molecular mechanisms to control gene expression without altering the host deoxyribonucleic acid, genomics characterise the integration of the viral genome with host genome, proteomics characterise how gene modifies and results overexpression of proteins, glycoproteomics discover different glyco-biomarker candidates and show glycosylation in malignant hepatocytes, metabolomics characterise how HBV impairs a variety of metabolic functions during hepatocyte immortalisation, exosomes characterise immortalised liver cells in terms of their differentiation and proliferation, and autophagy plays a role in the development of hepatocarcinogenesis linked to HBV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Peng X, Yang H, Tao L, Xiao J, Zeng Y, Shen Y, Yu X, Zhu F, Qin J. Fluorofenidone alleviates liver fibrosis by inhibiting hepatic stellate cell autophagy via the TGF-β1/Smad pathway: implications for liver cancer. PeerJ 2023; 11:e16060. [PMID: 37790613 PMCID: PMC10542821 DOI: 10.7717/peerj.16060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Objectives Liver fibrosis is a key stage in the progression of various chronic liver diseases to cirrhosis and liver cancer, but at present, there is no effective treatment. This study investigated the therapeutic effect of the new antifibrotic drug fluorofenidone (AKF-PD) on liver fibrosis and its related mechanism, providing implications for liver cancer. Materials and Methods The effects of AKF-PD on hepatic stellate cell (HSC) autophagy and extracellular matrix (ECM) expression were assessed in a carbon tetrachloride (CCl4)-induced rat liver fibrosis model. In vitro, HSC-T6 cells were transfected with Smad2 and Smad3 overexpression plasmids and treated with AKF-PD. The viability and number of autophagosomes in HSC-T6 cells were examined. The protein expression levels of Beclin-1, LC3 and P62 were examined by Western blotting. The Cancer Genome Atlas (TCGA) database was used for comprehensively analyzing the prognostic values of SMAD2 and SMAD3 in liver cancer. The correlation between SMAD2, SMAD3, and autophagy-related scores in liver cancer was explored. The drug prediction of autophagy-related scores in liver cancer was explored. Results AKF-PD attenuated liver injury and ECM deposition in the CCl4-induced liver fibrosis model. In vitro, the viability and number of autophagosomes in HSCs were reduced significantly by AKF-PD treatment. Meanwhile, the protein expression of FN, α-SMA, collagen III, Beclin-1 and LC3 was increased, and P62 was reduced by the overexpression of Smad2 and Smad3; however, AKF-PD reversed these effects. SMAD2 and SMAD3 were hazardous factors in liver cancer. SMAD2 and SMAD3 correlated with autophagy-related scores in liver cancer. Autophagy-related scores could predict drug response in liver cancer. Conclusions AKF-PD alleviates liver fibrosis by inhibiting HSC autophagy via the transforming growth factor (TGF)-β1/Smadpathway. Our study provided some implications about how liver fibrosis was connected with liver cancer by SMAD2/SMAD3 and autophagy.
