1
|
Stamatopoulos K, O'Farrell C, Simmons M, Batchelor H. In vivo models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 177:113915. [PMID: 34371085 DOI: 10.1016/j.addr.2021.113915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Evaluation of orally ingestible devices is critical to optimize their performance early in development. Using animals as a pre-clinical tool can provide useful information on functionality, yet it is important to recognize that animal gastrointestinal physiology, pathophysiology and anatomy can differ to that in humans and that the most suitable species needs to be selected to inform the evaluation. There has been a move towards in vitro and in silico models rather than animal models in line with the 3Rs (Replacement, Reduction and Refinement) as well as the better control and reproducibility associated with these systems. However, there are still instances where animal models provide the greatest understanding. This paper provides an overview of key aspects of human gastrointestinal anatomy and physiology and compares parameters to those reported in animal species. The value of each species can be determined based upon the parameter of interest from the ingested device when considering the use of pre-clinical animal testing.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
2
|
Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z. High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Front Cell Dev Biol 2021; 9:615928. [PMID: 34249898 PMCID: PMC8264431 DOI: 10.3389/fcell.2021.615928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.
Collapse
Affiliation(s)
- Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - TianYe Yang
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Elfers K, Armbrecht Y, Mazzuoli-Weber G. Good to Know: Baseline Data on Feed Intake, Fecal Pellet Output and Intestinal Transit Time in Guinea Pig as a Frequently Used Model in Gastrointestinal Research. Animals (Basel) 2021; 11:1593. [PMID: 34071498 PMCID: PMC8227794 DOI: 10.3390/ani11061593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Guinea pigs are a traditional and frequently used species in gastrointestinal research. Comprehensive knowledge of basic parameters connected with their intestinal function, such as feed intake, fecal pellet output and gastrointestinal transit time, is important for evaluating results from basic gastrointestinal research that may be applied to practical problems in human and veterinary medicine, for example, when establishing diagnostic tools. Our study revealed that over a 24-h period, single-housed guinea pigs showed a continual but day-accentuated feeding activity, consuming 57% of the total feed during the light period, with pronounced peaks of feed intake during the beginning and end of the light period. This was mirrored by fecal pellet output during the light period and almost no defecation during the dark period, while potential coprophagy not measured in this study needs to be considered. A highly comparable feeding activity was recorded in pair-housed guinea pigs, with 60% of overall feed intake within the light period, indicating that such differences in housing conditions did not influence guinea pigs' feeding behavior. Intestinal transit time was successfully recorded by oral administration of carmine red and counted 5 h on average. Hence, this study provides important information on the basic functional parameters of guinea pigs' gastrointestinal tract physiology.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (Y.A.); (G.M.-W.)
| | | | | |
Collapse
|
4
|
Okada M, Taniguchi S, Takeshima C, Taniguchi H, Kitakoji H, Itoh K, Takahashi T, Imai K. Using a radiopaque marker with radiography for evaluating colonic transit by geometric center in conscious rats: A novel method. Auton Neurosci 2020; 230:102760. [PMID: 33340814 DOI: 10.1016/j.autneu.2020.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
This study developed a new method using radiopaque markers under X-ray to measure rat colonic transit by geometric center repeatedly and/or over a time series in the same individually. Additionally, the utility of this method was shown by elucidating the innervation of the autonomic nerve on colonic transit in detail with a pharmacological technique in conscious rats. An in-dwelling silastic cannula was inserted into the cecum and the proximal part was moved through the abdominal wall, where it was fixed to the posterior neck skin. Twenty markers were administered from the cannula to the proximal colon with saline on the fifth day after surgery. The markers were observed with soft X-ray before required repeated short anesthesia. Experimentation 1: Rats were measured colonic transit twice over 2 days with no administration. Experimentation 2: Rats were administered saline on the first day and pharmacology on the second day intraperitoneally before measurement. Experimentation 1: The markers administrated from the cannula and transited from proximal colon to distal colon over a time series. It showed no significant difference in complication rates between 2 days. Experimentation 2: The colonic transit was increasingly accelerated by neostigmine and phentolamine but not propranolol. Significant changes in 1.0 mg/kg atropine were noted although no differences were found between control and 0.05 mg/kg atropine and between each other's. We have presented the method using radiopaque markers under X-ray with short anesthesia for evaluating the colonic transit. The methods could show rat colonic transit changes in detail with a pharmacological technique.