Collapse
Affiliation(s)
- Xiongqun Peng
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha, China
| | - Jingni Xiao
- Department of Nephrology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ya Zeng
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yueming Shen
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xueke Yu
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Fei Zhu
- Department of General Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jiao Qin
- Department of Nephrology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
8
|
Shi YB, Chen SY, Liu RB. The new insights into autophagy in thyroid cancer progression. J Transl Med 2023; 21:413. [PMID: 37355631 PMCID: PMC10290383 DOI: 10.1186/s12967-023-04265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
In recent decades, the incidence of thyroid cancer keeps growing at a shocking rate, which has aroused increasing concerns worldwide. Autophagy is a fundamental and ubiquitous biological event conserved in mammals including humans. Basically, autophagy is a catabolic process that cellular components including small molecules and damaged organelles are degraded for recycle to meet the energy needs, especially under the extreme conditions. The dysregulated autophagy has indicated to be involved in thyroid cancer progression. The enhancement of autophagy can lead to autophagic cell death during the degradation while the produced energies can be utilized by the rest of the cancerous tissue, thus this influence could be bidirectional, which plays either a tumor-suppressive or oncogenic role. Accordingly, autophagy can be suppressed by therapeutic agents and is thus regarded as a drug target for thyroid cancer treatments. In the present review, a brief description of autophagy and roles of autophagy in tumor context are given. We have addressed summary of the mechanisms and functions of autophagy in thyroid cancer. Some potential autophagy-targeted treatments are also summarized. The aim of the review is linking autophagy to thyroid cancer, so as to develop novel approaches to better control cancer progression.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Yuan Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-Bin Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
10
|
Abstract
ABSTRACT Preoperative neoadjuvant chemoradiotherapy, combined with total mesorectal excision, has become the standard treatment for advanced localized rectal cancer (RC). However, the biological complexity and heterogeneity of tumors may contribute to cancer recurrence and metastasis in patients with radiotherapy-resistant RC. The identification of factors leading to radioresistance and markers of radiosensitivity is critical to identify responsive patients and improve radiotherapy outcomes. MicroRNAs (miRNAs) are small, endogenous, and noncoding RNAs that affect various cellular and molecular targets. miRNAs have been shown to play important roles in multiple biological processes associated with RC. In this review, we summarized the signaling pathways of miRNAs, including apoptosis, autophagy, the cell cycle, DNA damage repair, proliferation, and metastasis during radiotherapy in patients with RC. Also, we evaluated the potential role of miRNAs as radiotherapeutic biomarkers for RC.
Collapse
|
11
|
Zabady S, Mahran N, Soltan MA, Alaa Eldeen M, Eid RA, Albogami S, Fayad E, Matboli M, Habib EK, Hasanin AH, A. Ali M, Mesbah NM, Abo-Elmatty DM, Abdel-Hamed AR. Cyanidin-3-Glucoside Modulates hsa_circ_0001345/miRNA106b/ATG16L1 Axis Expression as a Potential Protective Mechanism against Hepatocellular Carcinoma. Curr Issues Mol Biol 2022; 44:1677-1687. [PMID: 35723373 PMCID: PMC9164082 DOI: 10.3390/cimb44040115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Autophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities. Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour activities. The current study aims to examine the protective action of C3G against hepatocellular carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression were examined. Liver sections were examined by histological and immunohistochemical approaches. The current study’s findings indicated that C3G administration protects against the negative effects of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a potential prophylactic agent against HCC.
Collapse
Affiliation(s)
- Shaimaa Zabady
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt;
| | - Nievin Mahran
- Department of Biochemistry, Faculty of Dentistry, Sinai University, Ismailia 16020, Egypt;
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt
- Correspondence: (M.A.S.); (M.A.E.); Tel.: +20-1004185481 (M.A.S.); +20-1090036420 (M.A.E.)
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia 44519, Egypt
- Correspondence: (M.A.S.); (M.A.E.); Tel.: +20-1004185481 (M.A.S.); +20-1090036420 (M.A.E.)
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 12573, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Eman K. Habib
- Faculty of Medicine, Galala University, Galala City 43511, Egypt;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Amany H. Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Mahmoud A. Ali
- Department of Molecular Microbiology, Faculty of Medicine, Armed Forces College, Cairo 11566, Egypt;
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
12
|
Lei Y, Xu X, Liu H, Chen L, Zhou H, Jiang J, Yang Y, Wu B. HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G 1/S cycle. Autophagy 2021; 17:4423-4441. [PMID: 33866937 DOI: 10.1080/15548627.2021.1917948] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatitis B virus X protein (HBx) is involved in the process of hepatocellular carcinoma via the activation of various oncogenes. Our previous study indicated that ARBB1 (arrestin beta 1) promotes hepatocellular carcinogenesis (HCC). However, the role of ARRB1 in HBx-related HCC remains unclear. Herein, we identified that ARRB1 was upregulated by HBx in vivo and in vitro. Arrb1 deficiency suppressed HBx-induced hepatocellular carcinogenesis in several mouse models. Furthermore, knockdown of ARRB1 blocked HBx-induced macroautophagic/autophagic flux and disrupted the formation of autophagosomes. ARRB1 interacted with HBx, and the autophagic core protein MAP1LC3/LC3, a scaffolding protein, was essential for complete autophagy. Inhibition of autophagy by 3-methyladenine or interference of ATG5 or ATG7 attenuated HBx-induced cell cycle acceleration and the subsequent proliferative response via the induction of G1/S arrest. The absence of autophagy abolished the phosphorylation of CDK2 and the activity of the CDK2-CCNE1 complex. Our results demonstrate that ARRB1 plays a critical role in HBV-related HCC via modulating autophagy and the CDKN1B-CDK2-CCNE1-E2F1 axis and indicate that ARRB1 may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yiming Lei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Xuan Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Haoxiong Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yidong Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Kimkong I, Kunanopparat A. Autophagy related protein 9A increase in hepatitis B virus-associated hepatocellular carcinoma and the role in apoptosis. World J Hepatol 2020; 12:1367-1371. [PMID: 33442462 PMCID: PMC7772733 DOI: 10.4254/wjh.v12.i12.1367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The majority of hepatocellular carcinoma (HCC) cases are associated with the hepatitis B virus (HBV) infection. Autophagy related protein 9A (ATG9A) is a transmembrane protein required for autophagosome formation. In order to investigate the role of ATG9A in HBV-associated HCC, ATG9A protein expression was determined in tumor liver tissues and compared with adjacent nontumor tissues from HCC patients with or without HBV infection. In HBV-associated HCC tissues, ATG9A protein level was increased in tumor liver tissues, but not in cases of non-HBV HCC. Our findings suggested that ATG9A might be involved in HBV and cancer cell survival. Therefore, we aimed to analyze the function of ATG9A in HBV replication using RNA interference to evaluate the HBV DNA level using real-time PCR. In the present study, there were no significant differences between shATG9A-transfected HepG2.2.15 cells and the mock control. However, we found that silencing ATG9A affected apoptosis in HepG2.2.15 and HepG2 cell lines. Our results indicated that ATG9A might be partly involved in the survival of HCC. Thus, the inhibition of ATG9A together with other targets might be a potential drug target for HCC treatment.
Collapse
Affiliation(s)
- Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok 10900, Thailand
| | - Areerat Kunanopparat
- Department of Microbiology, Center of Excellence in Immunology and Immune Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma. Life Sci 2019; 235:116675. [PMID: 31340167 DOI: 10.1016/j.lfs.2019.116675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and accounts for substantial morbidity and mortality. Autophagy plays an essential role in the development and progression of HCC. This study aims to evaluate whether genetic variants in autophagy-related genes (ATGs) affect the development of HCC. MATERIALS AND METHODS We conducted a case-control study with 986 HCC cases and 1000 healthy controls to analyze 14 functional variants of five ATGs (ATG3, ATG5, ATG10, ATG12 and ATG16L1) among a Chinese population. KEY FINDINGS We found ATG5 rs17067724 (G vs A: OR = 0.80; 95% CI = 0.65-0.98; P = 0.031), ATG10 rs1864183 (G vs A: OR = 1.29; 95% CI = 1.07-1.57; P = 0.009), ATG10 rs10514231 (C vs T: OR = 1.41; 95% CI = 1.15-1.73; P = 0.001), ATG12 rs26537 (C vs T: OR = 1.16; 95% CI = 1.02-1.33; P = 0.030), and ATG16L1 rs4663402 (T vs A: OR = 1.28; 95% CI = 1.01-1.63; P = 0.044) were significantly associated with HCC risk. Specifically, ATG10 rs10514231 kept significant association even adjusted for Bonferroni correction (P = 0.001 × 14 = 0.014). Bioinformatics analyses showed that allele C of ATG10 rs10514231 was significantly correlated with higher expression of ATG10 gene in both HCC tissues and normal liver tissues. Dual-luciferase reporter assay presented that cell lines transfected with vectors containing the risk allele C of rs10514231 showed higher relative luciferase activity compared to that containing the allele T. SIGNIFICANCE These results suggested that ATG10 rs10514231 might contribute to an allele-specific effect on the expression of host gene ATG10 and explain a fraction of HCC genetic susceptibility. Our study would benefit the construction of early warning model, early prevention, screening, even therapeutic target of HCC.