Collapse
Affiliation(s)
- Misaki Okada
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan
| | - Sazu Taniguchi
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan; The Japan School of Acupuncture, Moxibustion and Physiotherapy, 20-1 Sakuragaoka-cho, Shibuya-ku, Tokyo 150-0031, Japan
| | - Chiaki Takeshima
- Graduate School of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan
| | - Hiroshi Taniguchi
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan; Department of Acupuncture and Moxibustion, Tokyo Ariake University of Medical and Health Sciences, 2-9-1 Ariake, Koto-ku, Tokyo 135-0063, Japan
| | - Hiroshi Kitakoji
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan; Department of Acupuncture and Moxibustion, Takarazuka University of Medical and Health Care, 1 Hanayashikimidorigaoka, Takarazuka-shi, Hyogo 666-0162, Japan
| | - Kazunori Itoh
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan
| | - Toku Takahashi
- Department of Surgery, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Kenji Imai
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Honoda, Hiyoshi-cho, Nantan-shi, Kyoto 629-0392, Japan; Department of Acupuncture and Moxibustion, Faculty of Health Science, Teikyo Heisei University, 2-51-4 Higashi-ikebukuro, Toshima-ku, Tokyo 170-8445, Japan.
| |
Collapse
|
5
|
Meijerink M, van den Broek TJ, Dulos R, Garthoff J, Knippels L, Knipping K, Harthoorn L, Houben G, Verschuren L, van Bilsen J. Network-Based Selection of Candidate Markers and Assays to Assess the Impact of Oral Immune Interventions on Gut Functions. Front Immunol 2019; 10:2672. [PMID: 31798593 PMCID: PMC6863931 DOI: 10.3389/fimmu.2019.02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/05/2022] Open
Abstract
To assess the safety and efficacy of oral immune interventions, it is important and required by regulation to assess the impact of those interventions not only on the immune system, but also on other organs such as the gut as the porte d'entrée. Despite clear indications that the immune system interacts with several physiological functions of the gut, it is still unknown which pathways and molecules are crucial to assessing the impact of nutritional immune interventions on gut functioning. Here we used a network-based systems biology approach to clarify the molecular relationships between immune system and gut functioning and to identify crucial biomarkers to assess effects on gut functions upon nutritional immune interventions. First, the different gut functionalities were categorized based on literature and EFSA guidance documents. Moreover, an overview of the current assays and methods to measure gut function was generated. Secondly, gut-function related biological processes and adverse events were selected and subsequently linked to the physiological functions of the GI tract. Thirdly, database terms and annotations from the Gene ontology database and the Comparative Toxicogenomics Database (CTD) related to the previously selected gut-function related processes were selected. Next, database terms and annotations were used to identify the pathways and genes involved in those gut functionalities. In parallel, information from CTD was used to identify immune disease related genes. The resulting lists of both gut and immune function genes showed an overlap of 753 genes out of 1,296 gut-function related genes indicating the close gut-immune relationship. Using bioinformatics enrichment tools DAVID and Panther, the identified gut-immune markers were predicted to be involved in motility, barrier function, the digestion and absorption of vitamins and fat, regulation of the digestive system and gastric acid, and protection from injurious or allergenic material. Concluding, here we provide a promising systems biology approach to identify genes that help to clarify the relationships between immune system and gut functioning, with the aim to identify candidate biomarkers to monitor nutritional immune intervention assays for safety and efficacy in the general population. This knowledge helps to optimize future study designs to predict effects of nutritional immune intervention on gut functionalities.