Collapse
|
15
|
Wei H, Hu J, Pu J, Tang Q, Li W, Ma R, Xu Z, Tan C, Yao T, Wu X, Long X, Wang J. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells. Int Immunopharmacol 2019; 73:72-80. [PMID: 31082725 DOI: 10.1016/j.intimp.2019.04.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
In this research, we planned to dig the possible influences and mechanism of long noncoding (lnc) RNA HAGLROS in the development and progression of hepatocellular carcinoma (HCC). The levels of lncRNA HAGLROS in HCC tumor samples and their relationship with clinicopathological characteristics and prognosis of patients with HCC were studied. Subsequently, overexpression and silenced approaches were used in HCC cells for detecting the effects of lncRNA HAGLROS on cell viability, apoptosis, and autophagy. Furthermore, we investigated whether HAGLROS could function as a competing endogenous RNA (ceRNA) to regulate miR-5095 expression in HCC cells, and explored the correlation between miR-5095 and ATG12. Besides, the correlation of HAGLROS, the consequent PI3K/AKT/mTOR signaling pathway was further explored. The level of HAGLROS was higher in HCC tissues and correlated with clinical performances including tumor stages or tumor differentiation. In contrast to the lower level, a higher level of HAGLROS correlated with a shorter survival time of patients with HCC. The suppression of HAGLROS decreased cell viability, promoted apoptosis, and inhibited autophagy. Moreover, HAGLROS negatively regulated miR-5095 expression, which further regulated HCC cell viability, apoptosis, and autophagy. In addition, ATG12 was targeted by miR-5095 and was then involved in miR-5095-regulated HCC cell biological processes including viability, apoptosis, and autophagy. Furthermore, overexpression of HAGLROS activated PI3K/AKT/mTOR signals. Our results revealed that HAGLROS is highly expressed in HCC, and its high level may correlate with the progression and development of HCC involving the processes of cell viability, apoptosis, and autophagy through the miR-5095/ATG12 axis and PI3K/AKT/mTOR signals.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China; Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China
| | - Jing Hu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Digestive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China
| | - Jian Pu
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China.
| | - Qianli Tang
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China
| | - Wenchuan Li
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Digestive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China
| | - Rihai Ma
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China
| | - Zuoming Xu
- Graduate College of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Chuan Tan
- Graduate College of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Tianwei Yao
- Graduate College of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Xianjian Wu
- Graduate College of Youjiang Medical College for Nationalities, Guangxi Zhuang, China
| | - Xidai Long
- Department of Pathology, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China; Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China
| | - Jianchu Wang
- Clinic Medicine Research Center of Hepatobiliary Diseases, Guangxi Zhuang, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Zhuang 533000, China.
| |
Collapse
|
16
|
Li N, Fan X, Wang X, Deng H, Zhang K, Zhang X, Han Q, Lv Y, Liu Z. Autophagy-Related 5 Gene rs510432 Polymorphism Is Associated with Hepatocellular Carcinoma in Patients with Chronic Hepatitis B Virus Infection. Immunol Invest 2019; 48:378-391. [PMID: 30907204 DOI: 10.1080/08820139.2019.1567532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the identification of autophagy-related protein 5 (ATG5) as a molecule involved in the activated autophagy machinery during hepatitis B virus (HBV) infection and hepatocarcinogenesis, the consequences of ATG5 mutation carriage for patients with chronic HBV infection remain unclear. This study examined the association of ATG5 polymorphisms with HBV-related diseases including hepatocellular carcinoma (HCC). PATIENTS AND METHODS Two functionally relevant polymorphisms ATG5 rs573775 and rs510432 were genotyped by ligase detection reaction-polymerase chain reaction in 403 patients with chronic HBV infection (171 chronic hepatitis, 119 cirrhosis and 113 HCC) and 196 healthy controls. Univariate and multivariate logistic regression was performed to evaluate factors associated with HCC. RESULTS The rs573775 genotype and allele frequencies had no significant differences between patients with different clinical diseases. However, HCC patients had significantly higher frequency of rs510432 genotype AA (odds ratio [OR] 2.185, 95% confidence interval [CI] 1.042-4.581, P = 0.037, P value by Bonferroni correction [Pc] = 0.074) and allele A (OR 1.435, 95% CI 1.023-2.013, Pc = 0.036) than chronic hepatitis patients. In multivariate analyses, rs510432 allele A-containing genotypes (AA+GA) were independently associated with cirrhosis in comparison to chronic hepatitis (OR 1.927, 95%CI 1.011-3.017, P = 0.032). The rs510432 genotypes AA+GA were also independently associated with HCC in comparison to chronic hepatitis (OR 2.583, 95% CI 1.025-3.911, P = 0.006) or chronic HBV infection without HCC (OR 2.632, 95% CI 1.067-3.482, P = 0.032). CONCLUSION These results indicate that rs510432 genotypes AA+GA are associated with disease progression and HCC risk in chronic HBV infection, providing novel evidence for a role of ATG5 in the pathogenesis of HBV-related HCC. ABBREVIATIONS HBV: hepatitis B virus; HCC hepatocellular carcinoma; TNFSF10: tumor necrosis factor superfamily member 10; ATG5: autophagy-related protein 5; DNA: deoxyribonucleic acid; LDR-PCR: ligase detection reactions-polymerase chain reaction; PCR: polymerase chain reaction; SLE: systemic lupus erythematosus; BD: Behçet's disease; IL-10: interlukin-10; LPS: lipopolysaccharide; PBMC: peripheral blood mononuclear cells; CWP: coal workers' pneumoconiosis; TNF-α: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Na Li
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiude Fan
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiaoyun Wang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Huan Deng
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Kun Zhang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Xiaoge Zhang
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Qunying Han
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Yi Lv
- b Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China.,c Institute of Advanced Surgical Technology and Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| | - Zhengwen Liu
- a Department of Infectious Diseases , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China.,c Institute of Advanced Surgical Technology and Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi , People's Republic of China
| |
Collapse
|
17
|
Peantum J, Kunanopparat A, Hirankarn N, Tangkijvanich P, Kimkong I. Autophagy Related-Protein 16-1 Up-Regulated in Hepatitis B Virus-Related Hepatocellular Carcinoma and Impaired Apoptosis. Gastroenterology Res 2018; 11:404-410. [PMID: 30627263 PMCID: PMC6306113 DOI: 10.14740/gr1075w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) as primary malignancy of the liver has become the most common type of cancer worldwide. HCC development is mainly caused by viruses, especially the hepatitis B virus (HBV). Autophagy is an important defense mechanism against virus infection; however, HBV promotes autophagy mediated by the HBx protein which stimulates its replication. The autophagy-related protein 16-1 (ATG16L1) binds to the ATG12-ATG5 conjugate and forms a large protein autophagosome complex. Previous studies indicated that the ATG12-ATG5 conjugate was involved in HBV-associated HCC. Therefore, the ATG16L1 protein might consistently relate to this condition. Methods Accordingly, the ATG16L1 protein expression was determined in tumor and non-tumor liver cell lines and liver tissue samples using immunoblotting, and also investigated in ATG16L1-knockdown cells to further clarify this function. Results Our results showed that the ATG16L1 protein was up-regulated in HepG2.2.15 and HepG2 cell lines compared to THLE-2 cells. This protein also increased in tumor liver tissues of HCC patients with HBV infection compared to adjacent non-tumor tissues. Silenced-ATG16L1 also significantly promoted apoptosis in HepG2 cells cultured in starvation conditions. Conclusions Findings suggested ATG16L1 as an important molecule involved in apoptosis processes for HCC cells. A more profound understanding is required regarding the mechanisms that link autophagy and apoptosis in HCC development.