Collapse
Affiliation(s)
| | | | | | | | - Léon Knippels
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Karen Knipping
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
6
|
Abstract
This review evaluates published studies regarding alpha-melanocyte stimulating hormone (α-MSH) in ghrelin-elicited feeding and gut motility. We have sought to integrate all available evidences to provide a complete review on the properties of melanocortin receptors (MCR) and the potential clinical treatment of α-MSH after ghrelin-elicited feeding and gut motility. The available studies were grouped into four categories: food intake, gastric emptying, small intestinal transit, and colonic transit. As we describe, the literature provides evidence of the ability of ghrelin to increase food intake, gastric emptying, small intestinal transit, and colonic transit. α-MSH, which displays high affinity for the MC3 and MC4 receptors, can competitively activate MCRs with agouti-related protein stimulated by ghrelin, and partly attenuates the effect of acyl ghrelin on food intake. Central ghrelin-induced acceleration of gastric emptying is not mediated by MCRs, but the acceleration of the small intestinal transit is at least partly mediated via MCRs in the brain. Similar to fecal pellets and total fecal weight, distal colonic motility and secretion are partly mediated by MCRs in the brain. The interplay between acyl ghrelin and MCRs may provide a new therapeutic avenue to ameliorate anorexia and constipation.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan, ROC
- Chinese Taipei Society for the Study of Obesity, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Miron I, Dumitrascu DL. GASTROINTESTINAL MOTILITY DISORDERS IN OBESITY. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:497-504. [PMID: 32377248 DOI: 10.4183/aeb.2019.497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) motility, which is important for the digestion and absorption, may be altered in obesity. The aim of this review is to present the GI motility changes occurring in obesity, as well as their underlying mechanisms. We have conducted a systematic review of the published literature concerning GI motility and obesity and have described recent published data on the changes throughout the entire GI tract. Most recent discoveries include evidence supporting the increase of gastroesophageal reflux disease in obesity and inhibition of gastric motility. Intestinal transit of the distal small bowel generally slows down, ensuring enough time for digestion and absorption. Constipation is more frequent in obese patients than in those with a normal weight. The gut-brain axis plays an important role in the pathophysiology of GI motility disorders in obesity. This bidirectional communication is achieved by way of neurons, hormones, metabolites derived from intestinal microbiota and cytokines. The molecular mechanisms of GI motility changes in obesity are complex. Current data offer a starting point for further research needed to clarify the association of obesity with GI motility disorders.
Collapse
Affiliation(s)
- I Miron
- "Iuliu Hatieganu" University of Medicine and Pharmacy, 3 Medical Clinic, Cluj-Napoca, Romania
| | - D L Dumitrascu
- "Iuliu Hatieganu" Dept of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Huang HH, Lee YC, Chen CY. Effects of burns on gut motor and mucosa functions. Neuropeptides 2018; 72:47-57. [PMID: 30269923 DOI: 10.1016/j.npep.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
This review analyzed the published studies on the effects of thermal injury on gastrointestinal motility and mucosal damage. Our strategy was to integrate all available evidence to provide a complete review on the prokinetic properties of variable reagents and the potential clinical treatment of mucosal damage and gastrointestinal dysmotility after thermal injury. We classified the studies into two major groups: studies on gastrointestinal dysmotility and studies on mucosal damage. We also subclassified the studies into 3 parts: stomach, small intestine, and colon. This review shows evidence that ghrelin can recover burn-induced delay in gastric emptying and small intestinal transit, and can protect the gastric mucosa from burn-induced injury. Oxytocin and β-glucan reduced the serum inflammatory mediators, and histological change and mucosal damage indicators, but did not show evidence of having the ability to recover gastrointestinal motility. Using a combination of different reagents to protect the gastrointestinal mucosa against damage and to recover gastrointestinal motility is an alternative treatment for thermal injury.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yu-Chi Lee
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan.
| |
Collapse
|
9
|
Mohammadi EN, Pietra C, Giuliano C, Fugang L, Greenwood-Van Meerveld B. A Comparison of the Central versus Peripheral Gastrointestinal Prokinetic Activity of Two Novel Ghrelin Mimetics. J Pharmacol Exp Ther 2018; 368:116-124. [PMID: 30377215 DOI: 10.1124/jpet.118.250738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal (GI) prokinetic effects of ghrelin occur through direct peripheral effects on ghrelin receptors within the enteric nervous system and via the ghrelin receptor on the vagus nerve, which activate a centrally mediated mechanism. However, the relative contribution of peripheral versus central effects to the overall prokinetic effect of ghrelin agonists requires further investigation. Here, we investigated the central versus peripheral prokinetic effect of ghrelin by using two novel ghrelin agonists: HM01 (N'-[(1S)-1-(2,3-dichloro-4-methoxyphenyl)ethyl]-N-methyl-N-[1,3,3-trimethyl-(4R)-piperidyl]-urea HCL) with high brain penetration compared with HM02 (N'-[(1S)-1-(2,3-dichloro-4-methoxyphenyl)ethyl]-N-hydroxy-N-(1-methyl-4-piperidinyl)-urea), a more peripherally acting ghrelin agonist. The pharmacokinetic profiles of both ghrelin agonists were evaluated after intravenous and oral administration in rats. The efficacy of HM01 and HM02 was assessed in a rat model of postoperative ileus (POI) induced by abdominal surgery and in a rodent defecation assay. Pharmacokinetic results in our models confirmed that HM01, but not HM02, was a brain-penetrant ghrelin agonist. Administration of either HM01 or HM02 reversed the delayed upper and lower gastrointestinal transit induced by abdominal surgery to levels resembling the non-POI controls. In the defecation test, HM01, but not HM02, significantly increased the weight of fecal pellets. Our findings suggest that, in a rodent model of POI, synthetic ghrelin agonists stimulate GI transit through a peripheral site of action. However, in the defecation assay, our data suggest that a ghrelin-mediated mechanism is located at a central site. Taken together, a ghrelin agonist with both central and peripheral prokinetic activity may show therapeutic potential to treat delayed GI transit disorders.