Collapse
Affiliation(s)
- Jiaranai Peantum
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Areerat Kunanopparat
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Research Unit of Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, Thailand
| |
Collapse
|
18
|
Hepatitis B Virus Subverts the Autophagy Elongation Complex Atg5-12/16L1 and Does Not Require Atg8/LC3 Lipidation for Viral Maturation. J Virol 2018; 92:JVI.01513-17. [PMID: 29367244 DOI: 10.1128/jvi.01513-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Previous studies indicated that hepatitis B virus (HBV) stimulates autophagy to favor its production. To understand how HBV co-opts autophagy as a proviral machinery, we studied the roles of key autophagy proteins in HBV-replicating liver cell cultures. RNA interference-mediated silencing of Atg5, Atg12, and Atg16L1, which promote autophagophore expansion and LC3 membrane conjugation, interfered with viral core/nucleocapsid (NC) formation/stability and strongly diminished virus yields. Concomitantly, the core/NC membrane association and their sorting to envelope-positive compartments were perturbed. A close inspection of the HBV/autophagy cross talk revealed that the virus depended on Atg12 covalently conjugated to Atg5. In support of this finding, HBV required the E2-like enzymes Atg10 and Atg3, which catalyze or facilitate Atg5-12 conjugation, respectively. Atg10 and Atg3 knockdowns decreased HBV production, while Atg3 overexpression increased virus yields. Mapping analyses demonstrated that the HBV core protein encountered the Atg5-12/16L1 complex via interaction with the intrinsically disordered region of the Atg12 moiety that is dispensable for autophagy function. The role of Atg12 in HBV replication was confirmed by its incorporation into virions. Although the Atg5-12/16L1 complex and Atg3 are essential for LC3 lipidation and, thus, for autophagosome maturation and closure, HBV propagation did not require LC3. Silencing of LC3B, the most abundant LC3 isoform, did not inhibit but rather augmented virus production. Similar augmenting effects were obtained upon overexpression of a dominant negative mutant of Atg4B that blocked the lipid conjugation of the LC3 isoforms and their GABARAP paralogues. Together, our data indicate that HBV subverts early, nondegradative autophagy components as assembly scaffolds, thereby concurrently avoiding autophagosomal destruction.IMPORTANCE Infections with the hepatitis B virus (HBV), an enveloped pararetrovirus, cause about 1 million deaths per year, as current therapies rarely achieve a cure. Understanding the HBV life cycle and concomitant host cell interactions is instrumental to develop new antiviral concepts. Here, we proceeded to dissect the roles of the autophagy machinery in virus propagation. By using RNA interference and overexpression studies in HBV-replicating cell lines, we identified the autophagic Atg5-12/16L1 elongation complex along with Atg10 and Atg3 to be an essential scaffold for HBV nucleocapsid assembly/stability. Deficits in Atg5-12/16L1 and Atg10/Atg3, which normally drive autophagophore membrane expansion, strongly impaired progeny virus yields. HBV gained access to Atg5-12/16L1 via interaction of its core protein with the Atg12 moiety of the complex. In contrast, subsequent autophagosome maturation and closure events were unnecessary for HBV replication, as evidenced by inhibition of Atg8/LC3 conjugation. Interfering with the HBV/Atg12 cross talk may be a tool for virus control.
Collapse
|
19
|
Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7:16. [PMID: 29459645 PMCID: PMC5833763 DOI: 10.1038/s41389-018-0028-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Radioresistance hampers success in the treatment of patients with advanced colorectal cancer (CRC). Improving our understanding of the underlying mechanisms of radioresistance could increase patients' response to irradiation (IR). MicroRNAs are a class of small RNAs involved in tumor therapy response to radiation. Here we found that miR-214 was markedly decreased in CRC cell lines and blood of CRC patients after IR exposure. Meanwhile, autophagy was enhanced in irradiated CRC cells. Mechanically, ATG12 was predicted and identified as a direct target of miR-214 by dual luciferase assay, qPCR, and Western blot. In vitro and in vivo experiments showed that miR-214 promoted radiosensitivity by inhibiting IR-induced autophagy. Restoration of ATG12 attenuated miR-214-mediated inhibition of cell growth and survival in response to IR. Importantly, miR-214 was highly expressed in radiosensitive CRC specimens and negatively correlated with plasma level of CEA. Moreover, ATG12 and LC3 expressions were increased in radioresistant CRC specimens. Our study elucidates that miR-214 promotes radiosensitivity by inhibition of ATG12-mediated autophagy in CRC. Importantly, miR-214 is a determinant of CRC irradiation response and may serve as a potential therapeutic target in CRC treatment.
Collapse
|
20
|
Wen J, Liu H, Wang L, Wang X, Gu N, Liu Z, Xu T, Gomez DR, Komaki R, Liao Z, Wei Q. Potentially Functional Variants of ATG16L2 Predict Radiation Pneumonitis and Outcomes in Patients with Non-Small Cell Lung Cancer after Definitive Radiotherapy. J Thorac Oncol 2018; 13:660-675. [PMID: 29454863 DOI: 10.1016/j.jtho.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Autophagy not only plays an important role in the progression of cancer but is also involved in tissue inflammatory response. However, few published studies have investigated associations between functional genetic variants of autophagy-related genes and radiation pneumonitis (RP) as well as clinical outcomes in patients with NSCLC after definitive radiotherapy. METHODS We genotyped nine potentially functional single-nucleotide polymorphisms (SNPs) in four autophagy-related genes (autophagy related 2B gene [ATG2B], autophagy related 10 gene [ATG10], autophagy related 12 gene [ATG12], and autophagy related 16 like 2 gene [ATG16L2]) in 393 North American patients with NSCLC treated by definitive radiotherapy and assessed their associations with RP, local recurrence-free survival (LRFS), progression-free survival (PFS), and overall survival (OS) in multivariable Cox proportional hazard regression analyses. RESULTS We found that patients with the ATG16L2 rs10898880 CC variant genotype had a better LRFS, PFS, and OS (adjusted hazard ratio = 0.59, 0.64, and 0.64; 95% confidence interval: 0.45-0.79, 0.48-0.84, and 0.48-0.86; p = 0.0004, 0.002, and 0.003, respectively), but a greater risk for development of severe RP (adjusted hazard ratio = 1.80, 95% confidence interval: 1.04-3.12, p = 0.037) than did patients with AA/AC genotypes. Further functional analyses suggested that the ATG16L2 rs10898880 C variant allele modulated expression of the ATG16L2 gene. CONCLUSION This is the first report that one potentially functional SNP rs10898880 in ATG16L2 may be a predictor of RP, LRFS, PFS, and OS in patients with NSCLC after definitive radiotherapy. Additional larger, prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Juyi Wen
- Department of Radiation Oncology, Navy General Hospital, Beijing, People's Republic of China; Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Lili Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Xiaomeng Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Ning Gu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
21
|
Ali MA, Matboli M, El-Khazragy N, Saber O, El-Nakeep S, Abdelzaher HM, Shafei AES, Mostafa R. Investigating miRNA-661 and ATG4-B mRNA expression as potential biomarkers for hepatocellular carcinoma. Biomark Med 2018; 12:245-256. [PMID: 29441798 DOI: 10.2217/bmm-2017-0273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM We aimed to examine the statistical association between serum expression of miRNA 661 (miR-661) and ATG-4B mRNA and hepatocellular carcinoma (HCC) based on in silico data analysis followed by clinical validation. PATIENTS & METHODS Quantitative reverse-transcriptase real-time PCR was used to examine the expression of miR-661 and ATG-4B mRNA in the sera of HCC patients versus control. RESULTS The expression of miR-661 and ATG-4B mRNA was positive in 97.14 and 77.14%, respectively, in HCC patients. The survival analysis showed that ATG-4B mRNA was an independent prognostic factor. CONCLUSION Our data are the first report of its kind regarding the considerable clinical significance of miR-661 and ATG-4B mRNA in HCC patients.
Collapse
Affiliation(s)
- Mahmoud A Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry & Molecular Biology, Ain Shams Faculty of Medicine Research Center (Masri), 11778, Eygpt
| | - Nashwa El-Khazragy
- Department of Clinical Pathology, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Osama Saber
- Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Sarah El-Nakeep
- Hepatology & Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Hana M Abdelzaher
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Cairo, 12585, Egypt
| | - Ayman El-Sayed Shafei
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Randa Mostafa
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| |
Collapse
|