Collapse
Affiliation(s)
- Ehsan N Mohammadi
- Oklahoma Center for Neuroscience (E.N.M., B.G.-V.M.), Department of Physiology (B.G.-V.M.), and VA Medical Center (B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; HDB Biosciences Co. Ltd., Shanghai, People's Republic of China (L.F.); and Helsinn Healthcare SA, RPD Department, Lugano, Switzerland (C.P., C.G.)
| | - Claudio Pietra
- Oklahoma Center for Neuroscience (E.N.M., B.G.-V.M.), Department of Physiology (B.G.-V.M.), and VA Medical Center (B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; HDB Biosciences Co. Ltd., Shanghai, People's Republic of China (L.F.); and Helsinn Healthcare SA, RPD Department, Lugano, Switzerland (C.P., C.G.)
| | - Claudio Giuliano
- Oklahoma Center for Neuroscience (E.N.M., B.G.-V.M.), Department of Physiology (B.G.-V.M.), and VA Medical Center (B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; HDB Biosciences Co. Ltd., Shanghai, People's Republic of China (L.F.); and Helsinn Healthcare SA, RPD Department, Lugano, Switzerland (C.P., C.G.)
| | - Li Fugang
- Oklahoma Center for Neuroscience (E.N.M., B.G.-V.M.), Department of Physiology (B.G.-V.M.), and VA Medical Center (B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; HDB Biosciences Co. Ltd., Shanghai, People's Republic of China (L.F.); and Helsinn Healthcare SA, RPD Department, Lugano, Switzerland (C.P., C.G.)
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience (E.N.M., B.G.-V.M.), Department of Physiology (B.G.-V.M.), and VA Medical Center (B.G.-V.M.), University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; HDB Biosciences Co. Ltd., Shanghai, People's Republic of China (L.F.); and Helsinn Healthcare SA, RPD Department, Lugano, Switzerland (C.P., C.G.)
| |
Collapse
|
10
|
Ghrelin Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1910450. [PMID: 29129986 PMCID: PMC5654336 DOI: 10.1155/2017/1910450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been recognized as an important mediator in the pathogenesis of age-related cataracts; using antioxidant supplements is one plausible strategy to protect the antioxidative defense system against oxidative stress. Ghrelin administration is expected to reduce ROS, preventing the onset of different diseases. The role of ghrelin, if any, in protecting against oxidative stress in HLECs has never been examined. In the present study, we investigated the effects of ghrelin against H2O2-induced oxidative stress and the associated molecular mechanisms in HLECs and rat lenses. The results showed that pretreatment with ghrelin reduced H2O2-induced cellular apoptosis and ROS accumulation, increased the expression levels of SOD and CAT, and decreased the expression level of MDA. The morphological examination showed that the ghrelin-treated lens organ culture maintained transparency. This is the first report to show that ghrelin can protect HLECs from H2O2-induced oxidative stress. Our findings suggest that ghrelin may prevent the progression of cataracts, which has treatment value for ophthalmologists.
Collapse
|
11
|
Huang HH, Chen LY, Doong ML, Chang SC, Chen CY. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2377-2386. [PMID: 28860709 PMCID: PMC5566386 DOI: 10.2147/dddt.s143749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. Objective This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. Methods and procedures We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. Results ICV injection of O-n-octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h (P<0.01), enhanced non-nutrient semi-liquid gastric emptying (P<0.001), increased the geometric center and running percentage of small intestinal transit (P<0.001), accelerated colonic transit time (P<0.05), and increased fecal pellet output (P<0.01) and total fecal weight (P<0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit (P<0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. Conclusion α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Institute of Clinical Medicine, National Yang-Ming University of Medicine.,Department of Emergency Medicine, Taipei Veterans General Hospital
| | - Liang-Yu Chen
- Aging and Health Research Center, National Yang-Ming University.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital
| | - Ming-Luen Doong
- Institute of Physiology, National Yang-Ming University School of Medicine
| | - Shi-Chuan Chang
- Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine.,Department of Chest Medicine, Taipei Veterans General Hospital
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei.,Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan
| |
Collapse
|